Merge pull request #1284 from borglab/hybrid/misc
commit
7c84020bbc
|
|
@ -69,6 +69,16 @@ namespace gtsam {
|
|||
push_back(key);
|
||||
return *this;
|
||||
}
|
||||
|
||||
/// Print the keys and cardinalities.
|
||||
void print(const std::string& s = "",
|
||||
const KeyFormatter& keyFormatter = DefaultKeyFormatter) const {
|
||||
for (auto&& dkey : *this) {
|
||||
std::cout << DefaultKeyFormatter(dkey.first) << " " << dkey.second
|
||||
<< std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
}; // DiscreteKeys
|
||||
|
||||
/// Create a list from two keys
|
||||
|
|
|
|||
|
|
@ -402,14 +402,35 @@ void HybridGaussianFactorGraph::add(DecisionTreeFactor::shared_ptr factor) {
|
|||
}
|
||||
|
||||
/* ************************************************************************ */
|
||||
const Ordering HybridGaussianFactorGraph::getHybridOrdering(
|
||||
OptionalOrderingType orderingType) const {
|
||||
const KeySet HybridGaussianFactorGraph::getDiscreteKeys() const {
|
||||
KeySet discrete_keys;
|
||||
for (auto &factor : factors_) {
|
||||
for (const DiscreteKey &k : factor->discreteKeys()) {
|
||||
discrete_keys.insert(k.first);
|
||||
}
|
||||
}
|
||||
return discrete_keys;
|
||||
}
|
||||
|
||||
/* ************************************************************************ */
|
||||
const KeySet HybridGaussianFactorGraph::getContinuousKeys() const {
|
||||
KeySet keys;
|
||||
for (auto &factor : factors_) {
|
||||
for (const Key &key : factor->continuousKeys()) {
|
||||
keys.insert(key);
|
||||
}
|
||||
}
|
||||
return keys;
|
||||
}
|
||||
|
||||
/* ************************************************************************ */
|
||||
const Ordering HybridGaussianFactorGraph::getHybridOrdering() const {
|
||||
KeySet discrete_keys = getDiscreteKeys();
|
||||
for (auto &factor : factors_) {
|
||||
for (const DiscreteKey &k : factor->discreteKeys()) {
|
||||
discrete_keys.insert(k.first);
|
||||
}
|
||||
}
|
||||
|
||||
const VariableIndex index(factors_);
|
||||
Ordering ordering = Ordering::ColamdConstrainedLast(
|
||||
|
|
|
|||
|
|
@ -161,14 +161,19 @@ class GTSAM_EXPORT HybridGaussianFactorGraph
|
|||
}
|
||||
}
|
||||
|
||||
/// Get all the discrete keys in the factor graph.
|
||||
const KeySet getDiscreteKeys() const;
|
||||
|
||||
/// Get all the continuous keys in the factor graph.
|
||||
const KeySet getContinuousKeys() const;
|
||||
|
||||
/**
|
||||
* @brief
|
||||
*
|
||||
* @param orderingType
|
||||
* @return const Ordering
|
||||
* @brief Return a Colamd constrained ordering where the discrete keys are
|
||||
* eliminated after the continuous keys.
|
||||
*
|
||||
* @return const Ordering
|
||||
*/
|
||||
const Ordering getHybridOrdering(
|
||||
OptionalOrderingType orderingType = boost::none) const;
|
||||
const Ordering getHybridOrdering() const;
|
||||
};
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
|
|||
|
|
@ -31,8 +31,8 @@
|
|||
namespace gtsam {
|
||||
|
||||
/**
|
||||
* HybridValues represents a collection of DiscreteValues and VectorValues. It
|
||||
* is typically used to store the variables of a HybridGaussianFactorGraph.
|
||||
* HybridValues represents a collection of DiscreteValues and VectorValues.
|
||||
* It is typically used to store the variables of a HybridGaussianFactorGraph.
|
||||
* Optimizing a HybridGaussianBayesNet returns this class.
|
||||
*/
|
||||
class GTSAM_EXPORT HybridValues {
|
||||
|
|
@ -47,10 +47,10 @@ class GTSAM_EXPORT HybridValues {
|
|||
/// @name Standard Constructors
|
||||
/// @{
|
||||
|
||||
// Default constructor creates an empty HybridValues.
|
||||
/// Default constructor creates an empty HybridValues.
|
||||
HybridValues() = default;
|
||||
|
||||
// Construct from DiscreteValues and VectorValues.
|
||||
/// Construct from DiscreteValues and VectorValues.
|
||||
HybridValues(const DiscreteValues& dv, const VectorValues& cv)
|
||||
: discrete_(dv), continuous_(cv){};
|
||||
|
||||
|
|
@ -58,7 +58,7 @@ class GTSAM_EXPORT HybridValues {
|
|||
/// @name Testable
|
||||
/// @{
|
||||
|
||||
// print required by Testable for unit testing
|
||||
/// print required by Testable for unit testing
|
||||
void print(const std::string& s = "HybridValues",
|
||||
const KeyFormatter& keyFormatter = DefaultKeyFormatter) const {
|
||||
std::cout << s << ": \n";
|
||||
|
|
@ -67,7 +67,7 @@ class GTSAM_EXPORT HybridValues {
|
|||
keyFormatter); // print continuous components
|
||||
};
|
||||
|
||||
// equals required by Testable for unit testing
|
||||
/// equals required by Testable for unit testing
|
||||
bool equals(const HybridValues& other, double tol = 1e-9) const {
|
||||
return discrete_.equals(other.discrete_, tol) &&
|
||||
continuous_.equals(other.continuous_, tol);
|
||||
|
|
@ -83,13 +83,13 @@ class GTSAM_EXPORT HybridValues {
|
|||
/// Return the delta update for the continuous vectors
|
||||
VectorValues continuous() const { return continuous_; }
|
||||
|
||||
// Check whether a variable with key \c j exists in DiscreteValue.
|
||||
/// Check whether a variable with key \c j exists in DiscreteValue.
|
||||
bool existsDiscrete(Key j) { return (discrete_.find(j) != discrete_.end()); };
|
||||
|
||||
// Check whether a variable with key \c j exists in VectorValue.
|
||||
/// Check whether a variable with key \c j exists in VectorValue.
|
||||
bool existsVector(Key j) { return continuous_.exists(j); };
|
||||
|
||||
// Check whether a variable with key \c j exists.
|
||||
/// Check whether a variable with key \c j exists.
|
||||
bool exists(Key j) { return existsDiscrete(j) || existsVector(j); };
|
||||
|
||||
/** Insert a discrete \c value with key \c j. Replaces the existing value if
|
||||
|
|
|
|||
|
|
@ -99,6 +99,8 @@ class HybridBayesTree {
|
|||
bool empty() const;
|
||||
const HybridBayesTreeClique* operator[](size_t j) const;
|
||||
|
||||
gtsam::HybridValues optimize() const;
|
||||
|
||||
string dot(const gtsam::KeyFormatter& keyFormatter =
|
||||
gtsam::DefaultKeyFormatter) const;
|
||||
};
|
||||
|
|
|
|||
|
|
@ -184,8 +184,8 @@ TEST(HybridGaussianFactorGraph, eliminateFullMultifrontalSimple) {
|
|||
hfg.add(DecisionTreeFactor(m1, {2, 8}));
|
||||
hfg.add(DecisionTreeFactor({{M(1), 2}, {M(2), 2}}, "1 2 3 4"));
|
||||
|
||||
HybridBayesTree::shared_ptr result = hfg.eliminateMultifrontal(
|
||||
Ordering::ColamdConstrainedLast(hfg, {M(1), M(2)}));
|
||||
HybridBayesTree::shared_ptr result =
|
||||
hfg.eliminateMultifrontal(hfg.getHybridOrdering());
|
||||
|
||||
// The bayes tree should have 3 cliques
|
||||
EXPECT_LONGS_EQUAL(3, result->size());
|
||||
|
|
@ -215,7 +215,7 @@ TEST(HybridGaussianFactorGraph, eliminateFullMultifrontalCLG) {
|
|||
hfg.add(HybridDiscreteFactor(DecisionTreeFactor(m, {2, 8})));
|
||||
|
||||
// Get a constrained ordering keeping c1 last
|
||||
auto ordering_full = Ordering::ColamdConstrainedLast(hfg, {M(1)});
|
||||
auto ordering_full = hfg.getHybridOrdering();
|
||||
|
||||
// Returns a Hybrid Bayes Tree with distribution P(x0|x1)P(x1|c1)P(c1)
|
||||
HybridBayesTree::shared_ptr hbt = hfg.eliminateMultifrontal(ordering_full);
|
||||
|
|
@ -484,8 +484,7 @@ TEST(HybridGaussianFactorGraph, SwitchingTwoVar) {
|
|||
}
|
||||
HybridBayesNet::shared_ptr hbn;
|
||||
HybridGaussianFactorGraph::shared_ptr remaining;
|
||||
std::tie(hbn, remaining) =
|
||||
hfg->eliminatePartialSequential(ordering_partial);
|
||||
std::tie(hbn, remaining) = hfg->eliminatePartialSequential(ordering_partial);
|
||||
|
||||
EXPECT_LONGS_EQUAL(14, hbn->size());
|
||||
EXPECT_LONGS_EQUAL(11, remaining->size());
|
||||
|
|
|
|||
Loading…
Reference in New Issue