simplified small test to make it more understandable
parent
52225998fe
commit
7c22c2c402
|
@ -369,8 +369,9 @@ inline NonlinearFactorGraph sharedNonRobustFactorGraphWithOutliers() {
|
|||
boost::shared_ptr<NonlinearFactorGraph> fg(new NonlinearFactorGraph);
|
||||
Point2 z(0.0, 0.0);
|
||||
double sigma = 0.1;
|
||||
boost::shared_ptr<smallOptimize::UnaryFactor> factor(
|
||||
new smallOptimize::UnaryFactor(z, noiseModel::Isotropic::Sigma(2,sigma), X(1)));
|
||||
|
||||
boost::shared_ptr<PriorFactor<Point2>> factor(
|
||||
new PriorFactor<Point2>(X(1), z, noiseModel::Isotropic::Sigma(2,sigma)));
|
||||
// 3 noiseless inliers
|
||||
fg->push_back(factor);
|
||||
fg->push_back(factor);
|
||||
|
@ -378,8 +379,8 @@ inline NonlinearFactorGraph sharedNonRobustFactorGraphWithOutliers() {
|
|||
|
||||
// 1 outlier
|
||||
Point2 z_out(1.0, 0.0);
|
||||
boost::shared_ptr<smallOptimize::UnaryFactor> factor_out(
|
||||
new smallOptimize::UnaryFactor(z_out, noiseModel::Isotropic::Sigma(2,sigma), X(1)));
|
||||
boost::shared_ptr<PriorFactor<Point2>> factor_out(
|
||||
new PriorFactor<Point2>(X(1), z_out, noiseModel::Isotropic::Sigma(2,sigma)));
|
||||
fg->push_back(factor_out);
|
||||
|
||||
return *fg;
|
||||
|
@ -393,8 +394,8 @@ inline NonlinearFactorGraph sharedRobustFactorGraphWithOutliers() {
|
|||
double sigma = 0.1;
|
||||
auto gmNoise = noiseModel::Robust::Create(
|
||||
noiseModel::mEstimator::GemanMcClure::Create(1.0), noiseModel::Isotropic::Sigma(2,sigma));
|
||||
boost::shared_ptr<smallOptimize::UnaryFactor> factor(
|
||||
new smallOptimize::UnaryFactor(z, gmNoise, X(1)));
|
||||
boost::shared_ptr<PriorFactor<Point2>> factor(
|
||||
new PriorFactor<Point2>(X(1), z, gmNoise));
|
||||
// 3 noiseless inliers
|
||||
fg->push_back(factor);
|
||||
fg->push_back(factor);
|
||||
|
@ -402,8 +403,8 @@ inline NonlinearFactorGraph sharedRobustFactorGraphWithOutliers() {
|
|||
|
||||
// 1 outlier
|
||||
Point2 z_out(1.0, 0.0);
|
||||
boost::shared_ptr<smallOptimize::UnaryFactor> factor_out(
|
||||
new smallOptimize::UnaryFactor(z_out, gmNoise, X(1)));
|
||||
boost::shared_ptr<PriorFactor<Point2>> factor_out(
|
||||
new PriorFactor<Point2>(X(1), z_out, gmNoise));
|
||||
fg->push_back(factor_out);
|
||||
|
||||
return *fg;
|
||||
|
|
|
@ -367,20 +367,20 @@ TEST(GncOptimizer, optimize) {
|
|||
GaussNewtonOptimizer gn(fg, initial, gnParams);
|
||||
Values gn_results = gn.optimize();
|
||||
// converges to incorrect point due to lack of robustness to an outlier, ideal solution is Point2(0,0)
|
||||
CHECK(assert_equal(gn_results.at<Point2>(X(1)), Point2(1.31812,0.0), 1e-3));
|
||||
CHECK(assert_equal(Point2(0.25,0.0), gn_results.at<Point2>(X(1)), 1e-3));
|
||||
|
||||
// try with robust loss function and standard GN
|
||||
auto fg_robust = example::sharedRobustFactorGraphWithOutliers(); // same as fg, but with factors wrapped in Geman McClure losses
|
||||
GaussNewtonOptimizer gn2(fg_robust, initial, gnParams);
|
||||
Values gn2_results = gn2.optimize();
|
||||
// converges to incorrect point, this time due to the nonconvexity of the loss
|
||||
CHECK(assert_equal(gn2_results.at<Point2>(X(1)), Point2(1.18712,0.0), 1e-3));
|
||||
CHECK(assert_equal(Point2(0.999706,0.0), gn2_results.at<Point2>(X(1)), 1e-3));
|
||||
|
||||
// .. but graduated nonconvexity ensures both robustness and convergence in the face of nonconvexity
|
||||
GncParams<GaussNewtonParams> gncParams(gnParams);
|
||||
auto gnc = GncOptimizer<GncParams<GaussNewtonParams>>(fg, initial, gncParams);
|
||||
Values gnc_result = gnc.optimize();
|
||||
CHECK(assert_equal(gnc_result.at<Point2>(X(1)), Point2(0.0,0.0), 1e-3));
|
||||
CHECK(assert_equal(Point2(0.0,0.0), gnc_result.at<Point2>(X(1)), 1e-3));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
Loading…
Reference in New Issue