Plot marginals, sample
							parent
							
								
									10d6157d1d
								
							
						
					
					
						commit
						7b48e56d56
					
				| 
						 | 
				
			
			@ -20,56 +20,75 @@
 | 
			
		|||
%  - Landmarks are 2 meters away from the robot trajectory
 | 
			
		||||
 | 
			
		||||
%% Create keys for variables
 | 
			
		||||
x1 = symbol('x',1); x2 = symbol('x',2); x3 = symbol('x',3);
 | 
			
		||||
l1 = symbol('l',1); l2 = symbol('l',2);
 | 
			
		||||
i1 = symbol('x',1); i2 = symbol('x',2); i3 = symbol('x',3);
 | 
			
		||||
j1 = symbol('l',1); j2 = symbol('l',2);
 | 
			
		||||
 | 
			
		||||
%% Create graph container and add factors to it
 | 
			
		||||
graph = planarSLAMGraph;
 | 
			
		||||
 | 
			
		||||
%% Add prior
 | 
			
		||||
% gaussian for prior
 | 
			
		||||
priorNoise = gtsamSharedNoiseModel_Sigmas([0.3; 0.3; 0.1]);
 | 
			
		||||
priorMean = gtsamPose2(0.0, 0.0, 0.0); % prior at origin
 | 
			
		||||
graph.addPrior(x1, priorMean, priorNoise); % add directly to graph
 | 
			
		||||
priorNoise = gtsamSharedNoiseModel_Sigmas([0.3; 0.3; 0.1]);
 | 
			
		||||
graph.addPrior(i1, priorMean, priorNoise); % add directly to graph
 | 
			
		||||
 | 
			
		||||
%% Add odometry
 | 
			
		||||
% general noisemodel for odometry
 | 
			
		||||
odometry = gtsamPose2(2.0, 0.0, 0.0);
 | 
			
		||||
odometryNoise = gtsamSharedNoiseModel_Sigmas([0.2; 0.2; 0.1]);
 | 
			
		||||
odometry = gtsamPose2(2.0, 0.0, 0.0); % create a measurement for both factors (the same in this case)
 | 
			
		||||
graph.addOdometry(x1, x2, odometry, odometryNoise);
 | 
			
		||||
graph.addOdometry(x2, x3, odometry, odometryNoise);
 | 
			
		||||
graph.addOdometry(i1, i2, odometry, odometryNoise);
 | 
			
		||||
graph.addOdometry(i2, i3, odometry, odometryNoise);
 | 
			
		||||
 | 
			
		||||
%% Add measurements
 | 
			
		||||
% general noisemodel for measurements
 | 
			
		||||
meas_model = gtsamSharedNoiseModel_Sigmas([0.1; 0.2]);
 | 
			
		||||
 | 
			
		||||
% create the measurement values - indices are (pose id, landmark id)
 | 
			
		||||
%% Add bearing/range measurement factors
 | 
			
		||||
degrees = pi/180;
 | 
			
		||||
bearing11 = gtsamRot2(45*degrees);
 | 
			
		||||
bearing21 = gtsamRot2(90*degrees);
 | 
			
		||||
bearing32 = gtsamRot2(90*degrees);
 | 
			
		||||
range11 = sqrt(4+4);
 | 
			
		||||
range21 = 2.0;
 | 
			
		||||
range32 = 2.0;
 | 
			
		||||
 | 
			
		||||
% % create bearing/range factors and add them
 | 
			
		||||
graph.addBearingRange(x1, l1, bearing11, range11, meas_model);
 | 
			
		||||
graph.addBearingRange(x2, l1, bearing21, range21, meas_model);
 | 
			
		||||
graph.addBearingRange(x3, l2, bearing32, range32, meas_model);
 | 
			
		||||
noiseModel = gtsamSharedNoiseModel_Sigmas([0.1; 0.2]);
 | 
			
		||||
if 1
 | 
			
		||||
    graph.addBearingRange(i1, j1, gtsamRot2(45*degrees), sqrt(4+4), noiseModel);
 | 
			
		||||
    graph.addBearingRange(i2, j1, gtsamRot2(90*degrees), 2, noiseModel);
 | 
			
		||||
else
 | 
			
		||||
    bearingModel = gtsamSharedNoiseModel_Sigmas(0.1);    
 | 
			
		||||
    graph.addBearing(i1, j1, gtsamRot2(45*degrees), bearingModel);
 | 
			
		||||
    graph.addBearing(i2, j1, gtsamRot2(90*degrees), bearingModel);
 | 
			
		||||
end
 | 
			
		||||
graph.addBearingRange(i3, j2, gtsamRot2(90*degrees), 2, noiseModel);
 | 
			
		||||
 | 
			
		||||
% print
 | 
			
		||||
graph.print('full graph');
 | 
			
		||||
graph.print(sprintf('\nFull graph:\n'));
 | 
			
		||||
 | 
			
		||||
%% Initialize to noisy points
 | 
			
		||||
initialEstimate = planarSLAMValues;
 | 
			
		||||
initialEstimate.insertPose(x1, gtsamPose2(0.5, 0.0, 0.2));
 | 
			
		||||
initialEstimate.insertPose(x2, gtsamPose2(2.3, 0.1,-0.2));
 | 
			
		||||
initialEstimate.insertPose(x3, gtsamPose2(4.1, 0.1, 0.1));
 | 
			
		||||
initialEstimate.insertPoint(l1, gtsamPoint2(1.8, 2.1));
 | 
			
		||||
initialEstimate.insertPoint(l2, gtsamPoint2(4.1, 1.8));
 | 
			
		||||
initialEstimate.insertPose(i1, gtsamPose2(0.5, 0.0, 0.2));
 | 
			
		||||
initialEstimate.insertPose(i2, gtsamPose2(2.3, 0.1,-0.2));
 | 
			
		||||
initialEstimate.insertPose(i3, gtsamPose2(4.1, 0.1, 0.1));
 | 
			
		||||
initialEstimate.insertPoint(j1, gtsamPoint2(1.8, 2.1));
 | 
			
		||||
initialEstimate.insertPoint(j2, gtsamPoint2(4.1, 1.8));
 | 
			
		||||
 | 
			
		||||
initialEstimate.print('initial estimate');
 | 
			
		||||
initialEstimate.print(sprintf('\nInitial estimate:\n'));
 | 
			
		||||
 | 
			
		||||
%% Optimize using Levenberg-Marquardt optimization with an ordering from colamd
 | 
			
		||||
result = graph.optimize(initialEstimate);
 | 
			
		||||
result.print('final result');
 | 
			
		||||
result.print(sprintf('\nFinal result:\n'));
 | 
			
		||||
 | 
			
		||||
%% Plot Covariance Ellipses
 | 
			
		||||
figure(1);clf;hold on
 | 
			
		||||
marginals = graph.marginals(result);
 | 
			
		||||
for i=1:3
 | 
			
		||||
    key = symbol('x',i);
 | 
			
		||||
    pose{i} = result.pose(key);
 | 
			
		||||
    P{i}=marginals.marginalCovariance(key);
 | 
			
		||||
    if i>1
 | 
			
		||||
        plot([pose{i-1}.x;pose{i}.x],[pose{i-1}.y;pose{i}.y],'r-');
 | 
			
		||||
    end
 | 
			
		||||
end
 | 
			
		||||
for i=1:3
 | 
			
		||||
    plotPose2(pose{i},'g',P{i})
 | 
			
		||||
end
 | 
			
		||||
for j=1:2
 | 
			
		||||
    key = symbol('l',j);
 | 
			
		||||
    point{j} = result.point(key);
 | 
			
		||||
    Q{j}=marginals.marginalCovariance(key);
 | 
			
		||||
    plotPoint2(point{j},'b',Q{j})
 | 
			
		||||
end
 | 
			
		||||
plot([pose{1}.x;point{1}.x],[pose{1}.y;point{1}.y],'c-');
 | 
			
		||||
plot([pose{2}.x;point{1}.x],[pose{2}.y;point{1}.y],'c-');
 | 
			
		||||
plot([pose{3}.x;point{2}.x],[pose{3}.y;point{2}.y],'c-');
 | 
			
		||||
axis equal
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -0,0 +1,79 @@
 | 
			
		|||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | 
			
		||||
% GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
			
		||||
% Atlanta, Georgia 30332-0415
 | 
			
		||||
% All Rights Reserved
 | 
			
		||||
% Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
			
		||||
%
 | 
			
		||||
% See LICENSE for the license information
 | 
			
		||||
%
 | 
			
		||||
% @brief Simple robotics example using the pre-built planar SLAM domain
 | 
			
		||||
% @author Alex Cunningham
 | 
			
		||||
% @author Frank Dellaert
 | 
			
		||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | 
			
		||||
 | 
			
		||||
%% Create the same factor graph as in PlanarSLAMExample
 | 
			
		||||
i1 = symbol('x',1); i2 = symbol('x',2); i3 = symbol('x',3);
 | 
			
		||||
graph = planarSLAMGraph;
 | 
			
		||||
priorMean = gtsamPose2(0.0, 0.0, 0.0); % prior at origin
 | 
			
		||||
priorNoise = gtsamSharedNoiseModel_Sigmas([0.3; 0.3; 0.1]);
 | 
			
		||||
graph.addPrior(i1, priorMean, priorNoise); % add directly to graph
 | 
			
		||||
odometry = gtsamPose2(2.0, 0.0, 0.0);
 | 
			
		||||
odometryNoise = gtsamSharedNoiseModel_Sigmas([0.2; 0.2; 0.1]);
 | 
			
		||||
graph.addOdometry(i1, i2, odometry, odometryNoise);
 | 
			
		||||
graph.addOdometry(i2, i3, odometry, odometryNoise);
 | 
			
		||||
 | 
			
		||||
%% Except, for measurements we offer a choice
 | 
			
		||||
j1 = symbol('l',1); j2 = symbol('l',2);
 | 
			
		||||
degrees = pi/180;
 | 
			
		||||
noiseModel = gtsamSharedNoiseModel_Sigmas([0.1; 0.2]);
 | 
			
		||||
if 1
 | 
			
		||||
    graph.addBearingRange(i1, j1, gtsamRot2(45*degrees), sqrt(4+4), noiseModel);
 | 
			
		||||
    graph.addBearingRange(i2, j1, gtsamRot2(90*degrees), 2, noiseModel);
 | 
			
		||||
else
 | 
			
		||||
    bearingModel = gtsamSharedNoiseModel_Sigmas(0.1);    
 | 
			
		||||
    graph.addBearing(i1, j1, gtsamRot2(45*degrees), bearingModel);
 | 
			
		||||
    graph.addBearing(i2, j1, gtsamRot2(90*degrees), bearingModel);
 | 
			
		||||
end
 | 
			
		||||
graph.addBearingRange(i3, j2, gtsamRot2(90*degrees), 2, noiseModel);
 | 
			
		||||
 | 
			
		||||
%% Initialize MCMC sampler with ground truth
 | 
			
		||||
sample = planarSLAMValues;
 | 
			
		||||
sample.insertPose(i1, gtsamPose2(0,0,0));
 | 
			
		||||
sample.insertPose(i2, gtsamPose2(2,0,0));
 | 
			
		||||
sample.insertPose(i3, gtsamPose2(4,0,0));
 | 
			
		||||
sample.insertPoint(j1, gtsamPoint2(2,2));
 | 
			
		||||
sample.insertPoint(j2, gtsamPoint2(4,2));
 | 
			
		||||
 | 
			
		||||
%% Calculate and plot Covariance Ellipses
 | 
			
		||||
figure(1);clf;hold on
 | 
			
		||||
marginals = graph.marginals(sample);
 | 
			
		||||
for i=1:3
 | 
			
		||||
    key = symbol('x',i);
 | 
			
		||||
    pose{i} = sample.pose(key);
 | 
			
		||||
    P{i}=marginals.marginalCovariance(key);
 | 
			
		||||
    if i>1
 | 
			
		||||
        plot([pose{i-1}.x;pose{i}.x],[pose{i-1}.y;pose{i}.y],'r-');
 | 
			
		||||
    end
 | 
			
		||||
end
 | 
			
		||||
for i=1:3
 | 
			
		||||
    plotPose2(pose{i},'g',P{i})
 | 
			
		||||
end
 | 
			
		||||
for j=1:2
 | 
			
		||||
    key = symbol('l',j);
 | 
			
		||||
    point{j} = sample.point(key);
 | 
			
		||||
    Q{j}=marginals.marginalCovariance(key);
 | 
			
		||||
    S{j}=chol(Q{j}); % for sampling
 | 
			
		||||
    plotPoint2(point{j},'b',Q{j})
 | 
			
		||||
end
 | 
			
		||||
plot([pose{1}.x;point{1}.x],[pose{1}.y;point{1}.y],'c-');
 | 
			
		||||
plot([pose{2}.x;point{1}.x],[pose{2}.y;point{1}.y],'c-');
 | 
			
		||||
plot([pose{3}.x;point{2}.x],[pose{3}.y;point{2}.y],'c-');
 | 
			
		||||
axis equal
 | 
			
		||||
 | 
			
		||||
%% Do Sampling on point 2
 | 
			
		||||
N=1000;
 | 
			
		||||
for s=1:N
 | 
			
		||||
    delta = S{2}*randn(2,1);
 | 
			
		||||
    proposedPoint = gtsamPoint2(point{2}.x+delta(1),point{2}.y+delta(2));
 | 
			
		||||
    plotPoint2(proposedPoint,'k.')
 | 
			
		||||
end
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,11 @@
 | 
			
		|||
function plotPoint2(p,color,P)
 | 
			
		||||
% plotPose2: show a Pose2, possibly with covariance matrix
 | 
			
		||||
if size(color,2)==1
 | 
			
		||||
    plot(p.x,p.y,[color '*']);
 | 
			
		||||
else
 | 
			
		||||
    plot(p.x,p.y,color);
 | 
			
		||||
end
 | 
			
		||||
if nargin>2
 | 
			
		||||
    pPp = P(1:2,1:2); % covariance matrix in pose coordinate frame
 | 
			
		||||
    covarianceEllipse([p.x;p.y],pPp,color(1));
 | 
			
		||||
end
 | 
			
		||||
| 
						 | 
				
			
			@ -1,6 +1,6 @@
 | 
			
		|||
function plotPose2(p,color,P)
 | 
			
		||||
% plotPose2: show a Pose2, possibly with covariance matrix
 | 
			
		||||
plot(p.x,p.y,[color '.']);
 | 
			
		||||
plot(p.x,p.y,[color '*']);
 | 
			
		||||
c = cos(p.theta);
 | 
			
		||||
s = sin(p.theta);
 | 
			
		||||
quiver(p.x,p.y,c,s,0.1,color);
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in New Issue