Rename files so that everything is HybridX

release/4.3a0
Varun Agrawal 2022-06-01 23:52:21 -04:00
parent 852a9b9ef6
commit 7c7b5dd030
16 changed files with 161 additions and 170 deletions

View File

@ -11,7 +11,8 @@
/**
* @file HybridBayesTree.cpp
* @brief Hybrid Bayes Tree, the result of eliminating a HybridJunctionTree
* @brief Hybrid Bayes Tree, the result of eliminating a
* HybridGaussianJunctionTree
* @date Mar 11, 2022
* @author Fan Jiang
*/
@ -26,7 +27,7 @@ namespace gtsam {
// Instantiate base class
template class BayesTreeCliqueBase<HybridBayesTreeClique,
GaussianHybridFactorGraph>;
HybridGaussianFactorGraph>;
template class BayesTree<HybridBayesTreeClique>;
/* ************************************************************************* */

View File

@ -11,15 +11,16 @@
/**
* @file HybridBayesTree.h
* @brief Hybrid Bayes Tree, the result of eliminating a HybridJunctionTree
* @brief Hybrid Bayes Tree, the result of eliminating a
* HybridGaussianJunctionTree
* @date Mar 11, 2022
* @author Fan Jiang
*/
#pragma once
#include <gtsam/hybrid/GaussianHybridFactorGraph.h>
#include <gtsam/hybrid/HybridBayesNet.h>
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
#include <gtsam/inference/BayesTree.h>
#include <gtsam/inference/BayesTreeCliqueBase.h>
#include <gtsam/inference/Conditional.h>
@ -38,10 +39,10 @@ class VectorValues;
*/
class GTSAM_EXPORT HybridBayesTreeClique
: public BayesTreeCliqueBase<HybridBayesTreeClique,
GaussianHybridFactorGraph> {
HybridGaussianFactorGraph> {
public:
typedef HybridBayesTreeClique This;
typedef BayesTreeCliqueBase<HybridBayesTreeClique, GaussianHybridFactorGraph>
typedef BayesTreeCliqueBase<HybridBayesTreeClique, HybridGaussianFactorGraph>
Base;
typedef boost::shared_ptr<This> shared_ptr;
typedef boost::weak_ptr<This> weak_ptr;

View File

@ -18,9 +18,9 @@
#pragma once
#include <gtsam/discrete/DiscreteConditional.h>
#include <gtsam/hybrid/GaussianHybridFactorGraph.h>
#include <gtsam/hybrid/GaussianMixtureConditional.h>
#include <gtsam/hybrid/HybridFactor.h>
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
#include <gtsam/inference/Conditional.h>
#include <gtsam/inference/Key.h>
#include <gtsam/linear/GaussianConditional.h>
@ -34,7 +34,7 @@
namespace gtsam {
class GaussianHybridFactorGraph;
class HybridGaussianFactorGraph;
/**
* Hybrid Conditional Density

View File

@ -21,17 +21,17 @@
namespace gtsam {
// Instantiate base class
template class EliminationTree<HybridBayesNet, GaussianHybridFactorGraph>;
template class EliminationTree<HybridBayesNet, HybridGaussianFactorGraph>;
/* ************************************************************************* */
HybridEliminationTree::HybridEliminationTree(
const GaussianHybridFactorGraph& factorGraph,
const HybridGaussianFactorGraph& factorGraph,
const VariableIndex& structure, const Ordering& order)
: Base(factorGraph, structure, order) {}
/* ************************************************************************* */
HybridEliminationTree::HybridEliminationTree(
const GaussianHybridFactorGraph& factorGraph, const Ordering& order)
const HybridGaussianFactorGraph& factorGraph, const Ordering& order)
: Base(factorGraph, order) {}
/* ************************************************************************* */

View File

@ -17,8 +17,8 @@
#pragma once
#include <gtsam/hybrid/GaussianHybridFactorGraph.h>
#include <gtsam/hybrid/HybridBayesNet.h>
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
#include <gtsam/inference/EliminationTree.h>
namespace gtsam {
@ -27,12 +27,12 @@ namespace gtsam {
* Elimination Tree type for Hybrid
*/
class GTSAM_EXPORT HybridEliminationTree
: public EliminationTree<HybridBayesNet, GaussianHybridFactorGraph> {
: public EliminationTree<HybridBayesNet, HybridGaussianFactorGraph> {
private:
friend class ::EliminationTreeTester;
public:
typedef EliminationTree<HybridBayesNet, GaussianHybridFactorGraph>
typedef EliminationTree<HybridBayesNet, HybridGaussianFactorGraph>
Base; ///< Base class
typedef HybridEliminationTree This; ///< This class
typedef boost::shared_ptr<This> shared_ptr; ///< Shared pointer to this class
@ -49,7 +49,7 @@ class GTSAM_EXPORT HybridEliminationTree
* named constructor instead.
* @return The elimination tree
*/
HybridEliminationTree(const GaussianHybridFactorGraph& factorGraph,
HybridEliminationTree(const HybridGaussianFactorGraph& factorGraph,
const VariableIndex& structure, const Ordering& order);
/** Build the elimination tree of a factor graph. Note that this has to
@ -57,7 +57,7 @@ class GTSAM_EXPORT HybridEliminationTree
* this precomputed, use the other constructor instead.
* @param factorGraph The factor graph for which to build the elimination tree
*/
HybridEliminationTree(const GaussianHybridFactorGraph& factorGraph,
HybridEliminationTree(const HybridGaussianFactorGraph& factorGraph,
const Ordering& order);
/// @}

View File

@ -10,7 +10,7 @@
* -------------------------------------------------------------------------- */
/**
* @file GaussianHybridFactorGraph.cpp
* @file HybridGaussianFactorGraph.cpp
* @brief Hybrid factor graph that uses type erasure
* @author Fan Jiang
* @author Varun Agrawal
@ -23,7 +23,6 @@
#include <gtsam/discrete/DiscreteEliminationTree.h>
#include <gtsam/discrete/DiscreteFactorGraph.h>
#include <gtsam/discrete/DiscreteJunctionTree.h>
#include <gtsam/hybrid/GaussianHybridFactorGraph.h>
#include <gtsam/hybrid/GaussianMixtureConditional.h>
#include <gtsam/hybrid/GaussianMixtureFactor.h>
#include <gtsam/hybrid/HybridConditional.h>
@ -31,7 +30,8 @@
#include <gtsam/hybrid/HybridEliminationTree.h>
#include <gtsam/hybrid/HybridFactor.h>
#include <gtsam/hybrid/HybridGaussianFactor.h>
#include <gtsam/hybrid/HybridJunctionTree.h>
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
#include <gtsam/hybrid/HybridGaussianJunctionTree.h>
#include <gtsam/inference/EliminateableFactorGraph-inst.h>
#include <gtsam/inference/Key.h>
#include <gtsam/linear/GaussianConditional.h>
@ -53,7 +53,7 @@
namespace gtsam {
template class EliminateableFactorGraph<GaussianHybridFactorGraph>;
template class EliminateableFactorGraph<HybridGaussianFactorGraph>;
/* ************************************************************************ */
static GaussianMixtureFactor::Sum &addGaussian(
@ -78,7 +78,7 @@ static GaussianMixtureFactor::Sum &addGaussian(
/* ************************************************************************ */
std::pair<HybridConditional::shared_ptr, HybridFactor::shared_ptr>
continuousElimination(const GaussianHybridFactorGraph &factors,
continuousElimination(const HybridGaussianFactorGraph &factors,
const Ordering &frontalKeys) {
GaussianFactorGraph gfg;
for (auto &fp : factors) {
@ -103,7 +103,7 @@ continuousElimination(const GaussianHybridFactorGraph &factors,
/* ************************************************************************ */
std::pair<HybridConditional::shared_ptr, HybridFactor::shared_ptr>
discreteElimination(const GaussianHybridFactorGraph &factors,
discreteElimination(const HybridGaussianFactorGraph &factors,
const Ordering &frontalKeys) {
DiscreteFactorGraph dfg;
for (auto &fp : factors) {
@ -129,7 +129,7 @@ discreteElimination(const GaussianHybridFactorGraph &factors,
/* ************************************************************************ */
std::pair<HybridConditional::shared_ptr, HybridFactor::shared_ptr>
hybridElimination(const GaussianHybridFactorGraph &factors,
hybridElimination(const HybridGaussianFactorGraph &factors,
const Ordering &frontalKeys,
const KeySet &continuousSeparator,
const std::set<DiscreteKey> &discreteSeparatorSet) {
@ -236,7 +236,7 @@ hybridElimination(const GaussianHybridFactorGraph &factors,
}
/* ************************************************************************ */
std::pair<HybridConditional::shared_ptr, HybridFactor::shared_ptr> //
EliminateHybrid(const GaussianHybridFactorGraph &factors,
EliminateHybrid(const HybridGaussianFactorGraph &factors,
const Ordering &frontalKeys) {
// NOTE: Because we are in the Conditional Gaussian regime there are only
// a few cases:
@ -345,22 +345,22 @@ EliminateHybrid(const GaussianHybridFactorGraph &factors,
}
/* ************************************************************************ */
void GaussianHybridFactorGraph::add(JacobianFactor &&factor) {
void HybridGaussianFactorGraph::add(JacobianFactor &&factor) {
FactorGraph::add(boost::make_shared<HybridGaussianFactor>(std::move(factor)));
}
/* ************************************************************************ */
void GaussianHybridFactorGraph::add(JacobianFactor::shared_ptr factor) {
void HybridGaussianFactorGraph::add(JacobianFactor::shared_ptr factor) {
FactorGraph::add(boost::make_shared<HybridGaussianFactor>(factor));
}
/* ************************************************************************ */
void GaussianHybridFactorGraph::add(DecisionTreeFactor &&factor) {
void HybridGaussianFactorGraph::add(DecisionTreeFactor &&factor) {
FactorGraph::add(boost::make_shared<HybridDiscreteFactor>(std::move(factor)));
}
/* ************************************************************************ */
void GaussianHybridFactorGraph::add(DecisionTreeFactor::shared_ptr factor) {
void HybridGaussianFactorGraph::add(DecisionTreeFactor::shared_ptr factor) {
FactorGraph::add(boost::make_shared<HybridDiscreteFactor>(factor));
}

View File

@ -10,7 +10,7 @@
* -------------------------------------------------------------------------- */
/**
* @file GaussianHybridFactorGraph.h
* @file HybridGaussianFactorGraph.h
* @brief Linearized Hybrid factor graph that uses type erasure
* @author Fan Jiang
* @date Mar 11, 2022
@ -26,28 +26,28 @@
namespace gtsam {
// Forward declarations
class GaussianHybridFactorGraph;
class HybridGaussianFactorGraph;
class HybridConditional;
class HybridBayesNet;
class HybridEliminationTree;
class HybridBayesTree;
class HybridJunctionTree;
class HybridGaussianJunctionTree;
class DecisionTreeFactor;
class JacobianFactor;
/** Main elimination function for GaussianHybridFactorGraph */
/** Main elimination function for HybridGaussianFactorGraph */
GTSAM_EXPORT
std::pair<boost::shared_ptr<HybridConditional>, HybridFactor::shared_ptr>
EliminateHybrid(const GaussianHybridFactorGraph& factors, const Ordering& keys);
EliminateHybrid(const HybridGaussianFactorGraph& factors, const Ordering& keys);
/* ************************************************************************* */
template <>
struct EliminationTraits<GaussianHybridFactorGraph> {
struct EliminationTraits<HybridGaussianFactorGraph> {
typedef HybridFactor FactorType; ///< Type of factors in factor graph
typedef GaussianHybridFactorGraph
typedef HybridGaussianFactorGraph
FactorGraphType; ///< Type of the factor graph (e.g.
///< GaussianHybridFactorGraph)
///< HybridGaussianFactorGraph)
typedef HybridConditional
ConditionalType; ///< Type of conditionals from elimination
typedef HybridBayesNet
@ -55,7 +55,8 @@ struct EliminationTraits<GaussianHybridFactorGraph> {
typedef HybridEliminationTree
EliminationTreeType; ///< Type of elimination tree
typedef HybridBayesTree BayesTreeType; ///< Type of Bayes tree
typedef HybridJunctionTree JunctionTreeType; ///< Type of Junction tree
typedef HybridGaussianJunctionTree
JunctionTreeType; ///< Type of Junction tree
/// The default dense elimination function
static std::pair<boost::shared_ptr<ConditionalType>,
boost::shared_ptr<FactorType> >
@ -70,12 +71,12 @@ struct EliminationTraits<GaussianHybridFactorGraph> {
* This is the linearized version of a hybrid factor graph.
* Everything inside needs to be hybrid factor or hybrid conditional.
*/
class GaussianHybridFactorGraph
class HybridGaussianFactorGraph
: public FactorGraph<HybridFactor>,
public EliminateableFactorGraph<GaussianHybridFactorGraph> {
public EliminateableFactorGraph<HybridGaussianFactorGraph> {
public:
using Base = FactorGraph<HybridFactor>;
using This = GaussianHybridFactorGraph; ///< this class
using This = HybridGaussianFactorGraph; ///< this class
using BaseEliminateable =
EliminateableFactorGraph<This>; ///< for elimination
using shared_ptr = boost::shared_ptr<This>; ///< shared_ptr to This
@ -86,7 +87,7 @@ class GaussianHybridFactorGraph
/// @name Constructors
/// @{
GaussianHybridFactorGraph() = default;
HybridGaussianFactorGraph() = default;
/**
* Implicit copy/downcast constructor to override explicit template container
@ -94,7 +95,7 @@ class GaussianHybridFactorGraph
* `cachedSeparatorMarginal_.reset(*separatorMarginal)`
* */
template <class DERIVEDFACTOR>
GaussianHybridFactorGraph(const FactorGraph<DERIVEDFACTOR>& graph)
HybridGaussianFactorGraph(const FactorGraph<DERIVEDFACTOR>& graph)
: Base(graph) {}
/// @}

View File

@ -10,16 +10,16 @@
* -------------------------------------------------------------------------- */
/**
* @file HybridISAM.h
* @file HybridGaussianISAM.h
* @date March 31, 2022
* @author Fan Jiang
* @author Frank Dellaert
* @author Richard Roberts
*/
#include <gtsam/hybrid/GaussianHybridFactorGraph.h>
#include <gtsam/hybrid/HybridBayesTree.h>
#include <gtsam/hybrid/HybridISAM.h>
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
#include <gtsam/hybrid/HybridGaussianISAM.h>
#include <gtsam/inference/ISAM-inst.h>
#include <gtsam/inference/Key.h>
@ -31,13 +31,15 @@ namespace gtsam {
// template class ISAM<HybridBayesTree>;
/* ************************************************************************* */
HybridISAM::HybridISAM() {}
HybridGaussianISAM::HybridGaussianISAM() {}
/* ************************************************************************* */
HybridISAM::HybridISAM(const HybridBayesTree& bayesTree) : Base(bayesTree) {}
HybridGaussianISAM::HybridGaussianISAM(const HybridBayesTree& bayesTree)
: Base(bayesTree) {}
/* ************************************************************************* */
void HybridISAM::updateInternal(const GaussianHybridFactorGraph& newFactors,
void HybridGaussianISAM::updateInternal(
const HybridGaussianFactorGraph& newFactors,
HybridBayesTree::Cliques* orphans,
const HybridBayesTree::Eliminate& function) {
// Remove the contaminated part of the Bayes tree
@ -90,7 +92,7 @@ void HybridISAM::updateInternal(const GaussianHybridFactorGraph& newFactors,
}
/* ************************************************************************* */
void HybridISAM::update(const GaussianHybridFactorGraph& newFactors,
void HybridGaussianISAM::update(const HybridGaussianFactorGraph& newFactors,
const HybridBayesTree::Eliminate& function) {
Cliques orphans;
this->updateInternal(newFactors, &orphans, function);

View File

@ -10,7 +10,7 @@
* -------------------------------------------------------------------------- */
/**
* @file HybridISAM.h
* @file HybridGaussianISAM.h
* @date March 31, 2022
* @author Fan Jiang
* @author Frank Dellaert
@ -20,33 +20,33 @@
#pragma once
#include <gtsam/base/Testable.h>
#include <gtsam/hybrid/GaussianHybridFactorGraph.h>
#include <gtsam/hybrid/HybridBayesTree.h>
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
#include <gtsam/inference/ISAM.h>
namespace gtsam {
class GTSAM_EXPORT HybridISAM : public ISAM<HybridBayesTree> {
class GTSAM_EXPORT HybridGaussianISAM : public ISAM<HybridBayesTree> {
public:
typedef ISAM<HybridBayesTree> Base;
typedef HybridISAM This;
typedef HybridGaussianISAM This;
typedef boost::shared_ptr<This> shared_ptr;
/// @name Standard Constructors
/// @{
/** Create an empty Bayes Tree */
HybridISAM();
HybridGaussianISAM();
/** Copy constructor */
HybridISAM(const HybridBayesTree& bayesTree);
HybridGaussianISAM(const HybridBayesTree& bayesTree);
/// @}
private:
/// Internal method that performs the ISAM update.
void updateInternal(
const GaussianHybridFactorGraph& newFactors,
const HybridGaussianFactorGraph& newFactors,
HybridBayesTree::Cliques* orphans,
const HybridBayesTree::Eliminate& function =
HybridBayesTree::EliminationTraitsType::DefaultEliminate);
@ -58,13 +58,13 @@ class GTSAM_EXPORT HybridISAM : public ISAM<HybridBayesTree> {
* @param newFactors Factor graph of new factors to add and eliminate.
* @param function Elimination function.
*/
void update(const GaussianHybridFactorGraph& newFactors,
void update(const HybridGaussianFactorGraph& newFactors,
const HybridBayesTree::Eliminate& function =
HybridBayesTree::EliminationTraitsType::DefaultEliminate);
};
/// traits
template <>
struct traits<HybridISAM> : public Testable<HybridISAM> {};
struct traits<HybridGaussianISAM> : public Testable<HybridGaussianISAM> {};
} // namespace gtsam

View File

@ -10,14 +10,14 @@
* -------------------------------------------------------------------------- */
/**
* @file HybridJunctionTree.cpp
* @file HybridGaussianJunctionTree.cpp
* @date Mar 11, 2022
* @author Fan Jiang
*/
#include <gtsam/hybrid/GaussianHybridFactorGraph.h>
#include <gtsam/hybrid/HybridEliminationTree.h>
#include <gtsam/hybrid/HybridJunctionTree.h>
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
#include <gtsam/hybrid/HybridGaussianJunctionTree.h>
#include <gtsam/inference/JunctionTree-inst.h>
#include <gtsam/inference/Key.h>
@ -27,19 +27,19 @@ namespace gtsam {
// Instantiate base classes
template class EliminatableClusterTree<HybridBayesTree,
GaussianHybridFactorGraph>;
template class JunctionTree<HybridBayesTree, GaussianHybridFactorGraph>;
HybridGaussianFactorGraph>;
template class JunctionTree<HybridBayesTree, HybridGaussianFactorGraph>;
struct HybridConstructorTraversalData {
typedef
typename JunctionTree<HybridBayesTree, GaussianHybridFactorGraph>::Node
typename JunctionTree<HybridBayesTree, HybridGaussianFactorGraph>::Node
Node;
typedef
typename JunctionTree<HybridBayesTree,
GaussianHybridFactorGraph>::sharedNode sharedNode;
HybridGaussianFactorGraph>::sharedNode sharedNode;
HybridConstructorTraversalData* const parentData;
sharedNode myJTNode;
sharedNode junctionTreeNode;
FastVector<SymbolicConditional::shared_ptr> childSymbolicConditionals;
FastVector<SymbolicFactor::shared_ptr> childSymbolicFactors;
KeySet discreteKeys;
@ -57,24 +57,24 @@ struct HybridConstructorTraversalData {
// On the pre-order pass, before children have been visited, we just set up
// a traversal data structure with its own JT node, and create a child
// pointer in its parent.
HybridConstructorTraversalData myData =
HybridConstructorTraversalData data =
HybridConstructorTraversalData(&parentData);
myData.myJTNode = boost::make_shared<Node>(node->key, node->factors);
parentData.myJTNode->addChild(myData.myJTNode);
data.junctionTreeNode = boost::make_shared<Node>(node->key, node->factors);
parentData.junctionTreeNode->addChild(data.junctionTreeNode);
for (HybridFactor::shared_ptr& f : node->factors) {
for (auto& k : f->discreteKeys()) {
myData.discreteKeys.insert(k.first);
data.discreteKeys.insert(k.first);
}
}
return myData;
return data;
}
// Post-order visitor function
static void ConstructorTraversalVisitorPostAlg2(
const boost::shared_ptr<HybridEliminationTree::Node>& ETreeNode,
const HybridConstructorTraversalData& myData) {
const HybridConstructorTraversalData& data) {
// In this post-order visitor, we combine the symbolic elimination results
// from the elimination tree children and symbolically eliminate the current
// elimination tree node. We then check whether each of our elimination
@ -87,50 +87,50 @@ struct HybridConstructorTraversalData {
// Do symbolic elimination for this node
SymbolicFactors symbolicFactors;
symbolicFactors.reserve(ETreeNode->factors.size() +
myData.childSymbolicFactors.size());
data.childSymbolicFactors.size());
// Add ETree node factors
symbolicFactors += ETreeNode->factors;
// Add symbolic factors passed up from children
symbolicFactors += myData.childSymbolicFactors;
symbolicFactors += data.childSymbolicFactors;
Ordering keyAsOrdering;
keyAsOrdering.push_back(ETreeNode->key);
SymbolicConditional::shared_ptr myConditional;
SymbolicFactor::shared_ptr mySeparatorFactor;
boost::tie(myConditional, mySeparatorFactor) =
SymbolicConditional::shared_ptr conditional;
SymbolicFactor::shared_ptr separatorFactor;
boost::tie(conditional, separatorFactor) =
internal::EliminateSymbolic(symbolicFactors, keyAsOrdering);
// Store symbolic elimination results in the parent
myData.parentData->childSymbolicConditionals.push_back(myConditional);
myData.parentData->childSymbolicFactors.push_back(mySeparatorFactor);
myData.parentData->discreteKeys.merge(myData.discreteKeys);
data.parentData->childSymbolicConditionals.push_back(conditional);
data.parentData->childSymbolicFactors.push_back(separatorFactor);
data.parentData->discreteKeys.merge(data.discreteKeys);
sharedNode node = myData.myJTNode;
sharedNode node = data.junctionTreeNode;
const FastVector<SymbolicConditional::shared_ptr>& childConditionals =
myData.childSymbolicConditionals;
node->problemSize_ = (int)(myConditional->size() * symbolicFactors.size());
data.childSymbolicConditionals;
node->problemSize_ = (int)(conditional->size() * symbolicFactors.size());
// Merge our children if they are in our clique - if our conditional has
// exactly one fewer parent than our child's conditional.
const size_t myNrParents = myConditional->nrParents();
const size_t nrParents = conditional->nrParents();
const size_t nrChildren = node->nrChildren();
assert(childConditionals.size() == nrChildren);
// decide which children to merge, as index into children
std::vector<size_t> nrFrontals = node->nrFrontalsOfChildren();
std::vector<size_t> nrChildrenFrontals = node->nrFrontalsOfChildren();
std::vector<bool> merge(nrChildren, false);
size_t myNrFrontals = 1;
size_t nrFrontals = 1;
for (size_t i = 0; i < nrChildren; i++) {
// Check if we should merge the i^th child
if (myNrParents + myNrFrontals == childConditionals[i]->nrParents()) {
if (nrParents + nrFrontals == childConditionals[i]->nrParents()) {
const bool myType =
myData.discreteKeys.exists(myConditional->frontals()[0]);
data.discreteKeys.exists(conditional->frontals()[0]);
const bool theirType =
myData.discreteKeys.exists(childConditionals[i]->frontals()[0]);
data.discreteKeys.exists(childConditionals[i]->frontals()[0]);
if (myType == theirType) {
// Increment number of frontal variables
myNrFrontals += nrFrontals[i];
nrFrontals += nrChildrenFrontals[i];
merge[i] = true;
}
}
@ -142,7 +142,7 @@ struct HybridConstructorTraversalData {
};
/* ************************************************************************* */
HybridJunctionTree::HybridJunctionTree(
HybridGaussianJunctionTree::HybridGaussianJunctionTree(
const HybridEliminationTree& eliminationTree) {
gttic(JunctionTree_FromEliminationTree);
// Here we rely on the BayesNet having been produced by this elimination tree,
@ -156,7 +156,7 @@ HybridJunctionTree::HybridJunctionTree(
// as we go. Gather the created junction tree roots in a dummy Node.
typedef HybridConstructorTraversalData Data;
Data rootData(0);
rootData.myJTNode =
rootData.junctionTreeNode =
boost::make_shared<typename Base::Node>(); // Make a dummy node to gather
// the junction tree roots
treeTraversal::DepthFirstForest(eliminationTree, rootData,
@ -164,7 +164,7 @@ HybridJunctionTree::HybridJunctionTree(
Data::ConstructorTraversalVisitorPostAlg2);
// Assign roots from the dummy node
this->addChildrenAsRoots(rootData.myJTNode);
this->addChildrenAsRoots(rootData.junctionTreeNode);
// Transfer remaining factors from elimination tree
Base::remainingFactors_ = eliminationTree.remainingFactors();

View File

@ -10,15 +10,15 @@
* -------------------------------------------------------------------------- */
/**
* @file HybridJunctionTree.h
* @file HybridGaussianJunctionTree.h
* @date Mar 11, 2022
* @author Fan Jiang
*/
#pragma once
#include <gtsam/hybrid/GaussianHybridFactorGraph.h>
#include <gtsam/hybrid/HybridBayesTree.h>
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
#include <gtsam/inference/JunctionTree.h>
namespace gtsam {
@ -48,12 +48,12 @@ class HybridEliminationTree;
* \addtogroup Multifrontal
* \nosubgrouping
*/
class GTSAM_EXPORT HybridJunctionTree
: public JunctionTree<HybridBayesTree, GaussianHybridFactorGraph> {
class GTSAM_EXPORT HybridGaussianJunctionTree
: public JunctionTree<HybridBayesTree, HybridGaussianFactorGraph> {
public:
typedef JunctionTree<HybridBayesTree, GaussianHybridFactorGraph>
typedef JunctionTree<HybridBayesTree, HybridGaussianFactorGraph>
Base; ///< Base class
typedef HybridJunctionTree This; ///< This class
typedef HybridGaussianJunctionTree This; ///< This class
typedef boost::shared_ptr<This> shared_ptr; ///< Shared pointer to this class
/**
@ -65,7 +65,7 @@ class GTSAM_EXPORT HybridJunctionTree
* named constructor instead.
* @return The elimination tree
*/
HybridJunctionTree(const HybridEliminationTree& eliminationTree);
HybridGaussianJunctionTree(const HybridEliminationTree& eliminationTree);
};
} // namespace gtsam

View File

@ -98,15 +98,15 @@ class HybridBayesNet {
const gtsam::DotWriter& writer = gtsam::DotWriter()) const;
};
#include <gtsam/hybrid/GaussianHybridFactorGraph.h>
class GaussianHybridFactorGraph {
GaussianHybridFactorGraph();
GaussianHybridFactorGraph(const gtsam::HybridBayesNet& bayesNet);
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
class HybridGaussianFactorGraph {
HybridGaussianFactorGraph();
HybridGaussianFactorGraph(const gtsam::HybridBayesNet& bayesNet);
// Building the graph
void push_back(const gtsam::HybridFactor* factor);
void push_back(const gtsam::HybridConditional* conditional);
void push_back(const gtsam::GaussianHybridFactorGraph& graph);
void push_back(const gtsam::HybridGaussianFactorGraph& graph);
void push_back(const gtsam::HybridBayesNet& bayesNet);
void push_back(const gtsam::HybridBayesTree& bayesTree);
void push_back(const gtsam::GaussianMixtureFactor* gmm);
@ -120,13 +120,13 @@ class GaussianHybridFactorGraph {
const gtsam::HybridFactor* at(size_t i) const;
void print(string s = "") const;
bool equals(const gtsam::GaussianHybridFactorGraph& fg, double tol = 1e-9) const;
bool equals(const gtsam::HybridGaussianFactorGraph& fg, double tol = 1e-9) const;
gtsam::HybridBayesNet* eliminateSequential();
gtsam::HybridBayesNet* eliminateSequential(
gtsam::Ordering::OrderingType type);
gtsam::HybridBayesNet* eliminateSequential(const gtsam::Ordering& ordering);
pair<gtsam::HybridBayesNet*, gtsam::GaussianHybridFactorGraph*>
pair<gtsam::HybridBayesNet*, gtsam::HybridGaussianFactorGraph*>
eliminatePartialSequential(const gtsam::Ordering& ordering);
gtsam::HybridBayesTree* eliminateMultifrontal();
@ -134,7 +134,7 @@ class GaussianHybridFactorGraph {
gtsam::Ordering::OrderingType type);
gtsam::HybridBayesTree* eliminateMultifrontal(
const gtsam::Ordering& ordering);
pair<gtsam::HybridBayesTree*, gtsam::GaussianHybridFactorGraph*>
pair<gtsam::HybridBayesTree*, gtsam::HybridGaussianFactorGraph*>
eliminatePartialMultifrontal(const gtsam::Ordering& ordering);
string dot(

View File

@ -18,8 +18,8 @@
#include <gtsam/base/Matrix.h>
#include <gtsam/discrete/DecisionTreeFactor.h>
#include <gtsam/hybrid/GaussianHybridFactorGraph.h>
#include <gtsam/hybrid/GaussianMixtureFactor.h>
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/linear/JacobianFactor.h>
@ -29,10 +29,10 @@ using gtsam::symbol_shorthand::C;
using gtsam::symbol_shorthand::X;
namespace gtsam {
inline GaussianHybridFactorGraph::shared_ptr makeSwitchingChain(
inline HybridGaussianFactorGraph::shared_ptr makeSwitchingChain(
size_t n, std::function<Key(int)> keyFunc = X,
std::function<Key(int)> dKeyFunc = C) {
GaussianHybridFactorGraph hfg;
HybridGaussianFactorGraph hfg;
hfg.add(JacobianFactor(keyFunc(1), I_3x3, Z_3x1));
@ -51,7 +51,7 @@ inline GaussianHybridFactorGraph::shared_ptr makeSwitchingChain(
}
}
return boost::make_shared<GaussianHybridFactorGraph>(std::move(hfg));
return boost::make_shared<HybridGaussianFactorGraph>(std::move(hfg));
}
inline std::pair<KeyVector, std::vector<int>> makeBinaryOrdering(

View File

@ -10,7 +10,7 @@
* -------------------------------------------------------------------------- */
/*
* @file testGaussianHybridFactorGraph.cpp
* @file testHybridGaussianFactorGraph.cpp
* @date Mar 11, 2022
* @author Fan Jiang
*/
@ -20,7 +20,6 @@
#include <gtsam/discrete/DecisionTreeFactor.h>
#include <gtsam/discrete/DiscreteKey.h>
#include <gtsam/discrete/DiscreteValues.h>
#include <gtsam/hybrid/GaussianHybridFactorGraph.h>
#include <gtsam/hybrid/GaussianMixtureConditional.h>
#include <gtsam/hybrid/GaussianMixtureFactor.h>
#include <gtsam/hybrid/HybridBayesNet.h>
@ -29,7 +28,8 @@
#include <gtsam/hybrid/HybridDiscreteFactor.h>
#include <gtsam/hybrid/HybridFactor.h>
#include <gtsam/hybrid/HybridGaussianFactor.h>
#include <gtsam/hybrid/HybridISAM.h>
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
#include <gtsam/hybrid/HybridGaussianISAM.h>
#include <gtsam/inference/BayesNet.h>
#include <gtsam/inference/DotWriter.h>
#include <gtsam/inference/Key.h>
@ -57,25 +57,11 @@ using gtsam::symbol_shorthand::D;
using gtsam::symbol_shorthand::X;
using gtsam::symbol_shorthand::Y;
#ifdef HYBRID_DEBUG
#define BOOST_STACKTRACE_GNU_SOURCE_NOT_REQUIRED
#include <signal.h> // ::signal, ::raise
#include <boost/stacktrace.hpp>
void my_signal_handler(int signum) {
::signal(signum, SIG_DFL);
std::cout << boost::stacktrace::stacktrace();
::raise(SIGABRT);
}
#endif
/* ************************************************************************* */
TEST(GaussianHybridFactorGraph, creation) {
TEST(HybridGaussianFactorGraph, creation) {
HybridConditional test;
GaussianHybridFactorGraph hfg;
HybridGaussianFactorGraph hfg;
hfg.add(HybridGaussianFactor(JacobianFactor(0, I_3x3, Z_3x1)));
@ -91,8 +77,8 @@ TEST(GaussianHybridFactorGraph, creation) {
}
/* ************************************************************************* */
TEST(GaussianHybridFactorGraph, eliminate) {
GaussianHybridFactorGraph hfg;
TEST(HybridGaussianFactorGraph, eliminate) {
HybridGaussianFactorGraph hfg;
hfg.add(HybridGaussianFactor(JacobianFactor(0, I_3x3, Z_3x1)));
@ -102,8 +88,8 @@ TEST(GaussianHybridFactorGraph, eliminate) {
}
/* ************************************************************************* */
TEST(GaussianHybridFactorGraph, eliminateMultifrontal) {
GaussianHybridFactorGraph hfg;
TEST(HybridGaussianFactorGraph, eliminateMultifrontal) {
HybridGaussianFactorGraph hfg;
DiscreteKey c(C(1), 2);
@ -119,8 +105,8 @@ TEST(GaussianHybridFactorGraph, eliminateMultifrontal) {
}
/* ************************************************************************* */
TEST(GaussianHybridFactorGraph, eliminateFullSequentialEqualChance) {
GaussianHybridFactorGraph hfg;
TEST(HybridGaussianFactorGraph, eliminateFullSequentialEqualChance) {
HybridGaussianFactorGraph hfg;
DiscreteKey c1(C(1), 2);
@ -143,8 +129,8 @@ TEST(GaussianHybridFactorGraph, eliminateFullSequentialEqualChance) {
}
/* ************************************************************************* */
TEST(GaussianHybridFactorGraph, eliminateFullSequentialSimple) {
GaussianHybridFactorGraph hfg;
TEST(HybridGaussianFactorGraph, eliminateFullSequentialSimple) {
HybridGaussianFactorGraph hfg;
DiscreteKey c1(C(1), 2);
@ -171,8 +157,8 @@ TEST(GaussianHybridFactorGraph, eliminateFullSequentialSimple) {
}
/* ************************************************************************* */
TEST(GaussianHybridFactorGraph, eliminateFullMultifrontalSimple) {
GaussianHybridFactorGraph hfg;
TEST(HybridGaussianFactorGraph, eliminateFullMultifrontalSimple) {
HybridGaussianFactorGraph hfg;
DiscreteKey c1(C(1), 2);
@ -204,8 +190,8 @@ TEST(GaussianHybridFactorGraph, eliminateFullMultifrontalSimple) {
}
/* ************************************************************************* */
TEST(GaussianHybridFactorGraph, eliminateFullMultifrontalCLG) {
GaussianHybridFactorGraph hfg;
TEST(HybridGaussianFactorGraph, eliminateFullMultifrontalCLG) {
HybridGaussianFactorGraph hfg;
DiscreteKey c(C(1), 2);
@ -240,8 +226,8 @@ TEST(GaussianHybridFactorGraph, eliminateFullMultifrontalCLG) {
* This test is about how to assemble the Bayes Tree roots after we do partial
* elimination
*/
TEST(GaussianHybridFactorGraph, eliminateFullMultifrontalTwoClique) {
GaussianHybridFactorGraph hfg;
TEST(HybridGaussianFactorGraph, eliminateFullMultifrontalTwoClique) {
HybridGaussianFactorGraph hfg;
hfg.add(JacobianFactor(X(0), I_3x3, X(1), -I_3x3, Z_3x1));
hfg.add(JacobianFactor(X(1), I_3x3, X(2), -I_3x3, Z_3x1));
@ -290,7 +276,7 @@ TEST(GaussianHybridFactorGraph, eliminateFullMultifrontalTwoClique) {
GTSAM_PRINT(ordering_full);
HybridBayesTree::shared_ptr hbt;
GaussianHybridFactorGraph::shared_ptr remaining;
HybridGaussianFactorGraph::shared_ptr remaining;
std::tie(hbt, remaining) = hfg.eliminatePartialMultifrontal(ordering_full);
GTSAM_PRINT(*hbt);
@ -309,7 +295,7 @@ TEST(GaussianHybridFactorGraph, eliminateFullMultifrontalTwoClique) {
/* ************************************************************************* */
// TODO(fan): make a graph like Varun's paper one
TEST(GaussianHybridFactorGraph, Switching) {
TEST(HybridGaussianFactorGraph, Switching) {
auto N = 12;
auto hfg = makeSwitchingChain(N);
@ -381,7 +367,7 @@ TEST(GaussianHybridFactorGraph, Switching) {
GTSAM_PRINT(ordering_full);
HybridBayesTree::shared_ptr hbt;
GaussianHybridFactorGraph::shared_ptr remaining;
HybridGaussianFactorGraph::shared_ptr remaining;
std::tie(hbt, remaining) = hfg->eliminatePartialMultifrontal(ordering_full);
// GTSAM_PRINT(*hbt);
@ -417,7 +403,7 @@ TEST(GaussianHybridFactorGraph, Switching) {
/* ************************************************************************* */
// TODO(fan): make a graph like Varun's paper one
TEST(GaussianHybridFactorGraph, SwitchingISAM) {
TEST(HybridGaussianFactorGraph, SwitchingISAM) {
auto N = 11;
auto hfg = makeSwitchingChain(N);
@ -473,7 +459,7 @@ TEST(GaussianHybridFactorGraph, SwitchingISAM) {
GTSAM_PRINT(ordering_full);
HybridBayesTree::shared_ptr hbt;
GaussianHybridFactorGraph::shared_ptr remaining;
HybridGaussianFactorGraph::shared_ptr remaining;
std::tie(hbt, remaining) = hfg->eliminatePartialMultifrontal(ordering_full);
// GTSAM_PRINT(*hbt);
@ -499,10 +485,10 @@ TEST(GaussianHybridFactorGraph, SwitchingISAM) {
}
auto new_fg = makeSwitchingChain(12);
auto isam = HybridISAM(*hbt);
auto isam = HybridGaussianISAM(*hbt);
{
GaussianHybridFactorGraph factorGraph;
HybridGaussianFactorGraph factorGraph;
factorGraph.push_back(new_fg->at(new_fg->size() - 2));
factorGraph.push_back(new_fg->at(new_fg->size() - 1));
isam.update(factorGraph);
@ -512,7 +498,7 @@ TEST(GaussianHybridFactorGraph, SwitchingISAM) {
}
/* ************************************************************************* */
TEST(GaussianHybridFactorGraph, SwitchingTwoVar) {
TEST(HybridGaussianFactorGraph, SwitchingTwoVar) {
const int N = 7;
auto hfg = makeSwitchingChain(N, X);
hfg->push_back(*makeSwitchingChain(N, Y, D));
@ -582,7 +568,7 @@ TEST(GaussianHybridFactorGraph, SwitchingTwoVar) {
}
{
HybridBayesNet::shared_ptr hbn;
GaussianHybridFactorGraph::shared_ptr remaining;
HybridGaussianFactorGraph::shared_ptr remaining;
std::tie(hbn, remaining) =
hfg->eliminatePartialSequential(ordering_partial);

View File

@ -9,7 +9,7 @@ namespace gtsam {
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/symbolic/SymbolicFactorGraph.h>
#include <gtsam/discrete/DiscreteFactorGraph.h>
#include <gtsam/hybrid/GaussianHybridFactorGraph.h>
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
#include <gtsam/inference/Key.h>
@ -107,36 +107,36 @@ class Ordering {
template <
FACTOR_GRAPH = {gtsam::NonlinearFactorGraph, gtsam::DiscreteFactorGraph,
gtsam::SymbolicFactorGraph, gtsam::GaussianFactorGraph, gtsam::GaussianHybridFactorGraph}>
gtsam::SymbolicFactorGraph, gtsam::GaussianFactorGraph, gtsam::HybridGaussianFactorGraph}>
static gtsam::Ordering Colamd(const FACTOR_GRAPH& graph);
template <
FACTOR_GRAPH = {gtsam::NonlinearFactorGraph, gtsam::DiscreteFactorGraph,
gtsam::SymbolicFactorGraph, gtsam::GaussianFactorGraph, gtsam::GaussianHybridFactorGraph}>
gtsam::SymbolicFactorGraph, gtsam::GaussianFactorGraph, gtsam::HybridGaussianFactorGraph}>
static gtsam::Ordering ColamdConstrainedLast(
const FACTOR_GRAPH& graph, const gtsam::KeyVector& constrainLast,
bool forceOrder = false);
template <
FACTOR_GRAPH = {gtsam::NonlinearFactorGraph, gtsam::DiscreteFactorGraph,
gtsam::SymbolicFactorGraph, gtsam::GaussianFactorGraph, gtsam::GaussianHybridFactorGraph}>
gtsam::SymbolicFactorGraph, gtsam::GaussianFactorGraph, gtsam::HybridGaussianFactorGraph}>
static gtsam::Ordering ColamdConstrainedFirst(
const FACTOR_GRAPH& graph, const gtsam::KeyVector& constrainFirst,
bool forceOrder = false);
template <
FACTOR_GRAPH = {gtsam::NonlinearFactorGraph, gtsam::DiscreteFactorGraph,
gtsam::SymbolicFactorGraph, gtsam::GaussianFactorGraph, gtsam::GaussianHybridFactorGraph}>
gtsam::SymbolicFactorGraph, gtsam::GaussianFactorGraph, gtsam::HybridGaussianFactorGraph}>
static gtsam::Ordering Natural(const FACTOR_GRAPH& graph);
template <
FACTOR_GRAPH = {gtsam::NonlinearFactorGraph, gtsam::DiscreteFactorGraph,
gtsam::SymbolicFactorGraph, gtsam::GaussianFactorGraph, gtsam::GaussianHybridFactorGraph}>
gtsam::SymbolicFactorGraph, gtsam::GaussianFactorGraph, gtsam::HybridGaussianFactorGraph}>
static gtsam::Ordering Metis(const FACTOR_GRAPH& graph);
template <
FACTOR_GRAPH = {gtsam::NonlinearFactorGraph, gtsam::DiscreteFactorGraph,
gtsam::SymbolicFactorGraph, gtsam::GaussianFactorGraph, gtsam::GaussianHybridFactorGraph}>
gtsam::SymbolicFactorGraph, gtsam::GaussianFactorGraph, gtsam::HybridGaussianFactorGraph}>
static gtsam::Ordering Create(gtsam::Ordering::OrderingType orderingType,
const FACTOR_GRAPH& graph);

View File

@ -20,8 +20,8 @@ from gtsam.symbol_shorthand import C, X
from gtsam.utils.test_case import GtsamTestCase
class TestGaussianHybridFactorGraph(GtsamTestCase):
"""Unit tests for GaussianHybridFactorGraph."""
class TestHybridGaussianFactorGraph(GtsamTestCase):
"""Unit tests for HybridGaussianFactorGraph."""
def test_create(self):
"""Test contruction of hybrid factor graph."""
@ -36,13 +36,13 @@ class TestGaussianHybridFactorGraph(GtsamTestCase):
gmf = gtsam.GaussianMixtureFactor.FromFactors([X(0)], dk, [jf1, jf2])
hfg = gtsam.GaussianHybridFactorGraph()
hfg = gtsam.HybridGaussianFactorGraph()
hfg.add(jf1)
hfg.add(jf2)
hfg.push_back(gmf)
hbn = hfg.eliminateSequential(
gtsam.Ordering.ColamdConstrainedLastGaussianHybridFactorGraph(
gtsam.Ordering.ColamdConstrainedLastHybridGaussianFactorGraph(
hfg, [C(0)]))
# print("hbn = ", hbn)