Fix warning message in the unit tests/examples
parent
efa36f8901
commit
7d2e4d2e64
|
@ -19,7 +19,7 @@ import gtsam_unstable
|
||||||
|
|
||||||
def _timestamp_key_value(key, value):
|
def _timestamp_key_value(key, value):
|
||||||
"""
|
"""
|
||||||
Creates a key value pair for a FixedLagSmootherKeyTimeStampMap
|
|
||||||
"""
|
"""
|
||||||
return gtsam_unstable.FixedLagSmootherKeyTimestampMapValue(
|
return gtsam_unstable.FixedLagSmootherKeyTimestampMapValue(
|
||||||
key, value
|
key, value
|
||||||
|
@ -29,8 +29,7 @@ def _timestamp_key_value(key, value):
|
||||||
def BatchFixedLagSmootherExample():
|
def BatchFixedLagSmootherExample():
|
||||||
"""
|
"""
|
||||||
Runs a batch fixed smoother on an agent with two odometry
|
Runs a batch fixed smoother on an agent with two odometry
|
||||||
sensors that is simply moving along the x axis in constant
|
sensors that is simply moving to the
|
||||||
speed.
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
# Define a batch fixed lag smoother, which uses
|
# Define a batch fixed lag smoother, which uses
|
||||||
|
@ -38,14 +37,12 @@ def BatchFixedLagSmootherExample():
|
||||||
lag = 2.0
|
lag = 2.0
|
||||||
smoother_batch = gtsam_unstable.BatchFixedLagSmoother(lag)
|
smoother_batch = gtsam_unstable.BatchFixedLagSmoother(lag)
|
||||||
|
|
||||||
|
|
||||||
# Create containers to store the factors and linearization points
|
# Create containers to store the factors and linearization points
|
||||||
# that will be sent to the smoothers
|
# that will be sent to the smoothers
|
||||||
new_factors = gtsam.NonlinearFactorGraph()
|
new_factors = gtsam.NonlinearFactorGraph()
|
||||||
new_values = gtsam.Values()
|
new_values = gtsam.Values()
|
||||||
new_timestamps = gtsam_unstable.FixedLagSmootherKeyTimestampMap()
|
new_timestamps = gtsam_unstable.FixedLagSmootherKeyTimestampMap()
|
||||||
|
|
||||||
|
|
||||||
# Create a prior on the first pose, placing it at the origin
|
# Create a prior on the first pose, placing it at the origin
|
||||||
prior_mean = gtsam.Pose2(0, 0, 0)
|
prior_mean = gtsam.Pose2(0, 0, 0)
|
||||||
prior_noise = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.3, 0.3, 0.1]))
|
prior_noise = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.3, 0.3, 0.1]))
|
||||||
|
@ -57,9 +54,6 @@ def BatchFixedLagSmootherExample():
|
||||||
delta_time = 0.25
|
delta_time = 0.25
|
||||||
time = 0.25
|
time = 0.25
|
||||||
|
|
||||||
# Iterates from 0.25s to 3.0s, adding 0.25s each loop
|
|
||||||
# In each iteration, the agent moves at a constant speed
|
|
||||||
# and its two odometers measure the change.
|
|
||||||
while time <= 3.0:
|
while time <= 3.0:
|
||||||
previous_key = 1000 * (time - delta_time)
|
previous_key = 1000 * (time - delta_time)
|
||||||
current_key = 1000 * time
|
current_key = 1000 * time
|
||||||
|
@ -72,32 +66,37 @@ def BatchFixedLagSmootherExample():
|
||||||
current_pose = gtsam.Pose2(time * 2, 0, 0)
|
current_pose = gtsam.Pose2(time * 2, 0, 0)
|
||||||
new_values.insert(current_key, current_pose)
|
new_values.insert(current_key, current_pose)
|
||||||
|
|
||||||
# Add odometry factors from two different sources with different error stats
|
# Add odometry factors from two different sources with different error
|
||||||
|
# stats
|
||||||
odometry_measurement_1 = gtsam.Pose2(0.61, -0.08, 0.02)
|
odometry_measurement_1 = gtsam.Pose2(0.61, -0.08, 0.02)
|
||||||
odometry_noise_1 = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.1, 0.1, 0.05]))
|
odometry_noise_1 = gtsam.noiseModel_Diagonal.Sigmas(
|
||||||
|
np.array([0.1, 0.1, 0.05]))
|
||||||
new_factors.push_back(gtsam.BetweenFactorPose2(
|
new_factors.push_back(gtsam.BetweenFactorPose2(
|
||||||
previous_key, current_key, odometry_measurement_1, odometry_noise_1
|
previous_key, current_key, odometry_measurement_1, odometry_noise_1
|
||||||
))
|
))
|
||||||
|
|
||||||
odometry_measurement_2 = gtsam.Pose2(0.47, 0.03, 0.01)
|
odometry_measurement_2 = gtsam.Pose2(0.47, 0.03, 0.01)
|
||||||
odometry_noise_2 = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.05, 0.05, 0.05]))
|
odometry_noise_2 = gtsam.noiseModel_Diagonal.Sigmas(
|
||||||
|
np.array([0.05, 0.05, 0.05]))
|
||||||
new_factors.push_back(gtsam.BetweenFactorPose2(
|
new_factors.push_back(gtsam.BetweenFactorPose2(
|
||||||
previous_key, current_key, odometry_measurement_2, odometry_noise_2
|
previous_key, current_key, odometry_measurement_2, odometry_noise_2
|
||||||
))
|
))
|
||||||
|
|
||||||
# Update the smoothers with the new factors
|
# Update the smoothers with the new factors. In this case,
|
||||||
smoother_batch.update(new_factors, new_values, new_timestamps)
|
# one iteration must pass for Levenberg-Marquardt to accurately
|
||||||
|
# estimate
|
||||||
print("Timestamp = " + str(time) + ", Key = " + str(current_key))
|
if time >= 0.50:
|
||||||
print(smoother_batch.calculateEstimatePose2(current_key))
|
smoother_batch.update(new_factors, new_values, new_timestamps)
|
||||||
|
print("Timestamp = " + str(time) + ", Key = " + str(current_key))
|
||||||
new_timestamps.clear()
|
print(smoother_batch.calculateEstimatePose2(current_key))
|
||||||
new_values.clear()
|
|
||||||
new_factors.resize(0)
|
|
||||||
|
|
||||||
|
new_timestamps.clear()
|
||||||
|
new_values.clear()
|
||||||
|
new_factors.resize(0)
|
||||||
|
|
||||||
time += delta_time
|
time += delta_time
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
BatchFixedLagSmootherExample()
|
BatchFixedLagSmootherExample()
|
||||||
print("Example complete")
|
print("Example complete")
|
||||||
|
|
|
@ -3,10 +3,13 @@ import gtsam
|
||||||
import gtsam_unstable
|
import gtsam_unstable
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
def _timestamp_key_value(key, value):
|
def _timestamp_key_value(key, value):
|
||||||
return gtsam_unstable.FixedLagSmootherKeyTimestampMapValue(
|
return gtsam_unstable.FixedLagSmootherKeyTimestampMapValue(
|
||||||
key, value
|
key, value
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
class TestFixedLagSmootherExample(unittest.TestCase):
|
class TestFixedLagSmootherExample(unittest.TestCase):
|
||||||
'''
|
'''
|
||||||
Tests the fixed lag smoother wrapper
|
Tests the fixed lag smoother wrapper
|
||||||
|
@ -23,19 +26,20 @@ class TestFixedLagSmootherExample(unittest.TestCase):
|
||||||
lag = 2.0
|
lag = 2.0
|
||||||
smoother_batch = gtsam_unstable.BatchFixedLagSmoother(lag)
|
smoother_batch = gtsam_unstable.BatchFixedLagSmoother(lag)
|
||||||
|
|
||||||
|
|
||||||
# Create containers to store the factors and linearization points
|
# Create containers to store the factors and linearization points
|
||||||
# that will be sent to the smoothers
|
# that will be sent to the smoothers
|
||||||
new_factors = gtsam.NonlinearFactorGraph()
|
new_factors = gtsam.NonlinearFactorGraph()
|
||||||
new_values = gtsam.Values()
|
new_values = gtsam.Values()
|
||||||
new_timestamps = gtsam_unstable.FixedLagSmootherKeyTimestampMap()
|
new_timestamps = gtsam_unstable.FixedLagSmootherKeyTimestampMap()
|
||||||
|
|
||||||
|
|
||||||
# Create a prior on the first pose, placing it at the origin
|
# Create a prior on the first pose, placing it at the origin
|
||||||
prior_mean = gtsam.Pose2(0, 0, 0)
|
prior_mean = gtsam.Pose2(0, 0, 0)
|
||||||
prior_noise = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.3, 0.3, 0.1]))
|
prior_noise = gtsam.noiseModel_Diagonal.Sigmas(
|
||||||
|
np.array([0.3, 0.3, 0.1]))
|
||||||
X1 = 0
|
X1 = 0
|
||||||
new_factors.push_back(gtsam.PriorFactorPose2(X1, prior_mean, prior_noise))
|
new_factors.push_back(
|
||||||
|
gtsam.PriorFactorPose2(
|
||||||
|
X1, prior_mean, prior_noise))
|
||||||
new_values.insert(X1, prior_mean)
|
new_values.insert(X1, prior_mean)
|
||||||
new_timestamps.insert(_timestamp_key_value(X1, 0.0))
|
new_timestamps.insert(_timestamp_key_value(X1, 0.0))
|
||||||
|
|
||||||
|
@ -45,19 +49,19 @@ class TestFixedLagSmootherExample(unittest.TestCase):
|
||||||
i = 0
|
i = 0
|
||||||
|
|
||||||
ground_truth = [
|
ground_truth = [
|
||||||
gtsam.Pose2(0.49792, 0.007802, 0.015),
|
gtsam.Pose2(0.995821, 0.0231012, 0.0300001),
|
||||||
gtsam.Pose2(0.99547, 0.023019, 0.03),
|
gtsam.Pose2(1.49284, 0.0457247, 0.045),
|
||||||
gtsam.Pose2(1.4928, 0.045725, 0.045),
|
gtsam.Pose2(1.98981, 0.0758879, 0.06),
|
||||||
gtsam.Pose2(1.9898, 0.075888, 0.06),
|
gtsam.Pose2(2.48627, 0.113502, 0.075),
|
||||||
gtsam.Pose2(2.4863, 0.1135, 0.075),
|
gtsam.Pose2(2.98211, 0.158558, 0.09),
|
||||||
gtsam.Pose2(2.9821, 0.15856, 0.09),
|
gtsam.Pose2(3.47722, 0.211047, 0.105),
|
||||||
gtsam.Pose2(3.4772, 0.21105, 0.105),
|
gtsam.Pose2(3.97149, 0.270956, 0.12),
|
||||||
gtsam.Pose2(3.9715, 0.27096, 0.12),
|
gtsam.Pose2(4.4648, 0.338272, 0.135),
|
||||||
gtsam.Pose2(4.4648, 0.33827, 0.135),
|
gtsam.Pose2(4.95705, 0.41298, 0.15),
|
||||||
gtsam.Pose2(4.957, 0.41298, 0.15),
|
gtsam.Pose2(5.44812, 0.495063, 0.165),
|
||||||
gtsam.Pose2(5.4481, 0.49506, 0.165),
|
gtsam.Pose2(5.9379, 0.584503, 0.18),
|
||||||
gtsam.Pose2(5.9379, 0.5845, 0.18),
|
|
||||||
]
|
]
|
||||||
|
|
||||||
# Iterates from 0.25s to 3.0s, adding 0.25s each loop
|
# Iterates from 0.25s to 3.0s, adding 0.25s each loop
|
||||||
# In each iteration, the agent moves at a constant speed
|
# In each iteration, the agent moves at a constant speed
|
||||||
# and its two odometers measure the change. The smoothed
|
# and its two odometers measure the change. The smoothed
|
||||||
|
@ -70,35 +74,49 @@ class TestFixedLagSmootherExample(unittest.TestCase):
|
||||||
new_timestamps.insert(_timestamp_key_value(current_key, time))
|
new_timestamps.insert(_timestamp_key_value(current_key, time))
|
||||||
|
|
||||||
# Add a guess for this pose to the new values
|
# Add a guess for this pose to the new values
|
||||||
# Assume that the robot moves at 2 m/s. Position is time[s] * 2[m/s]
|
# Assume that the robot moves at 2 m/s. Position is time[s] *
|
||||||
|
# 2[m/s]
|
||||||
current_pose = gtsam.Pose2(time * 2, 0, 0)
|
current_pose = gtsam.Pose2(time * 2, 0, 0)
|
||||||
new_values.insert(current_key, current_pose)
|
new_values.insert(current_key, current_pose)
|
||||||
|
|
||||||
# Add odometry factors from two different sources with different error stats
|
# Add odometry factors from two different sources with different
|
||||||
|
# error stats
|
||||||
odometry_measurement_1 = gtsam.Pose2(0.61, -0.08, 0.02)
|
odometry_measurement_1 = gtsam.Pose2(0.61, -0.08, 0.02)
|
||||||
odometry_noise_1 = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.1, 0.1, 0.05]))
|
odometry_noise_1 = gtsam.noiseModel_Diagonal.Sigmas(
|
||||||
new_factors.push_back(gtsam.BetweenFactorPose2(
|
np.array([0.1, 0.1, 0.05]))
|
||||||
previous_key, current_key, odometry_measurement_1, odometry_noise_1
|
new_factors.push_back(
|
||||||
))
|
gtsam.BetweenFactorPose2(
|
||||||
|
previous_key,
|
||||||
|
current_key,
|
||||||
|
odometry_measurement_1,
|
||||||
|
odometry_noise_1))
|
||||||
|
|
||||||
odometry_measurement_2 = gtsam.Pose2(0.47, 0.03, 0.01)
|
odometry_measurement_2 = gtsam.Pose2(0.47, 0.03, 0.01)
|
||||||
odometry_noise_2 = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.05, 0.05, 0.05]))
|
odometry_noise_2 = gtsam.noiseModel_Diagonal.Sigmas(
|
||||||
new_factors.push_back(gtsam.BetweenFactorPose2(
|
np.array([0.05, 0.05, 0.05]))
|
||||||
previous_key, current_key, odometry_measurement_2, odometry_noise_2
|
new_factors.push_back(
|
||||||
))
|
gtsam.BetweenFactorPose2(
|
||||||
|
previous_key,
|
||||||
|
current_key,
|
||||||
|
odometry_measurement_2,
|
||||||
|
odometry_noise_2))
|
||||||
|
|
||||||
# Update the smoothers with the new factors
|
# Update the smoothers with the new factors. In this case,
|
||||||
smoother_batch.update(new_factors, new_values, new_timestamps)
|
# one iteration must pass for Levenberg-Marquardt to accurately
|
||||||
|
# estimate
|
||||||
|
if time >= 0.50:
|
||||||
|
smoother_batch.update(new_factors, new_values, new_timestamps)
|
||||||
|
|
||||||
estimate = smoother_batch.calculateEstimatePose2(current_key)
|
estimate = smoother_batch.calculateEstimatePose2(current_key)
|
||||||
self.assertTrue(estimate.equals(ground_truth[i], 1e-4))
|
self.assertTrue(estimate.equals(ground_truth[i], 1e-4))
|
||||||
|
i += 1
|
||||||
|
|
||||||
new_timestamps.clear()
|
new_timestamps.clear()
|
||||||
new_values.clear()
|
new_values.clear()
|
||||||
new_factors.resize(0)
|
new_factors.resize(0)
|
||||||
|
|
||||||
time += delta_time
|
time += delta_time
|
||||||
i += 1
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
unittest.main()
|
unittest.main()
|
||||||
|
|
|
@ -111,23 +111,27 @@ int main(int argc, char** argv) {
|
||||||
noiseModel::Diagonal::shared_ptr odometryNoise2 = noiseModel::Diagonal::Sigmas(Vector3(0.05, 0.05, 0.05));
|
noiseModel::Diagonal::shared_ptr odometryNoise2 = noiseModel::Diagonal::Sigmas(Vector3(0.05, 0.05, 0.05));
|
||||||
newFactors.push_back(BetweenFactor<Pose2>(previousKey, currentKey, odometryMeasurement2, odometryNoise2));
|
newFactors.push_back(BetweenFactor<Pose2>(previousKey, currentKey, odometryMeasurement2, odometryNoise2));
|
||||||
|
|
||||||
// Update the smoothers with the new factors
|
// Update the smoothers with the new factors.
|
||||||
smootherBatch.update(newFactors, newValues, newTimestamps);
|
// In this example, Levenberg-Marquadt needs one iteration
|
||||||
smootherISAM2.update(newFactors, newValues, newTimestamps);
|
// to pass to accurately estimate.
|
||||||
for(size_t i = 1; i < 2; ++i) { // Optionally perform multiple iSAM2 iterations
|
if (time >= 0.50) {
|
||||||
smootherISAM2.update();
|
smootherBatch.update(newFactors, newValues, newTimestamps);
|
||||||
|
smootherISAM2.update(newFactors, newValues, newTimestamps);
|
||||||
|
for(size_t i = 1; i < 2; ++i) { // Optionally perform multiple iSAM2 iterations
|
||||||
|
smootherISAM2.update();
|
||||||
|
}
|
||||||
|
|
||||||
|
// Print the optimized current pose
|
||||||
|
cout << setprecision(5) << "Timestamp = " << time << endl;
|
||||||
|
smootherBatch.calculateEstimate<Pose2>(currentKey).print("Batch Estimate:");
|
||||||
|
smootherISAM2.calculateEstimate<Pose2>(currentKey).print("iSAM2 Estimate:");
|
||||||
|
cout << endl;
|
||||||
|
|
||||||
|
// Clear contains for the next iteration
|
||||||
|
newTimestamps.clear();
|
||||||
|
newValues.clear();
|
||||||
|
newFactors.resize(0);
|
||||||
}
|
}
|
||||||
|
|
||||||
// Print the optimized current pose
|
|
||||||
cout << setprecision(5) << "Timestamp = " << time << endl;
|
|
||||||
smootherBatch.calculateEstimate<Pose2>(currentKey).print("Batch Estimate:");
|
|
||||||
smootherISAM2.calculateEstimate<Pose2>(currentKey).print("iSAM2 Estimate:");
|
|
||||||
cout << endl;
|
|
||||||
|
|
||||||
// Clear contains for the next iteration
|
|
||||||
newTimestamps.clear();
|
|
||||||
newValues.clear();
|
|
||||||
newFactors.resize(0);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// And to demonstrate the fixed-lag aspect, print the keys contained in each smoother after 3.0 seconds
|
// And to demonstrate the fixed-lag aspect, print the keys contained in each smoother after 3.0 seconds
|
||||||
|
|
Loading…
Reference in New Issue