Update to match cython
parent
128db80fec
commit
7b4266ed6b
|
@ -17,10 +17,7 @@ import math
|
|||
import gtsam
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from gtsam import symbol_shorthand
|
||||
B = symbol_shorthand.B
|
||||
V = symbol_shorthand.V
|
||||
X = symbol_shorthand.X
|
||||
from gtsam.gtsam.symbol_shorthand import B, V, X
|
||||
|
||||
from gtsam.utils.plot import plot_pose3
|
||||
from mpl_toolkits.mplot3d import Axes3D
|
||||
|
|
|
@ -17,10 +17,7 @@ from gtsam import (ISAM2, BetweenFactorConstantBias, Cal3_S2,
|
|||
PinholeCameraCal3_S2, Point3, Pose3,
|
||||
PriorFactorConstantBias, PriorFactorPose3,
|
||||
PriorFactorVector, Rot3, Values)
|
||||
from gtsam import symbol_shorthand
|
||||
B = symbol_shorthand.B
|
||||
V = symbol_shorthand.V
|
||||
X = symbol_shorthand.X
|
||||
from gtsam.gtsam.symbol_shorthand import B, V, X
|
||||
from mpl_toolkits.mplot3d import Axes3D # pylint: disable=W0611
|
||||
|
||||
|
||||
|
|
|
@ -16,6 +16,7 @@ from __future__ import print_function
|
|||
import numpy as np
|
||||
|
||||
import gtsam
|
||||
from gtsam.gtsam.symbol_shorthand import X, L
|
||||
|
||||
# Create noise models
|
||||
PRIOR_NOISE = gtsam.noiseModel.Diagonal.Sigmas(np.array([0.3, 0.3, 0.1]))
|
||||
|
@ -26,11 +27,11 @@ MEASUREMENT_NOISE = gtsam.noiseModel.Diagonal.Sigmas(np.array([0.1, 0.2]))
|
|||
graph = gtsam.NonlinearFactorGraph()
|
||||
|
||||
# Create the keys corresponding to unknown variables in the factor graph
|
||||
X1 = gtsam.symbol('x', 1)
|
||||
X2 = gtsam.symbol('x', 2)
|
||||
X3 = gtsam.symbol('x', 3)
|
||||
L1 = gtsam.symbol('l', 4)
|
||||
L2 = gtsam.symbol('l', 5)
|
||||
X1 = X(1)
|
||||
X2 = X(2)
|
||||
X3 = X(3)
|
||||
L1 = L(4)
|
||||
L2 = L(5)
|
||||
|
||||
# Add a prior on pose X1 at the origin. A prior factor consists of a mean and a noise model
|
||||
graph.add(gtsam.PriorFactorPose2(X1, gtsam.Pose2(0.0, 0.0, 0.0), PRIOR_NOISE))
|
||||
|
|
|
@ -83,7 +83,7 @@ else:
|
|||
print ("Done!")
|
||||
|
||||
if args.plot:
|
||||
resultPoses = gtsam.extractPose2(result)
|
||||
resultPoses = gtsam.utilities.extractPose2(result)
|
||||
for i in range(resultPoses.shape[0]):
|
||||
plot.plot_pose2(1, gtsam.Pose2(resultPoses[i, :]))
|
||||
plt.show()
|
||||
|
|
|
@ -44,7 +44,7 @@ priorModel = gtsam.noiseModel.Diagonal.Variances(vector6(1e-6, 1e-6, 1e-6,
|
|||
|
||||
print("Adding prior to g2o file ")
|
||||
graphWithPrior = graph
|
||||
firstKey = initial.keys().at(0)
|
||||
firstKey = initial.keys()[0]
|
||||
graphWithPrior.add(gtsam.PriorFactorPose3(firstKey, gtsam.Pose3(), priorModel))
|
||||
|
||||
params = gtsam.GaussNewtonParams()
|
||||
|
@ -66,7 +66,7 @@ else:
|
|||
print ("Done!")
|
||||
|
||||
if args.plot:
|
||||
resultPoses = gtsam.allPose3s(result)
|
||||
resultPoses = gtsam.utilities.allPose3s(result)
|
||||
for i in range(resultPoses.size()):
|
||||
plot.plot_pose3(1, resultPoses.atPose3(i))
|
||||
plt.show()
|
||||
|
|
|
@ -111,7 +111,7 @@ class PreintegrationExample(object):
|
|||
actualPose = self.scenario.pose(t)
|
||||
plot_pose3(POSES_FIG, actualPose, 0.3)
|
||||
t = actualPose.translation()
|
||||
self.maxDim = max([max(t), self.maxDim])
|
||||
self.maxDim = max([max(np.abs(t)), self.maxDim])
|
||||
ax = plt.gca()
|
||||
ax.set_xlim3d(-self.maxDim, self.maxDim)
|
||||
ax.set_ylim3d(-self.maxDim, self.maxDim)
|
||||
|
|
|
@ -1,18 +1,12 @@
|
|||
# THIS FILE IS OUTDATED!
|
||||
|
||||
~~These examples are almost identical to the old handwritten python wrapper examples. However, there are just some slight name changes, for example `noiseModel.Diagonal` becomes `noiseModel.Diagonal` etc...~~
|
||||
|
||||
~~Also, annoyingly, instead of `gtsam.Symbol('b', 0)` we now need to say `gtsam.symbol('b', 0))`~~
|
||||
|
||||
# Porting Progress
|
||||
|
||||
| C++ Example Name | Ported |
|
||||
|-------------------------------------------------------|--------|
|
||||
| CameraResectioning | |
|
||||
| CreateSFMExampleData | |
|
||||
| DiscreteBayesNet_FG | none of the required discrete functionality is exposed through cython |
|
||||
| easyPoint2KalmanFilter | ExtendedKalmanFilter not exposed through cython |
|
||||
| elaboratePoint2KalmanFilter | GaussianSequentialSolver not exposed through cython |
|
||||
| DiscreteBayesNet_FG | none of the required discrete functionality is exposed through Python |
|
||||
| easyPoint2KalmanFilter | ExtendedKalmanFilter not exposed through Python |
|
||||
| elaboratePoint2KalmanFilter | GaussianSequentialSolver not exposed through Python |
|
||||
| ImuFactorExample2 | X |
|
||||
| ImuFactorsExample | |
|
||||
| ISAM2Example_SmartFactor | |
|
||||
|
@ -26,7 +20,7 @@
|
|||
| Pose2SLAMExample_g2o | X |
|
||||
| Pose2SLAMExample_graph | |
|
||||
| Pose2SLAMExample_graphviz | |
|
||||
| Pose2SLAMExample_lago | lago not exposed through cython |
|
||||
| Pose2SLAMExample_lago | lago not exposed through Python |
|
||||
| Pose2SLAMStressTest | |
|
||||
| Pose2SLAMwSPCG | |
|
||||
| Pose3SLAMExample_changeKeys | |
|
||||
|
|
|
@ -10,24 +10,21 @@ A structure-from-motion problem on a simulated dataset
|
|||
"""
|
||||
from __future__ import print_function
|
||||
|
||||
import gtsam
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from gtsam import symbol_shorthand
|
||||
L = symbol_shorthand.L
|
||||
X = symbol_shorthand.X
|
||||
|
||||
import gtsam
|
||||
from gtsam.examples import SFMdata
|
||||
from gtsam.gtsam import (Cal3_S2, DoglegOptimizer,
|
||||
from gtsam import (Cal3_S2, DoglegOptimizer,
|
||||
GenericProjectionFactorCal3_S2, Marginals,
|
||||
NonlinearFactorGraph, Point3, Pose3,
|
||||
PriorFactorPoint3, PriorFactorPose3, Rot3,
|
||||
SimpleCamera, Values)
|
||||
NonlinearFactorGraph, PinholeCameraCal3_S2, Point3,
|
||||
Pose3, PriorFactorPoint3, PriorFactorPose3, Rot3, Values)
|
||||
from gtsam.utils import plot
|
||||
|
||||
|
||||
def symbol(name: str, index: int) -> int:
|
||||
""" helper for creating a symbol without explicitly casting 'name' from str to int """
|
||||
return gtsam.symbol(name, index)
|
||||
|
||||
|
||||
def main():
|
||||
"""
|
||||
Camera observations of landmarks (i.e. pixel coordinates) will be stored as Point2 (x, y).
|
||||
|
@ -74,23 +71,23 @@ def main():
|
|||
# Add a prior on pose x1. This indirectly specifies where the origin is.
|
||||
# 0.3 rad std on roll,pitch,yaw and 0.1m on x,y,z
|
||||
pose_noise = gtsam.noiseModel.Diagonal.Sigmas(np.array([0.3, 0.3, 0.3, 0.1, 0.1, 0.1]))
|
||||
factor = PriorFactorPose3(symbol('x', 0), poses[0], pose_noise)
|
||||
factor = PriorFactorPose3(X(0), poses[0], pose_noise)
|
||||
graph.push_back(factor)
|
||||
|
||||
# Simulated measurements from each camera pose, adding them to the factor graph
|
||||
for i, pose in enumerate(poses):
|
||||
camera = SimpleCamera(pose, K)
|
||||
camera = PinholeCameraCal3_S2(pose, K)
|
||||
for j, point in enumerate(points):
|
||||
measurement = camera.project(point)
|
||||
factor = GenericProjectionFactorCal3_S2(
|
||||
measurement, measurement_noise, symbol('x', i), symbol('l', j), K)
|
||||
measurement, measurement_noise, X(i), L(j), K)
|
||||
graph.push_back(factor)
|
||||
|
||||
# Because the structure-from-motion problem has a scale ambiguity, the problem is still under-constrained
|
||||
# Here we add a prior on the position of the first landmark. This fixes the scale by indicating the distance
|
||||
# between the first camera and the first landmark. All other landmark positions are interpreted using this scale.
|
||||
point_noise = gtsam.noiseModel.Isotropic.Sigma(3, 0.1)
|
||||
factor = PriorFactorPoint3(symbol('l', 0), points[0], point_noise)
|
||||
factor = PriorFactorPoint3(L(0), points[0], point_noise)
|
||||
graph.push_back(factor)
|
||||
graph.print_('Factor Graph:\n')
|
||||
|
||||
|
@ -99,10 +96,10 @@ def main():
|
|||
initial_estimate = Values()
|
||||
for i, pose in enumerate(poses):
|
||||
transformed_pose = pose.retract(0.1*np.random.randn(6,1))
|
||||
initial_estimate.insert(symbol('x', i), transformed_pose)
|
||||
initial_estimate.insert(X(i), transformed_pose)
|
||||
for j, point in enumerate(points):
|
||||
transformed_point = Point3(point.vector() + 0.1*np.random.randn(3))
|
||||
initial_estimate.insert(symbol('l', j), transformed_point)
|
||||
transformed_point = point + 0.1*np.random.randn(3)
|
||||
initial_estimate.insert(L(j), transformed_point)
|
||||
initial_estimate.print_('Initial Estimates:\n')
|
||||
|
||||
# Optimize the graph and print results
|
||||
|
@ -121,6 +118,5 @@ def main():
|
|||
plot.set_axes_equal(1)
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
|
|
@ -221,9 +221,9 @@ def plot_3d_points(fignum, values, linespec="g*", marginals=None,
|
|||
keys = values.keys()
|
||||
|
||||
# Plot points and covariance matrices
|
||||
for i in range(keys.size()):
|
||||
for i in range(len(keys)):
|
||||
try:
|
||||
key = keys.at(i)
|
||||
key = keys[i]
|
||||
point = values.atPoint3(key)
|
||||
if marginals is not None:
|
||||
covariance = marginals.marginalCovariance(key)
|
||||
|
@ -319,19 +319,19 @@ def plot_trajectory(fignum, values, scale=1, marginals=None,
|
|||
title (string): The title of the plot.
|
||||
axis_labels (iterable[string]): List of axis labels to set.
|
||||
"""
|
||||
pose3Values = gtsam.utilities_allPose3s(values)
|
||||
pose3Values = gtsam.utilities.allPose3s(values)
|
||||
keys = gtsam.KeyVector(pose3Values.keys())
|
||||
lastIndex = None
|
||||
|
||||
for i in range(keys.size()):
|
||||
key = keys.at(i)
|
||||
for i in range(len(keys)):
|
||||
key = keys[i]
|
||||
try:
|
||||
pose = pose3Values.atPose3(key)
|
||||
except:
|
||||
print("Warning: no Pose3 at key: {0}".format(key))
|
||||
|
||||
if lastIndex is not None:
|
||||
lastKey = keys.at(lastIndex)
|
||||
lastKey = keys[lastIndex]
|
||||
try:
|
||||
lastPose = pose3Values.atPose3(lastKey)
|
||||
except:
|
||||
|
@ -350,7 +350,7 @@ def plot_trajectory(fignum, values, scale=1, marginals=None,
|
|||
|
||||
# Draw final pose
|
||||
if lastIndex is not None:
|
||||
lastKey = keys.at(lastIndex)
|
||||
lastKey = keys[lastIndex]
|
||||
try:
|
||||
lastPose = pose3Values.atPose3(lastKey)
|
||||
if marginals:
|
||||
|
|
Loading…
Reference in New Issue