Renamed derived optimizer verbosity parameters to start with 'verbosity' to make more auto-complete friendly
parent
68467448a7
commit
7b183d1237
|
|
@ -144,7 +144,7 @@ int main(int argc, char* argv[]) {
|
|||
// Optimize the graph
|
||||
cout << "*******************************************************" << endl;
|
||||
LevenbergMarquardtParams params;
|
||||
params.lmVerbosity = LevenbergMarquardtParams::DAMPED;
|
||||
params.verbosityLM = LevenbergMarquardtParams::DAMPED;
|
||||
visualSLAM::Values result = LevenbergMarquardtOptimizer(graph, initialEstimates, params).optimize();
|
||||
|
||||
// Print final results
|
||||
|
|
|
|||
|
|
@ -37,7 +37,7 @@ void DoglegOptimizer::iterate(void) {
|
|||
GaussianFactorGraph::Eliminate eliminationMethod = params_.getEliminationFunction();
|
||||
|
||||
// Pull out parameters we'll use
|
||||
const bool dlVerbose = (params_.dlVerbosity > DoglegParams::SILENT);
|
||||
const bool dlVerbose = (params_.verbosityDL > DoglegParams::SILENT);
|
||||
|
||||
// Do Dogleg iteration with either Multifrontal or Sequential elimination
|
||||
DoglegOptimizerImpl::IterationResult result;
|
||||
|
|
|
|||
|
|
@ -32,16 +32,16 @@ class DoglegOptimizer;
|
|||
class DoglegParams : public SuccessiveLinearizationParams {
|
||||
public:
|
||||
/** See DoglegParams::dlVerbosity */
|
||||
enum DLVerbosity {
|
||||
enum VerbosityDL {
|
||||
SILENT,
|
||||
VERBOSE
|
||||
};
|
||||
|
||||
double deltaInitial; ///< The initial trust region radius (default: 1.0)
|
||||
DLVerbosity dlVerbosity; ///< The verbosity level for Dogleg (default: SILENT), see also NonlinearOptimizerParams::verbosity
|
||||
VerbosityDL verbosityDL; ///< The verbosity level for Dogleg (default: SILENT), see also NonlinearOptimizerParams::verbosity
|
||||
|
||||
DoglegParams() :
|
||||
deltaInitial(1.0), dlVerbosity(SILENT) {}
|
||||
deltaInitial(1.0), verbosityDL(SILENT) {}
|
||||
|
||||
virtual ~DoglegParams() {}
|
||||
|
||||
|
|
|
|||
|
|
@ -37,7 +37,7 @@ void LevenbergMarquardtOptimizer::iterate() {
|
|||
|
||||
// Pull out parameters we'll use
|
||||
const NonlinearOptimizerParams::Verbosity nloVerbosity = params_.verbosity;
|
||||
const LevenbergMarquardtParams::LMVerbosity lmVerbosity = params_.lmVerbosity;
|
||||
const LevenbergMarquardtParams::VerbosityLM lmVerbosity = params_.verbosityLM;
|
||||
|
||||
// Keep increasing lambda until we make make progress
|
||||
while(true) {
|
||||
|
|
|
|||
|
|
@ -32,7 +32,7 @@ class LevenbergMarquardtOptimizer;
|
|||
class LevenbergMarquardtParams : public SuccessiveLinearizationParams {
|
||||
public:
|
||||
/** See LevenbergMarquardtParams::lmVerbosity */
|
||||
enum LMVerbosity {
|
||||
enum VerbosityLM {
|
||||
SILENT,
|
||||
LAMBDA,
|
||||
TRYLAMBDA,
|
||||
|
|
@ -44,10 +44,10 @@ public:
|
|||
double lambdaInitial; ///< The initial Levenberg-Marquardt damping term (default: 1e-5)
|
||||
double lambdaFactor; ///< The amount by which to multiply or divide lambda when adjusting lambda (default: 10.0)
|
||||
double lambdaUpperBound; ///< The maximum lambda to try before assuming the optimization has failed (default: 1e5)
|
||||
LMVerbosity lmVerbosity; ///< The verbosity level for Levenberg-Marquardt (default: SILENT), see also NonlinearOptimizerParams::verbosity
|
||||
VerbosityLM verbosityLM; ///< The verbosity level for Levenberg-Marquardt (default: SILENT), see also NonlinearOptimizerParams::verbosity
|
||||
|
||||
LevenbergMarquardtParams() :
|
||||
lambdaInitial(1e-5), lambdaFactor(10.0), lambdaUpperBound(1e5), lmVerbosity(SILENT) {}
|
||||
lambdaInitial(1e-5), lambdaFactor(10.0), lambdaUpperBound(1e5), verbosityLM(SILENT) {}
|
||||
|
||||
virtual ~LevenbergMarquardtParams() {}
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue