Fix warning message in the unit tests/examples
parent
efa36f8901
commit
7d2e4d2e64
|
@ -19,7 +19,7 @@ import gtsam_unstable
|
|||
|
||||
def _timestamp_key_value(key, value):
|
||||
"""
|
||||
Creates a key value pair for a FixedLagSmootherKeyTimeStampMap
|
||||
|
||||
"""
|
||||
return gtsam_unstable.FixedLagSmootherKeyTimestampMapValue(
|
||||
key, value
|
||||
|
@ -29,8 +29,7 @@ def _timestamp_key_value(key, value):
|
|||
def BatchFixedLagSmootherExample():
|
||||
"""
|
||||
Runs a batch fixed smoother on an agent with two odometry
|
||||
sensors that is simply moving along the x axis in constant
|
||||
speed.
|
||||
sensors that is simply moving to the
|
||||
"""
|
||||
|
||||
# Define a batch fixed lag smoother, which uses
|
||||
|
@ -38,14 +37,12 @@ def BatchFixedLagSmootherExample():
|
|||
lag = 2.0
|
||||
smoother_batch = gtsam_unstable.BatchFixedLagSmoother(lag)
|
||||
|
||||
|
||||
# Create containers to store the factors and linearization points
|
||||
# that will be sent to the smoothers
|
||||
new_factors = gtsam.NonlinearFactorGraph()
|
||||
new_values = gtsam.Values()
|
||||
new_timestamps = gtsam_unstable.FixedLagSmootherKeyTimestampMap()
|
||||
|
||||
|
||||
# Create a prior on the first pose, placing it at the origin
|
||||
prior_mean = gtsam.Pose2(0, 0, 0)
|
||||
prior_noise = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.3, 0.3, 0.1]))
|
||||
|
@ -57,9 +54,6 @@ def BatchFixedLagSmootherExample():
|
|||
delta_time = 0.25
|
||||
time = 0.25
|
||||
|
||||
# Iterates from 0.25s to 3.0s, adding 0.25s each loop
|
||||
# In each iteration, the agent moves at a constant speed
|
||||
# and its two odometers measure the change.
|
||||
while time <= 3.0:
|
||||
previous_key = 1000 * (time - delta_time)
|
||||
current_key = 1000 * time
|
||||
|
@ -72,22 +66,27 @@ def BatchFixedLagSmootherExample():
|
|||
current_pose = gtsam.Pose2(time * 2, 0, 0)
|
||||
new_values.insert(current_key, current_pose)
|
||||
|
||||
# Add odometry factors from two different sources with different error stats
|
||||
# Add odometry factors from two different sources with different error
|
||||
# stats
|
||||
odometry_measurement_1 = gtsam.Pose2(0.61, -0.08, 0.02)
|
||||
odometry_noise_1 = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.1, 0.1, 0.05]))
|
||||
odometry_noise_1 = gtsam.noiseModel_Diagonal.Sigmas(
|
||||
np.array([0.1, 0.1, 0.05]))
|
||||
new_factors.push_back(gtsam.BetweenFactorPose2(
|
||||
previous_key, current_key, odometry_measurement_1, odometry_noise_1
|
||||
))
|
||||
|
||||
odometry_measurement_2 = gtsam.Pose2(0.47, 0.03, 0.01)
|
||||
odometry_noise_2 = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.05, 0.05, 0.05]))
|
||||
odometry_noise_2 = gtsam.noiseModel_Diagonal.Sigmas(
|
||||
np.array([0.05, 0.05, 0.05]))
|
||||
new_factors.push_back(gtsam.BetweenFactorPose2(
|
||||
previous_key, current_key, odometry_measurement_2, odometry_noise_2
|
||||
))
|
||||
|
||||
# Update the smoothers with the new factors
|
||||
# Update the smoothers with the new factors. In this case,
|
||||
# one iteration must pass for Levenberg-Marquardt to accurately
|
||||
# estimate
|
||||
if time >= 0.50:
|
||||
smoother_batch.update(new_factors, new_values, new_timestamps)
|
||||
|
||||
print("Timestamp = " + str(time) + ", Key = " + str(current_key))
|
||||
print(smoother_batch.calculateEstimatePose2(current_key))
|
||||
|
||||
|
@ -95,9 +94,9 @@ def BatchFixedLagSmootherExample():
|
|||
new_values.clear()
|
||||
new_factors.resize(0)
|
||||
|
||||
|
||||
time += delta_time
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
BatchFixedLagSmootherExample()
|
||||
print("Example complete")
|
||||
|
|
|
@ -3,10 +3,13 @@ import gtsam
|
|||
import gtsam_unstable
|
||||
import numpy as np
|
||||
|
||||
|
||||
def _timestamp_key_value(key, value):
|
||||
return gtsam_unstable.FixedLagSmootherKeyTimestampMapValue(
|
||||
key, value
|
||||
)
|
||||
|
||||
|
||||
class TestFixedLagSmootherExample(unittest.TestCase):
|
||||
'''
|
||||
Tests the fixed lag smoother wrapper
|
||||
|
@ -23,19 +26,20 @@ class TestFixedLagSmootherExample(unittest.TestCase):
|
|||
lag = 2.0
|
||||
smoother_batch = gtsam_unstable.BatchFixedLagSmoother(lag)
|
||||
|
||||
|
||||
# Create containers to store the factors and linearization points
|
||||
# that will be sent to the smoothers
|
||||
new_factors = gtsam.NonlinearFactorGraph()
|
||||
new_values = gtsam.Values()
|
||||
new_timestamps = gtsam_unstable.FixedLagSmootherKeyTimestampMap()
|
||||
|
||||
|
||||
# Create a prior on the first pose, placing it at the origin
|
||||
prior_mean = gtsam.Pose2(0, 0, 0)
|
||||
prior_noise = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.3, 0.3, 0.1]))
|
||||
prior_noise = gtsam.noiseModel_Diagonal.Sigmas(
|
||||
np.array([0.3, 0.3, 0.1]))
|
||||
X1 = 0
|
||||
new_factors.push_back(gtsam.PriorFactorPose2(X1, prior_mean, prior_noise))
|
||||
new_factors.push_back(
|
||||
gtsam.PriorFactorPose2(
|
||||
X1, prior_mean, prior_noise))
|
||||
new_values.insert(X1, prior_mean)
|
||||
new_timestamps.insert(_timestamp_key_value(X1, 0.0))
|
||||
|
||||
|
@ -45,19 +49,19 @@ class TestFixedLagSmootherExample(unittest.TestCase):
|
|||
i = 0
|
||||
|
||||
ground_truth = [
|
||||
gtsam.Pose2(0.49792, 0.007802, 0.015),
|
||||
gtsam.Pose2(0.99547, 0.023019, 0.03),
|
||||
gtsam.Pose2(1.4928, 0.045725, 0.045),
|
||||
gtsam.Pose2(1.9898, 0.075888, 0.06),
|
||||
gtsam.Pose2(2.4863, 0.1135, 0.075),
|
||||
gtsam.Pose2(2.9821, 0.15856, 0.09),
|
||||
gtsam.Pose2(3.4772, 0.21105, 0.105),
|
||||
gtsam.Pose2(3.9715, 0.27096, 0.12),
|
||||
gtsam.Pose2(4.4648, 0.33827, 0.135),
|
||||
gtsam.Pose2(4.957, 0.41298, 0.15),
|
||||
gtsam.Pose2(5.4481, 0.49506, 0.165),
|
||||
gtsam.Pose2(5.9379, 0.5845, 0.18),
|
||||
gtsam.Pose2(0.995821, 0.0231012, 0.0300001),
|
||||
gtsam.Pose2(1.49284, 0.0457247, 0.045),
|
||||
gtsam.Pose2(1.98981, 0.0758879, 0.06),
|
||||
gtsam.Pose2(2.48627, 0.113502, 0.075),
|
||||
gtsam.Pose2(2.98211, 0.158558, 0.09),
|
||||
gtsam.Pose2(3.47722, 0.211047, 0.105),
|
||||
gtsam.Pose2(3.97149, 0.270956, 0.12),
|
||||
gtsam.Pose2(4.4648, 0.338272, 0.135),
|
||||
gtsam.Pose2(4.95705, 0.41298, 0.15),
|
||||
gtsam.Pose2(5.44812, 0.495063, 0.165),
|
||||
gtsam.Pose2(5.9379, 0.584503, 0.18),
|
||||
]
|
||||
|
||||
# Iterates from 0.25s to 3.0s, adding 0.25s each loop
|
||||
# In each iteration, the agent moves at a constant speed
|
||||
# and its two odometers measure the change. The smoothed
|
||||
|
@ -70,35 +74,49 @@ class TestFixedLagSmootherExample(unittest.TestCase):
|
|||
new_timestamps.insert(_timestamp_key_value(current_key, time))
|
||||
|
||||
# Add a guess for this pose to the new values
|
||||
# Assume that the robot moves at 2 m/s. Position is time[s] * 2[m/s]
|
||||
# Assume that the robot moves at 2 m/s. Position is time[s] *
|
||||
# 2[m/s]
|
||||
current_pose = gtsam.Pose2(time * 2, 0, 0)
|
||||
new_values.insert(current_key, current_pose)
|
||||
|
||||
# Add odometry factors from two different sources with different error stats
|
||||
# Add odometry factors from two different sources with different
|
||||
# error stats
|
||||
odometry_measurement_1 = gtsam.Pose2(0.61, -0.08, 0.02)
|
||||
odometry_noise_1 = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.1, 0.1, 0.05]))
|
||||
new_factors.push_back(gtsam.BetweenFactorPose2(
|
||||
previous_key, current_key, odometry_measurement_1, odometry_noise_1
|
||||
))
|
||||
odometry_noise_1 = gtsam.noiseModel_Diagonal.Sigmas(
|
||||
np.array([0.1, 0.1, 0.05]))
|
||||
new_factors.push_back(
|
||||
gtsam.BetweenFactorPose2(
|
||||
previous_key,
|
||||
current_key,
|
||||
odometry_measurement_1,
|
||||
odometry_noise_1))
|
||||
|
||||
odometry_measurement_2 = gtsam.Pose2(0.47, 0.03, 0.01)
|
||||
odometry_noise_2 = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.05, 0.05, 0.05]))
|
||||
new_factors.push_back(gtsam.BetweenFactorPose2(
|
||||
previous_key, current_key, odometry_measurement_2, odometry_noise_2
|
||||
))
|
||||
odometry_noise_2 = gtsam.noiseModel_Diagonal.Sigmas(
|
||||
np.array([0.05, 0.05, 0.05]))
|
||||
new_factors.push_back(
|
||||
gtsam.BetweenFactorPose2(
|
||||
previous_key,
|
||||
current_key,
|
||||
odometry_measurement_2,
|
||||
odometry_noise_2))
|
||||
|
||||
# Update the smoothers with the new factors
|
||||
# Update the smoothers with the new factors. In this case,
|
||||
# one iteration must pass for Levenberg-Marquardt to accurately
|
||||
# estimate
|
||||
if time >= 0.50:
|
||||
smoother_batch.update(new_factors, new_values, new_timestamps)
|
||||
|
||||
estimate = smoother_batch.calculateEstimatePose2(current_key)
|
||||
self.assertTrue(estimate.equals(ground_truth[i], 1e-4))
|
||||
i += 1
|
||||
|
||||
new_timestamps.clear()
|
||||
new_values.clear()
|
||||
new_factors.resize(0)
|
||||
|
||||
time += delta_time
|
||||
i += 1
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
|
|
|
@ -111,7 +111,10 @@ int main(int argc, char** argv) {
|
|||
noiseModel::Diagonal::shared_ptr odometryNoise2 = noiseModel::Diagonal::Sigmas(Vector3(0.05, 0.05, 0.05));
|
||||
newFactors.push_back(BetweenFactor<Pose2>(previousKey, currentKey, odometryMeasurement2, odometryNoise2));
|
||||
|
||||
// Update the smoothers with the new factors
|
||||
// Update the smoothers with the new factors.
|
||||
// In this example, Levenberg-Marquadt needs one iteration
|
||||
// to pass to accurately estimate.
|
||||
if (time >= 0.50) {
|
||||
smootherBatch.update(newFactors, newValues, newTimestamps);
|
||||
smootherISAM2.update(newFactors, newValues, newTimestamps);
|
||||
for(size_t i = 1; i < 2; ++i) { // Optionally perform multiple iSAM2 iterations
|
||||
|
@ -129,6 +132,7 @@ int main(int argc, char** argv) {
|
|||
newValues.clear();
|
||||
newFactors.resize(0);
|
||||
}
|
||||
}
|
||||
|
||||
// And to demonstrate the fixed-lag aspect, print the keys contained in each smoother after 3.0 seconds
|
||||
cout << "After 3.0 seconds, " << endl;
|
||||
|
|
Loading…
Reference in New Issue