undo template removal
parent
69729d603b
commit
7dd6d977fe
|
@ -48,24 +48,25 @@ NonlinearConjugateGradientOptimizer::NonlinearConjugateGradientOptimizer(
|
||||||
new State(initialValues, graph.error(initialValues)))),
|
new State(initialValues, graph.error(initialValues)))),
|
||||||
params_(params) {}
|
params_(params) {}
|
||||||
|
|
||||||
double NonlinearConjugateGradientOptimizer::error(const Values& state) const {
|
double NonlinearConjugateGradientOptimizer::System::error(
|
||||||
|
const Values& state) const {
|
||||||
return graph_.error(state);
|
return graph_.error(state);
|
||||||
}
|
}
|
||||||
|
|
||||||
VectorValues NonlinearConjugateGradientOptimizer::gradient(
|
VectorValues NonlinearConjugateGradientOptimizer::System::gradient(
|
||||||
const Values& state) const {
|
const Values& state) const {
|
||||||
return gradientInPlace(graph_, state);
|
return gradientInPlace(graph_, state);
|
||||||
}
|
}
|
||||||
|
|
||||||
Values NonlinearConjugateGradientOptimizer::advance(
|
Values NonlinearConjugateGradientOptimizer::System::advance(
|
||||||
const Values& current, const double alpha,
|
const Values& current, const double alpha,
|
||||||
const VectorValues& gradient) const {
|
const VectorValues& gradient) const {
|
||||||
return current.retract(alpha * gradient);
|
return current.retract(alpha * gradient);
|
||||||
}
|
}
|
||||||
|
|
||||||
GaussianFactorGraph::shared_ptr NonlinearConjugateGradientOptimizer::iterate() {
|
GaussianFactorGraph::shared_ptr NonlinearConjugateGradientOptimizer::iterate() {
|
||||||
const auto [newValues, dummy] = nonlinearConjugateGradient(
|
const auto [newValues, dummy] = nonlinearConjugateGradient<System, Values>(
|
||||||
state_->values, params_, true /* single iteration */);
|
System(graph_), state_->values, params_, true /* single iteration */);
|
||||||
state_.reset(
|
state_.reset(
|
||||||
new State(newValues, graph_.error(newValues), state_->iterations + 1));
|
new State(newValues, graph_.error(newValues), state_->iterations + 1));
|
||||||
|
|
||||||
|
@ -75,136 +76,12 @@ GaussianFactorGraph::shared_ptr NonlinearConjugateGradientOptimizer::iterate() {
|
||||||
|
|
||||||
const Values& NonlinearConjugateGradientOptimizer::optimize() {
|
const Values& NonlinearConjugateGradientOptimizer::optimize() {
|
||||||
// Optimize until convergence
|
// Optimize until convergence
|
||||||
|
System system(graph_);
|
||||||
const auto [newValues, iterations] =
|
const auto [newValues, iterations] =
|
||||||
nonlinearConjugateGradient(state_->values, params_, false);
|
nonlinearConjugateGradient(system, state_->values, params_, false);
|
||||||
state_.reset(
|
state_.reset(
|
||||||
new State(std::move(newValues), graph_.error(newValues), iterations));
|
new State(std::move(newValues), graph_.error(newValues), iterations));
|
||||||
return state_->values;
|
return state_->values;
|
||||||
}
|
}
|
||||||
|
|
||||||
double NonlinearConjugateGradientOptimizer::lineSearch(
|
|
||||||
const Values& currentValues, const VectorValues& gradient) const {
|
|
||||||
/* normalize it such that it becomes a unit vector */
|
|
||||||
const double g = gradient.norm();
|
|
||||||
|
|
||||||
// perform the golden section search algorithm to decide the the optimal
|
|
||||||
// step size detail refer to
|
|
||||||
// http://en.wikipedia.org/wiki/Golden_section_search
|
|
||||||
const double phi = 0.5 * (1.0 + std::sqrt(5.0)), resphi = 2.0 - phi,
|
|
||||||
tau = 1e-5;
|
|
||||||
double minStep = -1.0 / g, maxStep = 0,
|
|
||||||
newStep = minStep + (maxStep - minStep) / (phi + 1.0);
|
|
||||||
|
|
||||||
Values newValues = advance(currentValues, newStep, gradient);
|
|
||||||
double newError = error(newValues);
|
|
||||||
|
|
||||||
while (true) {
|
|
||||||
const bool flag = (maxStep - newStep > newStep - minStep) ? true : false;
|
|
||||||
const double testStep = flag ? newStep + resphi * (maxStep - newStep)
|
|
||||||
: newStep - resphi * (newStep - minStep);
|
|
||||||
|
|
||||||
if ((maxStep - minStep) < tau * (std::abs(testStep) + std::abs(newStep))) {
|
|
||||||
return 0.5 * (minStep + maxStep);
|
|
||||||
}
|
|
||||||
|
|
||||||
const Values testValues = advance(currentValues, testStep, gradient);
|
|
||||||
const double testError = error(testValues);
|
|
||||||
|
|
||||||
// update the working range
|
|
||||||
if (testError >= newError) {
|
|
||||||
if (flag)
|
|
||||||
maxStep = testStep;
|
|
||||||
else
|
|
||||||
minStep = testStep;
|
|
||||||
} else {
|
|
||||||
if (flag) {
|
|
||||||
minStep = newStep;
|
|
||||||
newStep = testStep;
|
|
||||||
newError = testError;
|
|
||||||
} else {
|
|
||||||
maxStep = newStep;
|
|
||||||
newStep = testStep;
|
|
||||||
newError = testError;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return 0.0;
|
|
||||||
}
|
|
||||||
|
|
||||||
std::tuple<Values, int>
|
|
||||||
NonlinearConjugateGradientOptimizer::nonlinearConjugateGradient(
|
|
||||||
const Values& initial, const NonlinearOptimizerParams& params,
|
|
||||||
const bool singleIteration, const bool gradientDescent) const {
|
|
||||||
size_t iteration = 0;
|
|
||||||
|
|
||||||
// check if we're already close enough
|
|
||||||
double currentError = error(initial);
|
|
||||||
if (currentError <= params.errorTol) {
|
|
||||||
if (params.verbosity >= NonlinearOptimizerParams::ERROR) {
|
|
||||||
std::cout << "Exiting, as error = " << currentError << " < "
|
|
||||||
<< params.errorTol << std::endl;
|
|
||||||
}
|
|
||||||
return {initial, iteration};
|
|
||||||
}
|
|
||||||
|
|
||||||
Values currentValues = initial;
|
|
||||||
VectorValues currentGradient = gradient(currentValues), prevGradient,
|
|
||||||
direction = currentGradient;
|
|
||||||
|
|
||||||
/* do one step of gradient descent */
|
|
||||||
Values prevValues = currentValues;
|
|
||||||
double prevError = currentError;
|
|
||||||
double alpha = lineSearch(currentValues, direction);
|
|
||||||
currentValues = advance(prevValues, alpha, direction);
|
|
||||||
currentError = error(currentValues);
|
|
||||||
|
|
||||||
// Maybe show output
|
|
||||||
if (params.verbosity >= NonlinearOptimizerParams::ERROR)
|
|
||||||
std::cout << "Initial error: " << currentError << std::endl;
|
|
||||||
|
|
||||||
// Iterative loop
|
|
||||||
do {
|
|
||||||
if (gradientDescent == true) {
|
|
||||||
direction = gradient(currentValues);
|
|
||||||
} else {
|
|
||||||
prevGradient = currentGradient;
|
|
||||||
currentGradient = gradient(currentValues);
|
|
||||||
// Polak-Ribiere: beta = g'*(g_n-g_n-1)/g_n-1'*g_n-1
|
|
||||||
const double beta =
|
|
||||||
std::max(0.0, currentGradient.dot(currentGradient - prevGradient) /
|
|
||||||
prevGradient.dot(prevGradient));
|
|
||||||
direction = currentGradient + (beta * direction);
|
|
||||||
}
|
|
||||||
|
|
||||||
alpha = lineSearch(currentValues, direction);
|
|
||||||
|
|
||||||
prevValues = currentValues;
|
|
||||||
prevError = currentError;
|
|
||||||
|
|
||||||
currentValues = advance(prevValues, alpha, direction);
|
|
||||||
currentError = error(currentValues);
|
|
||||||
|
|
||||||
// User hook:
|
|
||||||
if (params.iterationHook)
|
|
||||||
params.iterationHook(iteration, prevError, currentError);
|
|
||||||
|
|
||||||
// Maybe show output
|
|
||||||
if (params.verbosity >= NonlinearOptimizerParams::ERROR)
|
|
||||||
std::cout << "iteration: " << iteration
|
|
||||||
<< ", currentError: " << currentError << std::endl;
|
|
||||||
} while (++iteration < params.maxIterations && !singleIteration &&
|
|
||||||
!checkConvergence(params.relativeErrorTol, params.absoluteErrorTol,
|
|
||||||
params.errorTol, prevError, currentError,
|
|
||||||
params.verbosity));
|
|
||||||
|
|
||||||
// Printing if verbose
|
|
||||||
if (params.verbosity >= NonlinearOptimizerParams::ERROR &&
|
|
||||||
iteration >= params.maxIterations)
|
|
||||||
std::cout << "nonlinearConjugateGradient: Terminating because reached "
|
|
||||||
"maximum iterations"
|
|
||||||
<< std::endl;
|
|
||||||
|
|
||||||
return {currentValues, iteration};
|
|
||||||
}
|
|
||||||
|
|
||||||
} /* namespace gtsam */
|
} /* namespace gtsam */
|
||||||
|
|
|
@ -26,6 +26,22 @@ namespace gtsam {
|
||||||
/** An implementation of the nonlinear CG method using the template below */
|
/** An implementation of the nonlinear CG method using the template below */
|
||||||
class GTSAM_EXPORT NonlinearConjugateGradientOptimizer
|
class GTSAM_EXPORT NonlinearConjugateGradientOptimizer
|
||||||
: public NonlinearOptimizer {
|
: public NonlinearOptimizer {
|
||||||
|
/* a class for the nonlinearConjugateGradient template */
|
||||||
|
class System {
|
||||||
|
public:
|
||||||
|
typedef NonlinearOptimizerParams Parameters;
|
||||||
|
|
||||||
|
protected:
|
||||||
|
const NonlinearFactorGraph &graph_;
|
||||||
|
|
||||||
|
public:
|
||||||
|
System(const NonlinearFactorGraph &graph) : graph_(graph) {}
|
||||||
|
double error(const Values &state) const;
|
||||||
|
VectorValues gradient(const Values &state) const;
|
||||||
|
Values advance(const Values ¤t, const double alpha,
|
||||||
|
const VectorValues &g) const;
|
||||||
|
};
|
||||||
|
|
||||||
public:
|
public:
|
||||||
typedef NonlinearOptimizer Base;
|
typedef NonlinearOptimizer Base;
|
||||||
typedef NonlinearOptimizerParams Parameters;
|
typedef NonlinearOptimizerParams Parameters;
|
||||||
|
@ -45,13 +61,6 @@ class GTSAM_EXPORT NonlinearConjugateGradientOptimizer
|
||||||
/// Destructor
|
/// Destructor
|
||||||
~NonlinearConjugateGradientOptimizer() override {}
|
~NonlinearConjugateGradientOptimizer() override {}
|
||||||
|
|
||||||
double error(const Values &state) const;
|
|
||||||
|
|
||||||
VectorValues gradient(const Values &state) const;
|
|
||||||
|
|
||||||
Values advance(const Values ¤t, const double alpha,
|
|
||||||
const VectorValues &g) const;
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Perform a single iteration, returning GaussianFactorGraph corresponding to
|
* Perform a single iteration, returning GaussianFactorGraph corresponding to
|
||||||
* the linearized factor graph.
|
* the linearized factor graph.
|
||||||
|
@ -81,4 +90,143 @@ class GTSAM_EXPORT NonlinearConjugateGradientOptimizer
|
||||||
const bool singleIteration, const bool gradientDescent = false) const;
|
const bool singleIteration, const bool gradientDescent = false) const;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
/** Implement the golden-section line search algorithm */
|
||||||
|
template <class S, class V, class W>
|
||||||
|
double lineSearch(const S &system, const V currentValues, const W &gradient) {
|
||||||
|
/* normalize it such that it becomes a unit vector */
|
||||||
|
const double g = gradient.norm();
|
||||||
|
|
||||||
|
// perform the golden section search algorithm to decide the the optimal step
|
||||||
|
// size detail refer to http://en.wikipedia.org/wiki/Golden_section_search
|
||||||
|
const double phi = 0.5 * (1.0 + std::sqrt(5.0)), resphi = 2.0 - phi,
|
||||||
|
tau = 1e-5;
|
||||||
|
double minStep = -1.0 / g, maxStep = 0,
|
||||||
|
newStep = minStep + (maxStep - minStep) / (phi + 1.0);
|
||||||
|
|
||||||
|
V newValues = system.advance(currentValues, newStep, gradient);
|
||||||
|
double newError = system.error(newValues);
|
||||||
|
|
||||||
|
while (true) {
|
||||||
|
const bool flag = (maxStep - newStep > newStep - minStep) ? true : false;
|
||||||
|
const double testStep = flag ? newStep + resphi * (maxStep - newStep)
|
||||||
|
: newStep - resphi * (newStep - minStep);
|
||||||
|
|
||||||
|
if ((maxStep - minStep) < tau * (std::abs(testStep) + std::abs(newStep))) {
|
||||||
|
return 0.5 * (minStep + maxStep);
|
||||||
|
}
|
||||||
|
|
||||||
|
const V testValues = system.advance(currentValues, testStep, gradient);
|
||||||
|
const double testError = system.error(testValues);
|
||||||
|
|
||||||
|
// update the working range
|
||||||
|
if (testError >= newError) {
|
||||||
|
if (flag)
|
||||||
|
maxStep = testStep;
|
||||||
|
else
|
||||||
|
minStep = testStep;
|
||||||
|
} else {
|
||||||
|
if (flag) {
|
||||||
|
minStep = newStep;
|
||||||
|
newStep = testStep;
|
||||||
|
newError = testError;
|
||||||
|
} else {
|
||||||
|
maxStep = newStep;
|
||||||
|
newStep = testStep;
|
||||||
|
newError = testError;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return 0.0;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Implement the nonlinear conjugate gradient method using the Polak-Ribiere
|
||||||
|
* formula suggested in
|
||||||
|
* http://en.wikipedia.org/wiki/Nonlinear_conjugate_gradient_method.
|
||||||
|
*
|
||||||
|
* The S (system) class requires three member functions: error(state),
|
||||||
|
* gradient(state) and advance(state, step-size, direction). The V class denotes
|
||||||
|
* the state or the solution.
|
||||||
|
*
|
||||||
|
* The last parameter is a switch between gradient-descent and conjugate
|
||||||
|
* gradient
|
||||||
|
*/
|
||||||
|
template <class S, class V>
|
||||||
|
std::tuple<V, int> nonlinearConjugateGradient(
|
||||||
|
const S &system, const V &initial, const NonlinearOptimizerParams ¶ms,
|
||||||
|
const bool singleIteration, const bool gradientDescent = false) {
|
||||||
|
// GTSAM_CONCEPT_MANIFOLD_TYPE(V)
|
||||||
|
|
||||||
|
size_t iteration = 0;
|
||||||
|
|
||||||
|
// check if we're already close enough
|
||||||
|
double currentError = system.error(initial);
|
||||||
|
if (currentError <= params.errorTol) {
|
||||||
|
if (params.verbosity >= NonlinearOptimizerParams::ERROR) {
|
||||||
|
std::cout << "Exiting, as error = " << currentError << " < "
|
||||||
|
<< params.errorTol << std::endl;
|
||||||
|
}
|
||||||
|
return {initial, iteration};
|
||||||
|
}
|
||||||
|
|
||||||
|
V currentValues = initial;
|
||||||
|
VectorValues currentGradient = system.gradient(currentValues), prevGradient,
|
||||||
|
direction = currentGradient;
|
||||||
|
|
||||||
|
/* do one step of gradient descent */
|
||||||
|
V prevValues = currentValues;
|
||||||
|
double prevError = currentError;
|
||||||
|
double alpha = lineSearch(system, currentValues, direction);
|
||||||
|
currentValues = system.advance(prevValues, alpha, direction);
|
||||||
|
currentError = system.error(currentValues);
|
||||||
|
|
||||||
|
// Maybe show output
|
||||||
|
if (params.verbosity >= NonlinearOptimizerParams::ERROR)
|
||||||
|
std::cout << "Initial error: " << currentError << std::endl;
|
||||||
|
|
||||||
|
// Iterative loop
|
||||||
|
do {
|
||||||
|
if (gradientDescent == true) {
|
||||||
|
direction = system.gradient(currentValues);
|
||||||
|
} else {
|
||||||
|
prevGradient = currentGradient;
|
||||||
|
currentGradient = system.gradient(currentValues);
|
||||||
|
// Polak-Ribiere: beta = g'*(g_n-g_n-1)/g_n-1'*g_n-1
|
||||||
|
const double beta =
|
||||||
|
std::max(0.0, currentGradient.dot(currentGradient - prevGradient) /
|
||||||
|
prevGradient.dot(prevGradient));
|
||||||
|
direction = currentGradient + (beta * direction);
|
||||||
|
}
|
||||||
|
|
||||||
|
alpha = lineSearch(system, currentValues, direction);
|
||||||
|
|
||||||
|
prevValues = currentValues;
|
||||||
|
prevError = currentError;
|
||||||
|
|
||||||
|
currentValues = system.advance(prevValues, alpha, direction);
|
||||||
|
currentError = system.error(currentValues);
|
||||||
|
|
||||||
|
// User hook:
|
||||||
|
if (params.iterationHook)
|
||||||
|
params.iterationHook(iteration, prevError, currentError);
|
||||||
|
|
||||||
|
// Maybe show output
|
||||||
|
if (params.verbosity >= NonlinearOptimizerParams::ERROR)
|
||||||
|
std::cout << "iteration: " << iteration
|
||||||
|
<< ", currentError: " << currentError << std::endl;
|
||||||
|
} while (++iteration < params.maxIterations && !singleIteration &&
|
||||||
|
!checkConvergence(params.relativeErrorTol, params.absoluteErrorTol,
|
||||||
|
params.errorTol, prevError, currentError,
|
||||||
|
params.verbosity));
|
||||||
|
|
||||||
|
// Printing if verbose
|
||||||
|
if (params.verbosity >= NonlinearOptimizerParams::ERROR &&
|
||||||
|
iteration >= params.maxIterations)
|
||||||
|
std::cout << "nonlinearConjugateGradient: Terminating because reached "
|
||||||
|
"maximum iterations"
|
||||||
|
<< std::endl;
|
||||||
|
|
||||||
|
return {currentValues, iteration};
|
||||||
|
}
|
||||||
|
|
||||||
} // namespace gtsam
|
} // namespace gtsam
|
||||||
|
|
Loading…
Reference in New Issue