diff --git a/gtsam/hybrid/tests/testHybridGaussianFactorGraph.cpp b/gtsam/hybrid/tests/testHybridGaussianFactorGraph.cpp index d54f8a141..fb09bb618 100644 --- a/gtsam/hybrid/tests/testHybridGaussianFactorGraph.cpp +++ b/gtsam/hybrid/tests/testHybridGaussianFactorGraph.cpp @@ -700,8 +700,7 @@ TEST(HybridGaussianFactorGraph, EliminateTiny1Swapped) { m1, std::vector{conditional0, conditional1}); // Add prior on m1. - expectedBayesNet.emplace_shared( - m1, "0.188638/0.811362"); + expectedBayesNet.emplace_shared(m1, "0.188638 0.811362"); // Test elimination const auto posterior = fg.eliminateSequential(); @@ -739,7 +738,7 @@ TEST(HybridGaussianFactorGraph, EliminateTiny2) { // Add prior on mode. // Since this is the only discrete conditional, it is added as a // TableDistribution. - expectedBayesNet.emplace_shared(mode, "23/77"); + expectedBayesNet.emplace_shared(mode, "23 77"); // Test elimination const auto posterior = fg.eliminateSequential(); diff --git a/gtsam/hybrid/tests/testHybridMotionModel.cpp b/gtsam/hybrid/tests/testHybridMotionModel.cpp index 3c00d607c..5d307e81f 100644 --- a/gtsam/hybrid/tests/testHybridMotionModel.cpp +++ b/gtsam/hybrid/tests/testHybridMotionModel.cpp @@ -144,7 +144,7 @@ TEST(HybridGaussianFactorGraph, TwoStateModel) { // Since no measurement on x1, we hedge our bets // Importance sampling run with 100k samples gives 50.051/49.949 // approximateDiscreteMarginal(hbn, hybridMotionModel, given); - TableDistribution expected(m1, "50/50"); + TableDistribution expected(m1, "50 50"); EXPECT(assert_equal(expected, *(bn->at(2)->asDiscrete()))); } @@ -162,7 +162,7 @@ TEST(HybridGaussianFactorGraph, TwoStateModel) { // Since we have a measurement on x1, we get a definite result // Values taken from an importance sampling run with 100k samples: // approximateDiscreteMarginal(hbn, hybridMotionModel, given); - TableDistribution expected(m1, "44.3854/55.6146"); + TableDistribution expected(m1, "44.3854 55.6146"); EXPECT(assert_equal( expected, *(bn->at(2)->asDiscrete()), 0.02)); } @@ -251,7 +251,7 @@ TEST(HybridGaussianFactorGraph, TwoStateModel2) { // Values taken from an importance sampling run with 100k samples: // approximateDiscreteMarginal(hbn, hybridMotionModel, given); - TableDistribution expected(m1, "48.3158/51.6842"); + TableDistribution expected(m1, "48.3158 51.6842"); EXPECT(assert_equal( expected, *(eliminated->at(2)->asDiscrete()), 0.02)); @@ -268,7 +268,7 @@ TEST(HybridGaussianFactorGraph, TwoStateModel2) { // Values taken from an importance sampling run with 100k samples: // approximateDiscreteMarginal(hbn, hybridMotionModel, given); - TableDistribution expected(m1, "55.396/44.604"); + TableDistribution expected(m1, "55.396 44.604"); EXPECT(assert_equal( expected, *(bn->at(2)->asDiscrete()), 0.02)); } @@ -346,7 +346,7 @@ TEST(HybridGaussianFactorGraph, TwoStateModel3) { // Values taken from an importance sampling run with 100k samples: // approximateDiscreteMarginal(hbn, hybridMotionModel, given); - TableDistribution expected(m1, "51.7762/48.2238"); + TableDistribution expected(m1, "51.7762 48.2238"); EXPECT(assert_equal( expected, *(bn->at(2)->asDiscrete()), 0.02)); } @@ -362,7 +362,7 @@ TEST(HybridGaussianFactorGraph, TwoStateModel3) { // Values taken from an importance sampling run with 100k samples: // approximateDiscreteMarginal(hbn, hybridMotionModel, given); - TableDistribution expected(m1, "49.0762/50.9238"); + TableDistribution expected(m1, "49.0762 50.9238"); EXPECT(assert_equal( expected, *(bn->at(2)->asDiscrete()), 0.05)); } @@ -389,7 +389,7 @@ TEST(HybridGaussianFactorGraph, TwoStateModel4) { // Values taken from an importance sampling run with 100k samples: // approximateDiscreteMarginal(hbn, hybridMotionModel, given); - TableDistribution expected(m1, "8.91527/91.0847"); + TableDistribution expected(m1, "8.91527 91.0847"); EXPECT(assert_equal( expected, *(bn->at(2)->asDiscrete()), 0.01)); }