Headers and standard formatting
parent
b9d0373c47
commit
7aaf6a1e82
|
@ -5,10 +5,12 @@
|
|||
* @author: Duy-Nguyen Ta
|
||||
*/
|
||||
|
||||
#include <gtsam_unstable/linear/LPSolver.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
|
||||
#include <boost/format.hpp>
|
||||
#include <boost/foreach.hpp>
|
||||
#include <boost/range/adaptor/map.hpp>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam_unstable/linear/LPSolver.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
@ -21,7 +23,7 @@ void LPSolver::buildMetaInformation() {
|
|||
// Collect variables in objective function first
|
||||
BOOST_FOREACH(Key key, objectiveCoeffs_ | boost::adaptors::map_keys) {
|
||||
variableColumnNo_.insert(make_pair(key, firstVarIndex));
|
||||
variableDims_.insert(make_pair(key,objectiveCoeffs_.dim(key)));
|
||||
variableDims_.insert(make_pair(key, objectiveCoeffs_.dim(key)));
|
||||
firstVarIndex += variableDims_[key];
|
||||
freeVars_.insert(key);
|
||||
}
|
||||
|
@ -29,32 +31,32 @@ void LPSolver::buildMetaInformation() {
|
|||
VariableIndex factorIndex(*constraints_);
|
||||
BOOST_FOREACH(Key key, factorIndex | boost::adaptors::map_keys) {
|
||||
if (!variableColumnNo_.count(key)) {
|
||||
JacobianFactor::shared_ptr jacobian = boost::dynamic_pointer_cast<JacobianFactor>
|
||||
(constraints_->at(*factorIndex[key].begin()));
|
||||
JacobianFactor::shared_ptr jacobian = boost::dynamic_pointer_cast<
|
||||
JacobianFactor>(constraints_->at(*factorIndex[key].begin()));
|
||||
if (!jacobian || !jacobian->isConstrained()) {
|
||||
throw std::runtime_error("Invalid constrained graph!");
|
||||
throw runtime_error("Invalid constrained graph!");
|
||||
}
|
||||
size_t dim = jacobian->getDim(jacobian->find(key));
|
||||
variableColumnNo_.insert(make_pair(key, firstVarIndex));
|
||||
variableDims_.insert(make_pair(key,dim));
|
||||
variableDims_.insert(make_pair(key, dim));
|
||||
firstVarIndex += variableDims_[key];
|
||||
freeVars_.insert(key);
|
||||
}
|
||||
}
|
||||
// Collect the remaining keys in lowerBounds
|
||||
BOOST_FOREACH(Key key, lowerBounds_ | boost::adaptors::map_keys){
|
||||
BOOST_FOREACH(Key key, lowerBounds_ | boost::adaptors::map_keys) {
|
||||
if (!variableColumnNo_.count(key)) {
|
||||
variableColumnNo_.insert(make_pair(key, firstVarIndex));
|
||||
variableDims_.insert(make_pair(key,lowerBounds_.dim(key)));
|
||||
variableDims_.insert(make_pair(key, lowerBounds_.dim(key)));
|
||||
firstVarIndex += variableDims_[key];
|
||||
}
|
||||
freeVars_.erase(key);
|
||||
}
|
||||
// Collect the remaining keys in upperBounds
|
||||
BOOST_FOREACH(Key key, upperBounds_ | boost::adaptors::map_keys){
|
||||
BOOST_FOREACH(Key key, upperBounds_ | boost::adaptors::map_keys) {
|
||||
if (!variableColumnNo_.count(key)) {
|
||||
variableColumnNo_.insert(make_pair(key, firstVarIndex));
|
||||
variableDims_.insert(make_pair(key,upperBounds_.dim(key)));
|
||||
variableDims_.insert(make_pair(key, upperBounds_.dim(key)));
|
||||
firstVarIndex += variableDims_[key];
|
||||
}
|
||||
freeVars_.erase(key);
|
||||
|
@ -67,7 +69,7 @@ void LPSolver::buildMetaInformation() {
|
|||
void LPSolver::addConstraints(const boost::shared_ptr<lprec>& lp,
|
||||
const JacobianFactor::shared_ptr& jacobian) const {
|
||||
if (!jacobian || !jacobian->isConstrained())
|
||||
throw std::runtime_error("LP only accepts constrained factors!");
|
||||
throw runtime_error("LP only accepts constrained factors!");
|
||||
|
||||
// Build column number from keys
|
||||
KeyVector keys = jacobian->keys();
|
||||
|
@ -77,7 +79,7 @@ void LPSolver::addConstraints(const boost::shared_ptr<lprec>& lp,
|
|||
Vector sigmas = jacobian->get_model()->sigmas();
|
||||
Matrix A = jacobian->getA();
|
||||
Vector b = jacobian->getb();
|
||||
for (int i = 0; i<A.rows(); ++i) {
|
||||
for (int i = 0; i < A.rows(); ++i) {
|
||||
// A.row(i).data() gives wrong result so have to make a copy
|
||||
// TODO: Why? Probably because lpsolve's add_constraintex modifies this raw buffer!!!
|
||||
Vector r = A.row(i);
|
||||
|
@ -86,39 +88,39 @@ void LPSolver::addConstraints(const boost::shared_ptr<lprec>& lp,
|
|||
// so we have to make a new copy for every row!!!!!
|
||||
vector<int> columnNoCopy(columnNo);
|
||||
|
||||
if (sigmas[i]>0) {
|
||||
cout << "Warning: Ignore Gaussian noise (sigma>0) in LP constraints!" << endl;
|
||||
if (sigmas[i] > 0) {
|
||||
cout << "Warning: Ignore Gaussian noise (sigma>0) in LP constraints!"
|
||||
<< endl;
|
||||
}
|
||||
int constraintType = (sigmas[i]<0)?LE:EQ;
|
||||
if(!add_constraintex(lp.get(), columnNoCopy.size(), r.data(), columnNoCopy.data(),
|
||||
constraintType, b[i]))
|
||||
int constraintType = (sigmas[i] < 0) ? LE : EQ;
|
||||
if (!add_constraintex(lp.get(), columnNoCopy.size(), r.data(),
|
||||
columnNoCopy.data(), constraintType, b[i]))
|
||||
throw runtime_error("LP can't accept Gaussian noise!");
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* ************************************************************************* */
|
||||
void LPSolver::addBounds(const boost::shared_ptr<lprec>& lp) const {
|
||||
// Set lower bounds
|
||||
BOOST_FOREACH(Key key, lowerBounds_ | boost::adaptors::map_keys){
|
||||
BOOST_FOREACH(Key key, lowerBounds_ | boost::adaptors::map_keys) {
|
||||
Vector lb = lowerBounds_.at(key);
|
||||
for (size_t i = 0; i<lb.size(); ++i) {
|
||||
set_lowbo(lp.get(), variableColumnNo_.at(key)+i, lb[i]);
|
||||
for (size_t i = 0; i < lb.size(); ++i) {
|
||||
set_lowbo(lp.get(), variableColumnNo_.at(key) + i, lb[i]);
|
||||
}
|
||||
}
|
||||
|
||||
// Set upper bounds
|
||||
BOOST_FOREACH(Key key, upperBounds_ | boost::adaptors::map_keys){
|
||||
BOOST_FOREACH(Key key, upperBounds_ | boost::adaptors::map_keys) {
|
||||
Vector ub = upperBounds_.at(key);
|
||||
for (size_t i = 0; i<ub.size(); ++i) {
|
||||
set_upbo(lp.get(), variableColumnNo_.at(key)+i, ub[i]);
|
||||
for (size_t i = 0; i < ub.size(); ++i) {
|
||||
set_upbo(lp.get(), variableColumnNo_.at(key) + i, ub[i]);
|
||||
}
|
||||
}
|
||||
|
||||
// Set the rest as free variables
|
||||
BOOST_FOREACH(Key key, freeVars_) {
|
||||
for (size_t i = 0; i<variableDims_.at(key); ++i) {
|
||||
set_unbounded(lp.get(), variableColumnNo_.at(key)+i);
|
||||
for (size_t i = 0; i < variableDims_.at(key); ++i) {
|
||||
set_unbounded(lp.get(), variableColumnNo_.at(key) + i);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -132,8 +134,8 @@ boost::shared_ptr<lprec> LPSolver::buildModel() const {
|
|||
|
||||
// Add constraints
|
||||
BOOST_FOREACH(const GaussianFactor::shared_ptr& factor, *constraints_) {
|
||||
JacobianFactor::shared_ptr jacobian =
|
||||
boost::dynamic_pointer_cast<JacobianFactor>(factor);
|
||||
JacobianFactor::shared_ptr jacobian = boost::dynamic_pointer_cast<
|
||||
JacobianFactor>(factor);
|
||||
addConstraints(lp, jacobian);
|
||||
}
|
||||
|
||||
|
@ -152,8 +154,8 @@ boost::shared_ptr<lprec> LPSolver::buildModel() const {
|
|||
Vector f = objectiveCoeffs_.vector(keys);
|
||||
vector<int> columnNo = buildColumnNo(keys);
|
||||
|
||||
if(!set_obj_fnex(lp.get(), f.size(), f.data(), columnNo.data()))
|
||||
throw std::runtime_error("lpsolve cannot set obj function!");
|
||||
if (!set_obj_fnex(lp.get(), f.size(), f.data(), columnNo.data()))
|
||||
throw runtime_error("lpsolve cannot set obj function!");
|
||||
|
||||
// Set the object direction to minimize
|
||||
set_minim(lp.get());
|
||||
|
@ -169,7 +171,8 @@ VectorValues LPSolver::convertToVectorValues(REAL* row) const {
|
|||
VectorValues values;
|
||||
BOOST_FOREACH(Key key, variableColumnNo_ | boost::adaptors::map_keys) {
|
||||
// Warning: the columnNo starts from 1, but C's array index starts from 0!!
|
||||
Vector v = Eigen::Map<Eigen::VectorXd>(&row[variableColumnNo_.at(key)-1], variableDims_.at(key));
|
||||
Vector v = Eigen::Map<Eigen::VectorXd>(&row[variableColumnNo_.at(key) - 1],
|
||||
variableDims_.at(key));
|
||||
values.insert(key, v);
|
||||
}
|
||||
return values;
|
||||
|
@ -183,13 +186,15 @@ VectorValues LPSolver::solve() const {
|
|||
|
||||
/* just out of curioucity, now show the model in lp format on screen */
|
||||
/* this only works if this is a console application. If not, use write_lp and a filename */
|
||||
if (debug) write_LP(lp.get(), stdout);
|
||||
if (debug)
|
||||
write_LP(lp.get(), stdout);
|
||||
|
||||
int ret = ::solve(lp.get());
|
||||
if (ret != 0) {
|
||||
throw std::runtime_error(
|
||||
(boost::format( "lpsolve cannot find the optimal solution and terminates with %d error. "\
|
||||
"See lpsolve's solve() documentation for details.") % ret).str());
|
||||
throw runtime_error(
|
||||
(boost::format(
|
||||
"lpsolve cannot find the optimal solution and terminates with %d error. "
|
||||
"See lpsolve's solve() documentation for details.") % ret).str());
|
||||
}
|
||||
REAL* row = NULL;
|
||||
get_ptr_variables(lp.get(), &row);
|
||||
|
|
|
@ -7,13 +7,14 @@
|
|||
|
||||
#pragma once
|
||||
|
||||
#include <boost/range/irange.hpp>
|
||||
|
||||
#include <gtsam/3rdparty/lp_solve_5.5/lp_lib.h>
|
||||
#include <gtsam/linear/GaussianFactorGraph.h>
|
||||
#include <gtsam/linear/VectorValues.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
|
||||
#include <gtsam/3rdparty/lp_solve_5.5/lp_lib.h>
|
||||
|
||||
#include <boost/range/irange.hpp>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/**
|
||||
|
@ -36,25 +37,35 @@ public:
|
|||
* We do NOT adopt this convention here. If no lower/upper bounds are specified, the variable will be
|
||||
* set as unbounded, i.e. -inf <= x <= inf.
|
||||
*/
|
||||
LPSolver(const VectorValues& objectiveCoeffs, const GaussianFactorGraph::shared_ptr& constraints,
|
||||
const VectorValues& lowerBounds = VectorValues(), const VectorValues& upperBounds = VectorValues()) :
|
||||
objectiveCoeffs_(objectiveCoeffs), constraints_(constraints), lowerBounds_(
|
||||
lowerBounds), upperBounds_(upperBounds) {
|
||||
LPSolver(const VectorValues& objectiveCoeffs,
|
||||
const GaussianFactorGraph::shared_ptr& constraints,
|
||||
const VectorValues& lowerBounds = VectorValues(),
|
||||
const VectorValues& upperBounds = VectorValues()) :
|
||||
objectiveCoeffs_(objectiveCoeffs), constraints_(constraints), lowerBounds_(
|
||||
lowerBounds), upperBounds_(upperBounds) {
|
||||
buildMetaInformation();
|
||||
}
|
||||
|
||||
/**
|
||||
* Build data structures to support converting between gtsam and lpsolve
|
||||
* TODO: consider lp as a class variable and support setConstraints
|
||||
* to avoid rebuild this meta data
|
||||
*/
|
||||
/**
|
||||
* Build data structures to support converting between gtsam and lpsolve
|
||||
* TODO: consider lp as a class variable and support setConstraints
|
||||
* to avoid rebuild this meta data
|
||||
*/
|
||||
void buildMetaInformation();
|
||||
|
||||
/// Get functions for unittest checking
|
||||
const std::map<Key, size_t>& variableColumnNo() const { return variableColumnNo_; }
|
||||
const std::map<Key, size_t>& variableDims() const { return variableDims_; }
|
||||
size_t nrColumns() const {return nrColumns_;}
|
||||
const KeySet& freeVars() const { return freeVars_; }
|
||||
const std::map<Key, size_t>& variableColumnNo() const {
|
||||
return variableColumnNo_;
|
||||
}
|
||||
const std::map<Key, size_t>& variableDims() const {
|
||||
return variableDims_;
|
||||
}
|
||||
size_t nrColumns() const {
|
||||
return nrColumns_;
|
||||
}
|
||||
const KeySet& freeVars() const {
|
||||
return freeVars_;
|
||||
}
|
||||
|
||||
/**
|
||||
* Build lpsolve's column number for a list of keys
|
||||
|
@ -64,7 +75,8 @@ public:
|
|||
std::vector<int> columnNo;
|
||||
BOOST_FOREACH(Key key, keyList) {
|
||||
std::vector<int> varIndices = boost::copy_range<std::vector<int> >(
|
||||
boost::irange(variableColumnNo_.at(key), variableColumnNo_.at(key) + variableDims_.at(key)));
|
||||
boost::irange(variableColumnNo_.at(key),
|
||||
variableColumnNo_.at(key) + variableDims_.at(key)));
|
||||
columnNo.insert(columnNo.end(), varIndices.begin(), varIndices.end());
|
||||
}
|
||||
return columnNo;
|
||||
|
@ -82,7 +94,6 @@ public:
|
|||
*/
|
||||
void addBounds(const boost::shared_ptr<lprec>& lp) const;
|
||||
|
||||
|
||||
/**
|
||||
* Main function to build lpsolve model
|
||||
* TODO: consider lp as a class variable and support setConstraints
|
||||
|
|
|
@ -5,19 +5,20 @@
|
|||
* @author: thduynguyen
|
||||
*/
|
||||
|
||||
#include <boost/foreach.hpp>
|
||||
#include <boost/range/adaptor/map.hpp>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam_unstable/linear/QPSolver.h>
|
||||
#include <gtsam_unstable/linear/LPSolver.h>
|
||||
|
||||
#include <boost/foreach.hpp>
|
||||
#include <boost/range/adaptor/map.hpp>
|
||||
|
||||
using namespace std;
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/* ************************************************************************* */
|
||||
QPSolver::QPSolver(const GaussianFactorGraph& graph) :
|
||||
graph_(graph), fullFactorIndices_(graph) {
|
||||
graph_(graph), fullFactorIndices_(graph) {
|
||||
// Split the original graph into unconstrained and constrained part
|
||||
// and collect indices of constrained factors
|
||||
for (size_t i = 0; i < graph.nrFactors(); ++i) {
|
||||
|
@ -30,21 +31,21 @@ QPSolver::QPSolver(const GaussianFactorGraph& graph) :
|
|||
}
|
||||
|
||||
// Collect constrained variable keys
|
||||
std::set<size_t> constrainedVars;
|
||||
set<size_t> constrainedVars;
|
||||
BOOST_FOREACH(size_t index, constraintIndices_) {
|
||||
KeyVector keys = graph.at(index)->keys();
|
||||
constrainedVars.insert(keys.begin(), keys.end());
|
||||
}
|
||||
|
||||
// Collect unconstrained hessians of constrained vars to build dual graph
|
||||
freeHessians_ = unconstrainedHessiansOfConstrainedVars(graph, constrainedVars);
|
||||
freeHessians_ = unconstrainedHessiansOfConstrainedVars(graph,
|
||||
constrainedVars);
|
||||
freeHessianFactorIndex_ = VariableIndex(*freeHessians_);
|
||||
}
|
||||
|
||||
|
||||
/* ************************************************************************* */
|
||||
GaussianFactorGraph::shared_ptr QPSolver::unconstrainedHessiansOfConstrainedVars(
|
||||
const GaussianFactorGraph& graph, const std::set<Key>& constrainedVars) const {
|
||||
const GaussianFactorGraph& graph, const set<Key>& constrainedVars) const {
|
||||
VariableIndex variableIndex(graph);
|
||||
GaussianFactorGraph::shared_ptr hfg(new GaussianFactorGraph());
|
||||
// Collect all factors involving constrained vars
|
||||
|
@ -58,7 +59,8 @@ GaussianFactorGraph::shared_ptr QPSolver::unconstrainedHessiansOfConstrainedVars
|
|||
|
||||
// Convert each factor into Hessian
|
||||
BOOST_FOREACH(size_t factorIndex, factors) {
|
||||
if (!graph[factorIndex]) continue;
|
||||
if (!graph[factorIndex])
|
||||
continue;
|
||||
// See if this is a Jacobian factor
|
||||
JacobianFactor::shared_ptr jf = toJacobian(graph[factorIndex]);
|
||||
if (jf) {
|
||||
|
@ -68,20 +70,21 @@ GaussianFactorGraph::shared_ptr QPSolver::unconstrainedHessiansOfConstrainedVars
|
|||
Vector sigmas = jf->get_model()->sigmas();
|
||||
Vector newPrecisions(sigmas.size());
|
||||
bool mixed = false;
|
||||
for (size_t s=0; s<sigmas.size(); ++s) {
|
||||
if (sigmas[s] <= 1e-9) newPrecisions[s] = 0.0; // 0 info for constraints (both ineq and eq)
|
||||
for (size_t s = 0; s < sigmas.size(); ++s) {
|
||||
if (sigmas[s] <= 1e-9)
|
||||
newPrecisions[s] = 0.0; // 0 info for constraints (both ineq and eq)
|
||||
else {
|
||||
newPrecisions[s] = 1.0/sigmas[s];
|
||||
newPrecisions[s] = 1.0 / sigmas[s];
|
||||
mixed = true;
|
||||
}
|
||||
}
|
||||
if (mixed) { // only add free hessians if it's mixed
|
||||
if (mixed) { // only add free hessians if it's mixed
|
||||
JacobianFactor::shared_ptr newJacobian = toJacobian(jf->clone());
|
||||
newJacobian->setModel(noiseModel::Diagonal::Precisions(newPrecisions));
|
||||
newJacobian->setModel(
|
||||
noiseModel::Diagonal::Precisions(newPrecisions));
|
||||
hfg->push_back(HessianFactor(*newJacobian));
|
||||
}
|
||||
}
|
||||
else { // unconstrained Jacobian
|
||||
} else { // unconstrained Jacobian
|
||||
// Convert the original linear factor to Hessian factor
|
||||
// TODO: This may fail and throw the following exception
|
||||
// Assertion failed: (((!PanelMode) && stride==0 && offset==0) ||
|
||||
|
@ -92,8 +95,7 @@ GaussianFactorGraph::shared_ptr QPSolver::unconstrainedHessiansOfConstrainedVars
|
|||
// My current way to fix this is to compile both gtsam and my library in Release mode
|
||||
hfg->add(HessianFactor(*jf));
|
||||
}
|
||||
}
|
||||
else { // If it's not a Jacobian, it should be a hessian factor. Just add!
|
||||
} else { // If it's not a Jacobian, it should be a hessian factor. Just add!
|
||||
hfg->push_back(graph[factorIndex]);
|
||||
}
|
||||
}
|
||||
|
@ -111,17 +113,23 @@ GaussianFactorGraph QPSolver::buildDualGraph(const GaussianFactorGraph& graph,
|
|||
// For each variable xi involving in some constraint, compute the unconstrained gradient
|
||||
// wrt xi from the prebuilt freeHessian graph
|
||||
// \grad f(xi) = \frac{\partial f}{\partial xi}' = \sum_j G_ij*xj - gi
|
||||
if (debug) freeHessianFactorIndex_.print("freeHessianFactorIndex_: ");
|
||||
if (debug)
|
||||
freeHessianFactorIndex_.print("freeHessianFactorIndex_: ");
|
||||
BOOST_FOREACH(const VariableIndex::value_type& xiKey_factors, freeHessianFactorIndex_) {
|
||||
Key xiKey = xiKey_factors.first;
|
||||
VariableIndex::Factors xiFactors = xiKey_factors.second;
|
||||
|
||||
// Find xi's dim from the first factor on xi
|
||||
if (xiFactors.size() == 0) continue;
|
||||
GaussianFactor::shared_ptr xiFactor0 = freeHessians_->at(*xiFactors.begin());
|
||||
if (xiFactors.size() == 0)
|
||||
continue;
|
||||
GaussianFactor::shared_ptr xiFactor0 = freeHessians_->at(
|
||||
*xiFactors.begin());
|
||||
size_t xiDim = xiFactor0->getDim(xiFactor0->find(xiKey));
|
||||
if (debug) xiFactor0->print("xiFactor0: ");
|
||||
if (debug) cout << "xiKey: " << string(Symbol(xiKey)) << ", xiDim: " << xiDim << endl;
|
||||
if (debug)
|
||||
xiFactor0->print("xiFactor0: ");
|
||||
if (debug)
|
||||
cout << "xiKey: " << string(Symbol(xiKey)) << ", xiDim: " << xiDim
|
||||
<< endl;
|
||||
|
||||
//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++//
|
||||
// Compute the b-vector for the dual factor Ax-b
|
||||
|
@ -139,8 +147,7 @@ GaussianFactorGraph QPSolver::buildDualGraph(const GaussianFactorGraph& graph,
|
|||
if (xi > xj) {
|
||||
Matrix Gji = factor->info(xj, xi);
|
||||
Gij = Gji.transpose();
|
||||
}
|
||||
else {
|
||||
} else {
|
||||
Gij = factor->info(xi, xj);
|
||||
}
|
||||
// Accumulate Gij*xj to gradf
|
||||
|
@ -155,20 +162,22 @@ GaussianFactorGraph QPSolver::buildDualGraph(const GaussianFactorGraph& graph,
|
|||
// Compute the Jacobian A for the dual factor Ax-b
|
||||
// Obtain the jacobians for lambda variables from their corresponding constraints
|
||||
// A = gradc_k(xi) = \frac{\partial c_k}{\partial xi}'
|
||||
std::vector<std::pair<Key, Matrix> > lambdaTerms; // collection of lambda_k, and gradc_k
|
||||
typedef std::pair<size_t, size_t> FactorIx_SigmaIx;
|
||||
std::vector<FactorIx_SigmaIx> unconstrainedIndex; // pairs of factorIx,sigmaIx of unconstrained rows
|
||||
vector<pair<Key, Matrix> > lambdaTerms; // collection of lambda_k, and gradc_k
|
||||
typedef pair<size_t, size_t> FactorIx_SigmaIx;
|
||||
vector<FactorIx_SigmaIx> unconstrainedIndex; // pairs of factorIx,sigmaIx of unconstrained rows
|
||||
BOOST_FOREACH(size_t factorIndex, fullFactorIndices_[xiKey]) {
|
||||
JacobianFactor::shared_ptr factor = toJacobian(graph.at(factorIndex));
|
||||
if (!factor || !factor->isConstrained()) continue;
|
||||
if (!factor || !factor->isConstrained())
|
||||
continue;
|
||||
// Gradient is the transpose of the Jacobian: A_k = gradc_k(xi) = \frac{\partial c_k}{\partial xi}'
|
||||
// Each column for each lambda_k corresponds to [the transpose of] each constrained row factor
|
||||
Matrix A_k = factor->getA(factor->find(xiKey)).transpose();
|
||||
if (debug) gtsam::print(A_k, "A_k = ");
|
||||
if (debug)
|
||||
gtsam::print(A_k, "A_k = ");
|
||||
|
||||
// Deal with mixed sigmas: no information if sigma != 0
|
||||
Vector sigmas = factor->get_model()->sigmas();
|
||||
for (size_t sigmaIx = 0; sigmaIx<sigmas.size(); ++sigmaIx) {
|
||||
for (size_t sigmaIx = 0; sigmaIx < sigmas.size(); ++sigmaIx) {
|
||||
// if it's either ineq (sigma<0) or unconstrained (sigma>0)
|
||||
// we have no information about it
|
||||
if (fabs(sigmas[sigmaIx]) > 1e-9) {
|
||||
|
@ -185,31 +194,37 @@ GaussianFactorGraph QPSolver::buildDualGraph(const GaussianFactorGraph& graph,
|
|||
//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++//
|
||||
// Create and add factors to the dual graph
|
||||
// If least square approximation is desired, use unit noise model.
|
||||
if (debug) cout << "Create dual factor" << endl;
|
||||
if (debug)
|
||||
cout << "Create dual factor" << endl;
|
||||
if (useLeastSquare) {
|
||||
if (debug) cout << "use least square!" << endl;
|
||||
dualGraph.push_back(JacobianFactor(lambdaTerms, gradf_xi,
|
||||
noiseModel::Unit::Create(gradf_xi.size())));
|
||||
}
|
||||
else {
|
||||
if (debug)
|
||||
cout << "use least square!" << endl;
|
||||
dualGraph.push_back(
|
||||
JacobianFactor(lambdaTerms, gradf_xi,
|
||||
noiseModel::Unit::Create(gradf_xi.size())));
|
||||
} else {
|
||||
// Enforce constrained noise model so lambdas are solved with QR
|
||||
// and should exactly satisfy all the equations
|
||||
if (debug) cout << gradf_xi << endl;
|
||||
dualGraph.push_back(JacobianFactor(lambdaTerms, gradf_xi,
|
||||
noiseModel::Constrained::All(gradf_xi.size())));
|
||||
if (debug)
|
||||
cout << gradf_xi << endl;
|
||||
dualGraph.push_back(
|
||||
JacobianFactor(lambdaTerms, gradf_xi,
|
||||
noiseModel::Constrained::All(gradf_xi.size())));
|
||||
}
|
||||
|
||||
// Add 0 priors on all lambdas of the unconstrained rows to make sure the graph is solvable
|
||||
if (debug) cout << "Create priors" << endl;
|
||||
if (debug)
|
||||
cout << "Create priors" << endl;
|
||||
BOOST_FOREACH(FactorIx_SigmaIx factorIx_sigmaIx, unconstrainedIndex) {
|
||||
size_t factorIx = factorIx_sigmaIx.first;
|
||||
JacobianFactor::shared_ptr factor = toJacobian(graph.at(factorIx));
|
||||
size_t dim= factor->get_model()->dim();
|
||||
size_t dim = factor->get_model()->dim();
|
||||
Matrix J = zeros(dim, dim);
|
||||
size_t sigmaIx = factorIx_sigmaIx.second;
|
||||
J(sigmaIx,sigmaIx) = 1.0;
|
||||
J(sigmaIx, sigmaIx) = 1.0;
|
||||
// Use factorIndex as the lambda's key.
|
||||
if (debug) cout << "prior for factor " << factorIx << endl;
|
||||
if (debug)
|
||||
cout << "prior for factor " << factorIx << endl;
|
||||
dualGraph.push_back(JacobianFactor(factorIx, J, zero(dim)));
|
||||
}
|
||||
}
|
||||
|
@ -218,7 +233,8 @@ GaussianFactorGraph QPSolver::buildDualGraph(const GaussianFactorGraph& graph,
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
std::pair<int, int> QPSolver::findWorstViolatedActiveIneq(const VectorValues& lambdas) const {
|
||||
pair<int, int> QPSolver::findWorstViolatedActiveIneq(
|
||||
const VectorValues& lambdas) const {
|
||||
int worstFactorIx = -1, worstSigmaIx = -1;
|
||||
// preset the maxLambda to 0.0: if lambda is <= 0.0, the constraint is either
|
||||
// inactive or a good ineq constraint, so we don't care!
|
||||
|
@ -226,9 +242,9 @@ std::pair<int, int> QPSolver::findWorstViolatedActiveIneq(const VectorValues& la
|
|||
BOOST_FOREACH(size_t factorIx, constraintIndices_) {
|
||||
Vector lambda = lambdas.at(factorIx);
|
||||
Vector orgSigmas = toJacobian(graph_.at(factorIx))->get_model()->sigmas();
|
||||
for (size_t j = 0; j<orgSigmas.size(); ++j)
|
||||
for (size_t j = 0; j < orgSigmas.size(); ++j)
|
||||
// If it is a BAD active inequality, and lambda is larger than the current max
|
||||
if (orgSigmas[j]<0 && lambda[j] > maxLambda) {
|
||||
if (orgSigmas[j] < 0 && lambda[j] > maxLambda) {
|
||||
worstFactorIx = factorIx;
|
||||
worstSigmaIx = j;
|
||||
maxLambda = lambda[j];
|
||||
|
@ -237,9 +253,9 @@ std::pair<int, int> QPSolver::findWorstViolatedActiveIneq(const VectorValues& la
|
|||
return make_pair(worstFactorIx, worstSigmaIx);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
bool QPSolver::updateWorkingSetInplace(GaussianFactorGraph& workingGraph,
|
||||
int factorIx, int sigmaIx, double newSigma) const {
|
||||
/* ************************************************************************* */bool QPSolver::updateWorkingSetInplace(
|
||||
GaussianFactorGraph& workingGraph, int factorIx, int sigmaIx,
|
||||
double newSigma) const {
|
||||
if (factorIx < 0 || sigmaIx < 0)
|
||||
return false;
|
||||
Vector sigmas = toJacobian(workingGraph.at(factorIx))->get_model()->sigmas();
|
||||
|
@ -264,8 +280,9 @@ bool QPSolver::updateWorkingSetInplace(GaussianFactorGraph& workingGraph,
|
|||
*
|
||||
* We want the minimum of all those alphas among all inactive ineq.
|
||||
*/
|
||||
boost::tuple<double, int, int> QPSolver::computeStepSize(const GaussianFactorGraph& workingGraph,
|
||||
const VectorValues& xk, const VectorValues& p) const {
|
||||
boost::tuple<double, int, int> QPSolver::computeStepSize(
|
||||
const GaussianFactorGraph& workingGraph, const VectorValues& xk,
|
||||
const VectorValues& p) const {
|
||||
static bool debug = false;
|
||||
|
||||
double minAlpha = 1.0;
|
||||
|
@ -274,33 +291,39 @@ boost::tuple<double, int, int> QPSolver::computeStepSize(const GaussianFactorGra
|
|||
JacobianFactor::shared_ptr jacobian = toJacobian(workingGraph.at(factorIx));
|
||||
Vector sigmas = jacobian->get_model()->sigmas();
|
||||
Vector b = jacobian->getb();
|
||||
for (size_t s = 0; s<sigmas.size(); ++s) {
|
||||
for (size_t s = 0; s < sigmas.size(); ++s) {
|
||||
// If it is an inactive inequality, compute alpha and update min
|
||||
if (sigmas[s]<0) {
|
||||
if (sigmas[s] < 0) {
|
||||
// Compute aj'*p
|
||||
double ajTp = 0.0;
|
||||
for (Factor::const_iterator xj = jacobian->begin(); xj != jacobian->end(); ++xj) {
|
||||
for (Factor::const_iterator xj = jacobian->begin();
|
||||
xj != jacobian->end(); ++xj) {
|
||||
Vector pj = p.at(*xj);
|
||||
Vector aj = jacobian->getA(xj).row(s);
|
||||
ajTp += aj.dot(pj);
|
||||
}
|
||||
if (debug) cout << "s, ajTp, b[s]: " << s << " " << ajTp << " " << b[s] << endl;
|
||||
if (debug)
|
||||
cout << "s, ajTp, b[s]: " << s << " " << ajTp << " " << b[s] << endl;
|
||||
|
||||
// Check if aj'*p >0. Don't care if it's not.
|
||||
if (ajTp<=0) continue;
|
||||
if (ajTp <= 0)
|
||||
continue;
|
||||
|
||||
// Compute aj'*xk
|
||||
double ajTx = 0.0;
|
||||
for (Factor::const_iterator xj = jacobian->begin(); xj != jacobian->end(); ++xj) {
|
||||
for (Factor::const_iterator xj = jacobian->begin();
|
||||
xj != jacobian->end(); ++xj) {
|
||||
Vector xkj = xk.at(*xj);
|
||||
Vector aj = jacobian->getA(xj).row(s);
|
||||
ajTx += aj.dot(xkj);
|
||||
}
|
||||
if (debug) cout << "b[s], ajTx: " << b[s] << " " << ajTx << " " << ajTp << endl;
|
||||
if (debug)
|
||||
cout << "b[s], ajTx: " << b[s] << " " << ajTx << " " << ajTp << endl;
|
||||
|
||||
// alpha = (bj - aj'*xk) / (aj'*p)
|
||||
double alpha = (b[s] - ajTx)/ajTp;
|
||||
if (debug) cout << "alpha: " << alpha << endl;
|
||||
double alpha = (b[s] - ajTx) / ajTp;
|
||||
if (debug)
|
||||
cout << "alpha: " << alpha << endl;
|
||||
|
||||
// We want the minimum of all those max alphas
|
||||
if (alpha < minAlpha) {
|
||||
|
@ -314,41 +337,52 @@ boost::tuple<double, int, int> QPSolver::computeStepSize(const GaussianFactorGra
|
|||
return boost::make_tuple(minAlpha, closestFactorIx, closestSigmaIx);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
bool QPSolver::iterateInPlace(GaussianFactorGraph& workingGraph, VectorValues& currentSolution, VectorValues& lambdas) const {
|
||||
/* ************************************************************************* */bool QPSolver::iterateInPlace(
|
||||
GaussianFactorGraph& workingGraph, VectorValues& currentSolution,
|
||||
VectorValues& lambdas) const {
|
||||
static bool debug = false;
|
||||
if (debug) workingGraph.print("workingGraph: ");
|
||||
if (debug)
|
||||
workingGraph.print("workingGraph: ");
|
||||
// Obtain the solution from the current working graph
|
||||
VectorValues newSolution = workingGraph.optimize();
|
||||
if (debug) newSolution.print("New solution:");
|
||||
if (debug)
|
||||
newSolution.print("New solution:");
|
||||
|
||||
// If we CAN'T move further
|
||||
if (newSolution.equals(currentSolution, 1e-5)) {
|
||||
// Compute lambda from the dual graph
|
||||
if (debug) cout << "Building dual graph..." << endl;
|
||||
if (debug)
|
||||
cout << "Building dual graph..." << endl;
|
||||
GaussianFactorGraph dualGraph = buildDualGraph(workingGraph, newSolution);
|
||||
if (debug) dualGraph.print("Dual graph: ");
|
||||
if (debug)
|
||||
dualGraph.print("Dual graph: ");
|
||||
lambdas = dualGraph.optimize();
|
||||
if (debug) lambdas.print("lambdas :");
|
||||
if (debug)
|
||||
lambdas.print("lambdas :");
|
||||
|
||||
int factorIx, sigmaIx;
|
||||
boost::tie(factorIx, sigmaIx) = findWorstViolatedActiveIneq(lambdas);
|
||||
if (debug) cout << "violated active ineq - factorIx, sigmaIx: " << factorIx << " " << sigmaIx << endl;
|
||||
if (debug)
|
||||
cout << "violated active ineq - factorIx, sigmaIx: " << factorIx << " "
|
||||
<< sigmaIx << endl;
|
||||
|
||||
// Try to disactivate the weakest violated ineq constraints
|
||||
// if not successful, i.e. all ineq constraints are satisfied: We have the solution!!
|
||||
if (!updateWorkingSetInplace(workingGraph, factorIx, sigmaIx, -1.0))
|
||||
return true;
|
||||
}
|
||||
else {
|
||||
} else {
|
||||
// If we CAN make some progress
|
||||
// Adapt stepsize if some inactive inequality constraints complain about this move
|
||||
if (debug) cout << "Computing stepsize..." << endl;
|
||||
if (debug)
|
||||
cout << "Computing stepsize..." << endl;
|
||||
double alpha;
|
||||
int factorIx, sigmaIx;
|
||||
VectorValues p = newSolution - currentSolution;
|
||||
boost::tie(alpha, factorIx, sigmaIx) = computeStepSize(workingGraph, currentSolution, p);
|
||||
if (debug) cout << "alpha, factorIx, sigmaIx: " << alpha << " " << factorIx << " " << sigmaIx << endl;
|
||||
boost::tie(alpha, factorIx, sigmaIx) = computeStepSize(workingGraph,
|
||||
currentSolution, p);
|
||||
if (debug)
|
||||
cout << "alpha, factorIx, sigmaIx: " << alpha << " " << factorIx << " "
|
||||
<< sigmaIx << endl;
|
||||
// also add to the working set the one that complains the most
|
||||
updateWorkingSetInplace(workingGraph, factorIx, sigmaIx, 0.0);
|
||||
// step!
|
||||
|
@ -367,7 +401,8 @@ bool QPSolver::iterateInPlace(GaussianFactorGraph& workingGraph, VectorValues& c
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
std::pair<VectorValues, VectorValues> QPSolver::optimize(const VectorValues& initials) const {
|
||||
pair<VectorValues, VectorValues> QPSolver::optimize(
|
||||
const VectorValues& initials) const {
|
||||
GaussianFactorGraph workingGraph = graph_.clone();
|
||||
VectorValues currentSolution = initials;
|
||||
VectorValues lambdas;
|
||||
|
@ -379,10 +414,11 @@ std::pair<VectorValues, VectorValues> QPSolver::optimize(const VectorValues& ini
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
std::pair<VectorValues, Key> QPSolver::initialValuesLP() const {
|
||||
pair<VectorValues, Key> QPSolver::initialValuesLP() const {
|
||||
size_t firstSlackKey = 0;
|
||||
BOOST_FOREACH(Key key, fullFactorIndices_ | boost::adaptors::map_keys) {
|
||||
if (firstSlackKey < key) firstSlackKey = key;
|
||||
if (firstSlackKey < key)
|
||||
firstSlackKey = key;
|
||||
}
|
||||
firstSlackKey += 1;
|
||||
|
||||
|
@ -406,9 +442,9 @@ std::pair<VectorValues, Key> QPSolver::initialValuesLP() const {
|
|||
Vector errorAtZero = jacobian->getb();
|
||||
Vector slackInit = zero(errorAtZero.size());
|
||||
Vector sigmas = jacobian->get_model()->sigmas();
|
||||
for (size_t i = 0; i<sigmas.size(); ++i) {
|
||||
for (size_t i = 0; i < sigmas.size(); ++i) {
|
||||
if (sigmas[i] < 0) {
|
||||
slackInit[i] = std::max(errorAtZero[i], 0.0);
|
||||
slackInit[i] = max(errorAtZero[i], 0.0);
|
||||
} else if (sigmas[i] == 0.0) {
|
||||
errorAtZero[i] = fabs(errorAtZero[i]);
|
||||
} // if it has >0 sigma, i.e. normal Gaussian noise, initialize it at 0
|
||||
|
@ -439,18 +475,19 @@ VectorValues QPSolver::objectiveCoeffsLP(Key firstSlackKey) const {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
std::pair<GaussianFactorGraph::shared_ptr, VectorValues> QPSolver::constraintsLP(
|
||||
pair<GaussianFactorGraph::shared_ptr, VectorValues> QPSolver::constraintsLP(
|
||||
Key firstSlackKey) const {
|
||||
// Create constraints and 0 lower bounds (zi>=0)
|
||||
GaussianFactorGraph::shared_ptr constraints(new GaussianFactorGraph());
|
||||
VectorValues slackLowerBounds;
|
||||
for (size_t key = firstSlackKey; key<firstSlackKey + constraintIndices_.size(); ++key) {
|
||||
size_t iFactor = constraintIndices_[key-firstSlackKey];
|
||||
for (size_t key = firstSlackKey;
|
||||
key < firstSlackKey + constraintIndices_.size(); ++key) {
|
||||
size_t iFactor = constraintIndices_[key - firstSlackKey];
|
||||
JacobianFactor::shared_ptr jacobian = toJacobian(graph_.at(iFactor));
|
||||
// Collect old terms to form a new factor
|
||||
// TODO: it might be faster if we can get the whole block matrix at once
|
||||
// but I don't know how to extend the current VerticalBlockMatrix
|
||||
std::vector<std::pair<Key, Matrix> > terms;
|
||||
vector<pair<Key, Matrix> > terms;
|
||||
for (Factor::iterator it = jacobian->begin(); it != jacobian->end(); ++it) {
|
||||
terms.push_back(make_pair(*it, jacobian->getA(it)));
|
||||
}
|
||||
|
@ -459,7 +496,8 @@ std::pair<GaussianFactorGraph::shared_ptr, VectorValues> QPSolver::constraintsLP
|
|||
// LE constraints ax <= b for sigma < 0.
|
||||
size_t dim = jacobian->rows();
|
||||
terms.push_back(make_pair(key, -eye(dim)));
|
||||
constraints->push_back(JacobianFactor(terms, jacobian->getb(), jacobian->get_model()));
|
||||
constraints->push_back(
|
||||
JacobianFactor(terms, jacobian->getb(), jacobian->get_model()));
|
||||
// Add lower bound for this slack key
|
||||
slackLowerBounds.insert(key, zero(dim));
|
||||
}
|
||||
|
@ -467,7 +505,7 @@ std::pair<GaussianFactorGraph::shared_ptr, VectorValues> QPSolver::constraintsLP
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
std::pair<bool, VectorValues> QPSolver::findFeasibleInitialValues() const {
|
||||
pair<bool, VectorValues> QPSolver::findFeasibleInitialValues() const {
|
||||
static const bool debug = false;
|
||||
// Initial values with slack variables for the LP subproblem, Nocedal06book, pg.473
|
||||
VectorValues initials;
|
||||
|
@ -486,14 +524,19 @@ std::pair<bool, VectorValues> QPSolver::findFeasibleInitialValues() const {
|
|||
LPSolver lpSolver(objectiveLP, constraints, slackLowerBounds);
|
||||
VectorValues solution = lpSolver.solve();
|
||||
|
||||
if (debug) initials.print("Initials LP: ");
|
||||
if (debug) objectiveLP.print("Objective LP: ");
|
||||
if (debug) constraints->print("Constraints LP: ");
|
||||
if (debug) solution.print("LP solution: ");
|
||||
if (debug)
|
||||
initials.print("Initials LP: ");
|
||||
if (debug)
|
||||
objectiveLP.print("Objective LP: ");
|
||||
if (debug)
|
||||
constraints->print("Constraints LP: ");
|
||||
if (debug)
|
||||
solution.print("LP solution: ");
|
||||
|
||||
// Remove slack variables from solution
|
||||
double slackSum = 0.0;
|
||||
for (Key key = firstSlackKey; key < firstSlackKey+constraintIndices_.size(); ++key) {
|
||||
for (Key key = firstSlackKey; key < firstSlackKey + constraintIndices_.size();
|
||||
++key) {
|
||||
slackSum += solution.at(key).cwiseAbs().sum();
|
||||
solution.erase(key);
|
||||
}
|
||||
|
@ -501,22 +544,23 @@ std::pair<bool, VectorValues> QPSolver::findFeasibleInitialValues() const {
|
|||
// Insert zero vectors for free variables that are not in the constraints
|
||||
BOOST_FOREACH(Key key, fullFactorIndices_ | boost::adaptors::map_keys) {
|
||||
if (!solution.exists(key)) {
|
||||
GaussianFactor::shared_ptr factor = graph_.at(*fullFactorIndices_[key].begin());
|
||||
GaussianFactor::shared_ptr factor = graph_.at(
|
||||
*fullFactorIndices_[key].begin());
|
||||
size_t dim = factor->getDim(factor->find(key));
|
||||
solution.insert(key, zero(dim));
|
||||
}
|
||||
}
|
||||
|
||||
return make_pair(slackSum<1e-5, solution);
|
||||
return make_pair(slackSum < 1e-5, solution);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
std::pair<VectorValues, VectorValues> QPSolver::optimize() const {
|
||||
pair<VectorValues, VectorValues> QPSolver::optimize() const {
|
||||
bool isFeasible;
|
||||
VectorValues initials;
|
||||
boost::tie(isFeasible, initials) = findFeasibleInitialValues();
|
||||
if (!isFeasible) {
|
||||
throw std::runtime_error("LP subproblem is infeasible!");
|
||||
throw runtime_error("LP subproblem is infeasible!");
|
||||
}
|
||||
return optimize(initials);
|
||||
}
|
||||
|
|
|
@ -10,6 +10,9 @@
|
|||
#include <gtsam/linear/GaussianFactorGraph.h>
|
||||
#include <gtsam/linear/VectorValues.h>
|
||||
|
||||
#include <vector>
|
||||
#include <set>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/**
|
||||
|
@ -20,12 +23,12 @@ namespace gtsam {
|
|||
* and a positive sigma denotes a normal Gaussian noise model.
|
||||
*/
|
||||
class QPSolver {
|
||||
const GaussianFactorGraph& graph_; //!< the original graph, can't be modified!
|
||||
const GaussianFactorGraph& graph_; //!< the original graph, can't be modified!
|
||||
FastVector<size_t> constraintIndices_; //!< Indices of constrained factors in the original graph
|
||||
GaussianFactorGraph::shared_ptr freeHessians_; //!< unconstrained Hessians of constrained variables
|
||||
VariableIndex freeHessianFactorIndex_; //!< indices of unconstrained Hessian factors of constrained variables
|
||||
// gtsam calls it "VariableIndex", but I think FactorIndex
|
||||
// makes more sense, because it really stores factor indices.
|
||||
// gtsam calls it "VariableIndex", but I think FactorIndex
|
||||
// makes more sense, because it really stores factor indices.
|
||||
VariableIndex fullFactorIndices_; //!< indices of factors involving each variable.
|
||||
// gtsam calls it "VariableIndex", but I think FactorIndex
|
||||
// makes more sense, because it really stores factor indices.
|
||||
|
@ -35,8 +38,9 @@ public:
|
|||
QPSolver(const GaussianFactorGraph& graph);
|
||||
|
||||
/// Return indices of all constrained factors
|
||||
FastVector<size_t> constraintIndices() const { return constraintIndices_; }
|
||||
|
||||
FastVector<size_t> constraintIndices() const {
|
||||
return constraintIndices_;
|
||||
}
|
||||
|
||||
/// Return the Hessian factor graph of constrained variables
|
||||
GaussianFactorGraph::shared_ptr freeHessiansOfConstrainedVars() const {
|
||||
|
@ -73,37 +77,37 @@ public:
|
|||
GaussianFactorGraph buildDualGraph(const GaussianFactorGraph& graph,
|
||||
const VectorValues& x0, bool useLeastSquare = false) const;
|
||||
|
||||
|
||||
/**
|
||||
* Find the BAD active ineq that pulls x strongest to the wrong direction of its constraint
|
||||
* (i.e. it is pulling towards >0, while its feasible region is <=0)
|
||||
*
|
||||
* For active ineq constraints (those that are enforced as eq constraints now
|
||||
* in the working set), we want lambda < 0.
|
||||
* This is because:
|
||||
* - From the Lagrangian L = f - lambda*c, we know that the constraint force is
|
||||
* (lambda * \grad c) = \grad f, because it cancels out the unconstrained
|
||||
* unconstrained force (-\grad f), which is pulling x in the opposite direction
|
||||
* of \grad f towards the unconstrained minimum point
|
||||
* - We also know that at the constraint surface \grad c points toward + (>= 0),
|
||||
* while we are solving for - (<=0) constraint
|
||||
* - So, we want the constraint force (lambda * \grad c) to to pull x
|
||||
* towards the opposite direction of \grad c, i.e. towards the area
|
||||
* where the ineq constraint <=0 is satisfied.
|
||||
* - Hence, we want lambda < 0
|
||||
*
|
||||
* So active ineqs with lambda > 0 are BAD. And we want the worst one with the largest lambda.
|
||||
*
|
||||
*/
|
||||
std::pair<int, int> findWorstViolatedActiveIneq(const VectorValues& lambdas) const;
|
||||
* Find the BAD active ineq that pulls x strongest to the wrong direction of its constraint
|
||||
* (i.e. it is pulling towards >0, while its feasible region is <=0)
|
||||
*
|
||||
* For active ineq constraints (those that are enforced as eq constraints now
|
||||
* in the working set), we want lambda < 0.
|
||||
* This is because:
|
||||
* - From the Lagrangian L = f - lambda*c, we know that the constraint force is
|
||||
* (lambda * \grad c) = \grad f, because it cancels out the unconstrained
|
||||
* unconstrained force (-\grad f), which is pulling x in the opposite direction
|
||||
* of \grad f towards the unconstrained minimum point
|
||||
* - We also know that at the constraint surface \grad c points toward + (>= 0),
|
||||
* while we are solving for - (<=0) constraint
|
||||
* - So, we want the constraint force (lambda * \grad c) to to pull x
|
||||
* towards the opposite direction of \grad c, i.e. towards the area
|
||||
* where the ineq constraint <=0 is satisfied.
|
||||
* - Hence, we want lambda < 0
|
||||
*
|
||||
* So active ineqs with lambda > 0 are BAD. And we want the worst one with the largest lambda.
|
||||
*
|
||||
*/
|
||||
std::pair<int, int> findWorstViolatedActiveIneq(
|
||||
const VectorValues& lambdas) const;
|
||||
|
||||
/**
|
||||
* Deactivate or activate an ineq constraint in place
|
||||
* Warning: modify in-place to avoid copy/clone
|
||||
* @return true if update successful
|
||||
*/
|
||||
bool updateWorkingSetInplace(GaussianFactorGraph& workingGraph,
|
||||
int factorIx, int sigmaIx, double newSigma) const;
|
||||
bool updateWorkingSetInplace(GaussianFactorGraph& workingGraph, int factorIx,
|
||||
int sigmaIx, double newSigma) const;
|
||||
|
||||
/**
|
||||
* Compute step size alpha for the new solution x' = xk + alpha*p, where alpha \in [0,1]
|
||||
|
@ -113,12 +117,13 @@ public:
|
|||
* This constraint will be added to the working set and become active
|
||||
* in the next iteration
|
||||
*/
|
||||
boost::tuple<double, int, int> computeStepSize(const GaussianFactorGraph& workingGraph,
|
||||
const VectorValues& xk, const VectorValues& p) const;
|
||||
boost::tuple<double, int, int> computeStepSize(
|
||||
const GaussianFactorGraph& workingGraph, const VectorValues& xk,
|
||||
const VectorValues& p) const;
|
||||
|
||||
/** Iterate 1 step, modify workingGraph and currentSolution *IN PLACE* !!! */
|
||||
bool iterateInPlace(GaussianFactorGraph& workingGraph, VectorValues& currentSolution,
|
||||
VectorValues& lambdas) const;
|
||||
bool iterateInPlace(GaussianFactorGraph& workingGraph,
|
||||
VectorValues& currentSolution, VectorValues& lambdas) const;
|
||||
|
||||
/** Optimize with a provided initial values
|
||||
* For this version, it is the responsibility of the caller to provide
|
||||
|
@ -127,7 +132,8 @@ public:
|
|||
* of optimize().
|
||||
* @return a pair of <primal, dual> solutions
|
||||
*/
|
||||
std::pair<VectorValues, VectorValues> optimize(const VectorValues& initials) const;
|
||||
std::pair<VectorValues, VectorValues> optimize(
|
||||
const VectorValues& initials) const;
|
||||
|
||||
/** Optimize without an initial value.
|
||||
* This version of optimize will try to find a feasible initial value by solving
|
||||
|
@ -137,7 +143,6 @@ public:
|
|||
*/
|
||||
std::pair<VectorValues, VectorValues> optimize() const;
|
||||
|
||||
|
||||
/**
|
||||
* Create initial values for the LP subproblem
|
||||
* @return initial values and the key for the first slack variable
|
||||
|
@ -148,14 +153,16 @@ public:
|
|||
VectorValues objectiveCoeffsLP(Key firstSlackKey) const;
|
||||
|
||||
/// Build constraints and slacks' lower bounds for the LP subproblem
|
||||
std::pair<GaussianFactorGraph::shared_ptr, VectorValues> constraintsLP(Key firstSlackKey) const;
|
||||
std::pair<GaussianFactorGraph::shared_ptr, VectorValues> constraintsLP(
|
||||
Key firstSlackKey) const;
|
||||
|
||||
/// Find a feasible initial point
|
||||
std::pair<bool, VectorValues> findFeasibleInitialValues() const;
|
||||
|
||||
/// Convert a Gaussian factor to a jacobian. return empty shared ptr if failed
|
||||
/// TODO: Move to GaussianFactor?
|
||||
static JacobianFactor::shared_ptr toJacobian(const GaussianFactor::shared_ptr& factor) {
|
||||
static JacobianFactor::shared_ptr toJacobian(
|
||||
const GaussianFactor::shared_ptr& factor) {
|
||||
JacobianFactor::shared_ptr jacobian(
|
||||
boost::dynamic_pointer_cast<JacobianFactor>(factor));
|
||||
return jacobian;
|
||||
|
@ -163,17 +170,19 @@ public:
|
|||
|
||||
/// Convert a Gaussian factor to a Hessian. Return empty shared ptr if failed
|
||||
/// TODO: Move to GaussianFactor?
|
||||
static HessianFactor::shared_ptr toHessian(const GaussianFactor::shared_ptr factor) {
|
||||
HessianFactor::shared_ptr hessian(boost::dynamic_pointer_cast<HessianFactor>(factor));
|
||||
static HessianFactor::shared_ptr toHessian(
|
||||
const GaussianFactor::shared_ptr factor) {
|
||||
HessianFactor::shared_ptr hessian(
|
||||
boost::dynamic_pointer_cast<HessianFactor>(factor));
|
||||
return hessian;
|
||||
}
|
||||
|
||||
private:
|
||||
/// Collect all free Hessians involving constrained variables into a graph
|
||||
GaussianFactorGraph::shared_ptr unconstrainedHessiansOfConstrainedVars(
|
||||
const GaussianFactorGraph& graph, const std::set<Key>& constrainedVars) const;
|
||||
const GaussianFactorGraph& graph,
|
||||
const std::set<Key>& constrainedVars) const;
|
||||
|
||||
};
|
||||
|
||||
|
||||
} /* namespace gtsam */
|
||||
|
|
|
@ -16,11 +16,12 @@
|
|||
* @author Duy-Nguyen Ta
|
||||
*/
|
||||
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
#include <gtsam/base/Testable.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam_unstable/linear/QPSolver.h>
|
||||
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
using namespace gtsam::symbol_shorthand;
|
||||
|
@ -38,18 +39,18 @@ GaussianFactorGraph createTestCase() {
|
|||
// 0.5*x1'*G11*x1 + x1'*G12*x2 + 0.5*x2'*G22*x2 - x1'*g1 - x2'*g2 + 0.5*f
|
||||
// Hence, we have G11=2, G12 = -1, g1 = +3, G22 = 2, g2 = 0, f = 0
|
||||
graph.push_back(
|
||||
HessianFactor(X(1), X(2), 2.0*ones(1, 1), -ones(1, 1), 3.0*ones(1),
|
||||
2.0*ones(1, 1), zero(1), 10.0));
|
||||
HessianFactor(X(1), X(2), 2.0 * ones(1, 1), -ones(1, 1), 3.0 * ones(1),
|
||||
2.0 * ones(1, 1), zero(1), 10.0));
|
||||
|
||||
// Inequality constraints
|
||||
// Jacobian factors represent Ax-b, hence
|
||||
// x1 + x2 <= 2 --> x1 + x2 -2 <= 0, --> b=2
|
||||
Matrix A1 = (Matrix(4, 1)<<1, -1, 0, 1);
|
||||
Matrix A2 = (Matrix(4, 1)<<1, 0, -1, 0);
|
||||
Vector b = (Vector(4)<<2, 0, 0, 1.5);
|
||||
Matrix A1 = (Matrix(4, 1) << 1, -1, 0, 1);
|
||||
Matrix A2 = (Matrix(4, 1) << 1, 0, -1, 0);
|
||||
Vector b = (Vector(4) << 2, 0, 0, 1.5);
|
||||
// Special constrained noise model denoting <= inequalities with negative sigmas
|
||||
noiseModel::Constrained::shared_ptr noise =
|
||||
noiseModel::Constrained::MixedSigmas((Vector(4)<<-1, -1, -1, -1));
|
||||
noiseModel::Constrained::MixedSigmas((Vector(4) << -1, -1, -1, -1));
|
||||
graph.push_back(JacobianFactor(X(1), A1, X(2), A2, b, noise));
|
||||
|
||||
return graph;
|
||||
|
@ -63,20 +64,22 @@ TEST(QPSolver, constraintsAux) {
|
|||
LONGS_EQUAL(1, constraintIx[0]);
|
||||
|
||||
VectorValues lambdas;
|
||||
lambdas.insert(constraintIx[0], (Vector(4)<< -0.5, 0.0, 0.3, 0.1));
|
||||
lambdas.insert(constraintIx[0], (Vector(4) << -0.5, 0.0, 0.3, 0.1));
|
||||
int factorIx, lambdaIx;
|
||||
boost::tie(factorIx, lambdaIx) = solver.findWorstViolatedActiveIneq(lambdas);
|
||||
LONGS_EQUAL(1, factorIx);
|
||||
LONGS_EQUAL(2, lambdaIx);
|
||||
|
||||
VectorValues lambdas2;
|
||||
lambdas2.insert(constraintIx[0], (Vector(4)<< -0.5, 0.0, -0.3, -0.1));
|
||||
lambdas2.insert(constraintIx[0], (Vector(4) << -0.5, 0.0, -0.3, -0.1));
|
||||
int factorIx2, lambdaIx2;
|
||||
boost::tie(factorIx2, lambdaIx2) = solver.findWorstViolatedActiveIneq(lambdas2);
|
||||
boost::tie(factorIx2, lambdaIx2) = solver.findWorstViolatedActiveIneq(
|
||||
lambdas2);
|
||||
LONGS_EQUAL(-1, factorIx2);
|
||||
LONGS_EQUAL(-1, lambdaIx2);
|
||||
|
||||
GaussianFactorGraph::shared_ptr freeHessian = solver.freeHessiansOfConstrainedVars();
|
||||
GaussianFactorGraph::shared_ptr freeHessian =
|
||||
solver.freeHessiansOfConstrainedVars();
|
||||
GaussianFactorGraph expectedFreeHessian;
|
||||
expectedFreeHessian.push_back(
|
||||
HessianFactor(X(1), X(2), 2.0 * ones(1, 1), -ones(1, 1), 3.0 * ones(1),
|
||||
|
@ -94,17 +97,17 @@ GaussianFactorGraph createEqualityConstrainedTest() {
|
|||
// 0.5*x1'*G11*x1 + x1'*G12*x2 + 0.5*x2'*G22*x2 - x1'*g1 - x2'*g2 + 0.5*f
|
||||
// Hence, we have G11=2, G12 = 0, g1 = 0, G22 = 2, g2 = 0, f = 0
|
||||
graph.push_back(
|
||||
HessianFactor(X(1), X(2), 2.0*ones(1, 1), zeros(1, 1), zero(1),
|
||||
2.0*ones(1, 1), zero(1), 0.0));
|
||||
HessianFactor(X(1), X(2), 2.0 * ones(1, 1), zeros(1, 1), zero(1),
|
||||
2.0 * ones(1, 1), zero(1), 0.0));
|
||||
|
||||
// Equality constraints
|
||||
// x1 + x2 = 1 --> x1 + x2 -1 = 0, hence we negate the b vector
|
||||
Matrix A1 = (Matrix(1, 1)<<1);
|
||||
Matrix A2 = (Matrix(1, 1)<<1);
|
||||
Vector b = -(Vector(1)<<1);
|
||||
Matrix A1 = (Matrix(1, 1) << 1);
|
||||
Matrix A2 = (Matrix(1, 1) << 1);
|
||||
Vector b = -(Vector(1) << 1);
|
||||
// Special constrained noise model denoting <= inequalities with negative sigmas
|
||||
noiseModel::Constrained::shared_ptr noise =
|
||||
noiseModel::Constrained::MixedSigmas((Vector(1)<<0.0));
|
||||
noiseModel::Constrained::MixedSigmas((Vector(1) << 0.0));
|
||||
graph.push_back(JacobianFactor(X(1), A1, X(2), A2, b, noise));
|
||||
|
||||
return graph;
|
||||
|
@ -123,7 +126,7 @@ TEST(QPSolver, dual) {
|
|||
GaussianFactorGraph dualGraph = solver.buildDualGraph(graph, initials);
|
||||
VectorValues dual = dualGraph.optimize();
|
||||
VectorValues expectedDual;
|
||||
expectedDual.insert(1, (Vector(1)<<2.0));
|
||||
expectedDual.insert(1, (Vector(1) << 2.0));
|
||||
CHECK(assert_equal(expectedDual, dual, 1e-10));
|
||||
}
|
||||
|
||||
|
@ -140,8 +143,8 @@ TEST(QPSolver, iterate) {
|
|||
currentSolution.insert(X(2), zero(1));
|
||||
|
||||
std::vector<VectorValues> expectedSolutions(3);
|
||||
expectedSolutions[0].insert(X(1), (Vector(1) << 4.0/3.0));
|
||||
expectedSolutions[0].insert(X(2), (Vector(1) << 2.0/3.0));
|
||||
expectedSolutions[0].insert(X(1), (Vector(1) << 4.0 / 3.0));
|
||||
expectedSolutions[0].insert(X(2), (Vector(1) << 2.0 / 3.0));
|
||||
expectedSolutions[1].insert(X(1), (Vector(1) << 1.5));
|
||||
expectedSolutions[1].insert(X(2), (Vector(1) << 0.5));
|
||||
expectedSolutions[2].insert(X(1), (Vector(1) << 1.5));
|
||||
|
@ -168,8 +171,8 @@ TEST(QPSolver, optimizeForst10book_pg171Ex5) {
|
|||
VectorValues solution;
|
||||
boost::tie(solution, boost::tuples::ignore) = solver.optimize(initials);
|
||||
VectorValues expectedSolution;
|
||||
expectedSolution.insert(X(1), (Vector(1)<< 1.5));
|
||||
expectedSolution.insert(X(2), (Vector(1)<< 0.5));
|
||||
expectedSolution.insert(X(1), (Vector(1) << 1.5));
|
||||
expectedSolution.insert(X(2), (Vector(1) << 0.5));
|
||||
CHECK(assert_equal(expectedSolution, solution, 1e-100));
|
||||
}
|
||||
|
||||
|
@ -183,18 +186,18 @@ GaussianFactorGraph createTestMatlabQPEx() {
|
|||
// 0.5*x1'*G11*x1 + x1'*G12*x2 + 0.5*x2'*G22*x2 - x1'*g1 - x2'*g2 + 0.5*f
|
||||
// Hence, we have G11=1, G12 = -1, g1 = +2, G22 = 2, g2 = +6, f = 0
|
||||
graph.push_back(
|
||||
HessianFactor(X(1), X(2), 1.0*ones(1, 1), -ones(1, 1), 2.0*ones(1),
|
||||
2.0*ones(1, 1), 6*ones(1), 1000.0));
|
||||
HessianFactor(X(1), X(2), 1.0 * ones(1, 1), -ones(1, 1), 2.0 * ones(1),
|
||||
2.0 * ones(1, 1), 6 * ones(1), 1000.0));
|
||||
|
||||
// Inequality constraints
|
||||
// Jacobian factors represent Ax-b, hence
|
||||
// x1 + x2 <= 2 --> x1 + x2 -2 <= 0, --> b=2
|
||||
Matrix A1 = (Matrix(5, 1)<<1, -1, 2, -1, 0);
|
||||
Matrix A2 = (Matrix(5, 1)<<1, 2, 1, 0, -1);
|
||||
Vector b = (Vector(5) <<2, 2, 3, 0, 0);
|
||||
Matrix A1 = (Matrix(5, 1) << 1, -1, 2, -1, 0);
|
||||
Matrix A2 = (Matrix(5, 1) << 1, 2, 1, 0, -1);
|
||||
Vector b = (Vector(5) << 2, 2, 3, 0, 0);
|
||||
// Special constrained noise model denoting <= inequalities with negative sigmas
|
||||
noiseModel::Constrained::shared_ptr noise =
|
||||
noiseModel::Constrained::MixedSigmas((Vector(5)<<-1, -1, -1, -1, -1));
|
||||
noiseModel::Constrained::MixedSigmas((Vector(5) << -1, -1, -1, -1, -1));
|
||||
graph.push_back(JacobianFactor(X(1), A1, X(2), A2, b, noise));
|
||||
|
||||
return graph;
|
||||
|
@ -209,8 +212,8 @@ TEST(QPSolver, optimizeMatlabEx) {
|
|||
VectorValues solution;
|
||||
boost::tie(solution, boost::tuples::ignore) = solver.optimize(initials);
|
||||
VectorValues expectedSolution;
|
||||
expectedSolution.insert(X(1), (Vector(1)<< 2.0/3.0));
|
||||
expectedSolution.insert(X(2), (Vector(1)<< 4.0/3.0));
|
||||
expectedSolution.insert(X(1), (Vector(1) << 2.0 / 3.0));
|
||||
expectedSolution.insert(X(2), (Vector(1) << 4.0 / 3.0));
|
||||
CHECK(assert_equal(expectedSolution, solution, 1e-7));
|
||||
}
|
||||
|
||||
|
@ -219,17 +222,23 @@ TEST(QPSolver, optimizeMatlabEx) {
|
|||
GaussianFactorGraph createTestNocedal06bookEx16_4() {
|
||||
GaussianFactorGraph graph;
|
||||
|
||||
graph.push_back(JacobianFactor(X(1), ones(1,1), ones(1)));
|
||||
graph.push_back(JacobianFactor(X(2), ones(1,1), 2.5*ones(1)));
|
||||
graph.push_back(JacobianFactor(X(1), ones(1, 1), ones(1)));
|
||||
graph.push_back(JacobianFactor(X(2), ones(1, 1), 2.5 * ones(1)));
|
||||
|
||||
// Inequality constraints
|
||||
noiseModel::Constrained::shared_ptr noise = noiseModel::Constrained::MixedSigmas(
|
||||
(Vector(1) << -1));
|
||||
graph.push_back(JacobianFactor(X(1), -ones(1,1), X(2), 2*ones(1,1), 2*ones(1), noise));
|
||||
graph.push_back(JacobianFactor(X(1), ones(1,1), X(2), 2*ones(1,1), 6*ones(1), noise));
|
||||
graph.push_back(JacobianFactor(X(1), ones(1,1), X(2),-2*ones(1,1), 2*ones(1), noise));
|
||||
graph.push_back(JacobianFactor(X(1), -ones(1,1), zero(1), noise));
|
||||
graph.push_back(JacobianFactor(X(2), -ones(1,1), zero(1), noise));
|
||||
noiseModel::Constrained::shared_ptr noise =
|
||||
noiseModel::Constrained::MixedSigmas((Vector(1) << -1));
|
||||
graph.push_back(
|
||||
JacobianFactor(X(1), -ones(1, 1), X(2), 2 * ones(1, 1), 2 * ones(1),
|
||||
noise));
|
||||
graph.push_back(
|
||||
JacobianFactor(X(1), ones(1, 1), X(2), 2 * ones(1, 1), 6 * ones(1),
|
||||
noise));
|
||||
graph.push_back(
|
||||
JacobianFactor(X(1), ones(1, 1), X(2), -2 * ones(1, 1), 2 * ones(1),
|
||||
noise));
|
||||
graph.push_back(JacobianFactor(X(1), -ones(1, 1), zero(1), noise));
|
||||
graph.push_back(JacobianFactor(X(2), -ones(1, 1), zero(1), noise));
|
||||
|
||||
return graph;
|
||||
}
|
||||
|
@ -238,54 +247,60 @@ TEST(QPSolver, optimizeNocedal06bookEx16_4) {
|
|||
GaussianFactorGraph graph = createTestNocedal06bookEx16_4();
|
||||
QPSolver solver(graph);
|
||||
VectorValues initials;
|
||||
initials.insert(X(1), (Vector(1)<<2.0));
|
||||
initials.insert(X(1), (Vector(1) << 2.0));
|
||||
initials.insert(X(2), zero(1));
|
||||
|
||||
VectorValues solution;
|
||||
boost::tie(solution, boost::tuples::ignore) = solver.optimize(initials);
|
||||
VectorValues expectedSolution;
|
||||
expectedSolution.insert(X(1), (Vector(1)<< 1.4));
|
||||
expectedSolution.insert(X(2), (Vector(1)<< 1.7));
|
||||
expectedSolution.insert(X(1), (Vector(1) << 1.4));
|
||||
expectedSolution.insert(X(2), (Vector(1) << 1.7));
|
||||
CHECK(assert_equal(expectedSolution, solution, 1e-7));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
/* Create test graph as in Nocedal06book, Ex 16.4, pg. 475
|
||||
with the first constraint (16.49b) is replaced by
|
||||
x1 - 2 x2 - 1 >=0
|
||||
so that the trivial initial point (0,0) is infeasible
|
||||
====
|
||||
x1 - 2 x2 - 1 >=0
|
||||
so that the trivial initial point (0,0) is infeasible
|
||||
====
|
||||
H = [2 0; 0 2];
|
||||
f = [-2; -5];
|
||||
f = [-2; -5];
|
||||
A =[-1 2;
|
||||
1 2
|
||||
1 -2];
|
||||
b = [-1; 6; 2];
|
||||
lb = zeros(2,1);
|
||||
1 2
|
||||
1 -2];
|
||||
b = [-1; 6; 2];
|
||||
lb = zeros(2,1);
|
||||
|
||||
opts = optimoptions('quadprog','Algorithm','active-set','Display','off');
|
||||
opts = optimoptions('quadprog','Algorithm','active-set','Display','off');
|
||||
|
||||
[x,fval,exitflag,output,lambda] = ...
|
||||
quadprog(H,f,A,b,[],[],lb,[],[],opts);
|
||||
====
|
||||
x =
|
||||
2.0000
|
||||
0.5000
|
||||
*/
|
||||
[x,fval,exitflag,output,lambda] = ...
|
||||
quadprog(H,f,A,b,[],[],lb,[],[],opts);
|
||||
====
|
||||
x =
|
||||
2.0000
|
||||
0.5000
|
||||
*/
|
||||
GaussianFactorGraph modifyNocedal06bookEx16_4() {
|
||||
GaussianFactorGraph graph;
|
||||
|
||||
graph.push_back(JacobianFactor(X(1), ones(1,1), ones(1)));
|
||||
graph.push_back(JacobianFactor(X(2), ones(1,1), 2.5*ones(1)));
|
||||
graph.push_back(JacobianFactor(X(1), ones(1, 1), ones(1)));
|
||||
graph.push_back(JacobianFactor(X(2), ones(1, 1), 2.5 * ones(1)));
|
||||
|
||||
// Inequality constraints
|
||||
noiseModel::Constrained::shared_ptr noise = noiseModel::Constrained::MixedSigmas(
|
||||
(Vector(1) << -1));
|
||||
graph.push_back(JacobianFactor(X(1), -ones(1,1), X(2), 2*ones(1,1), -1*ones(1), noise));
|
||||
graph.push_back(JacobianFactor(X(1), ones(1,1), X(2), 2*ones(1,1), 6*ones(1), noise));
|
||||
graph.push_back(JacobianFactor(X(1), ones(1,1), X(2),-2*ones(1,1), 2*ones(1), noise));
|
||||
graph.push_back(JacobianFactor(X(1), -ones(1,1), zero(1), noise));
|
||||
graph.push_back(JacobianFactor(X(2), -ones(1,1), zero(1), noise));
|
||||
noiseModel::Constrained::shared_ptr noise =
|
||||
noiseModel::Constrained::MixedSigmas((Vector(1) << -1));
|
||||
graph.push_back(
|
||||
JacobianFactor(X(1), -ones(1, 1), X(2), 2 * ones(1, 1), -1 * ones(1),
|
||||
noise));
|
||||
graph.push_back(
|
||||
JacobianFactor(X(1), ones(1, 1), X(2), 2 * ones(1, 1), 6 * ones(1),
|
||||
noise));
|
||||
graph.push_back(
|
||||
JacobianFactor(X(1), ones(1, 1), X(2), -2 * ones(1, 1), 2 * ones(1),
|
||||
noise));
|
||||
graph.push_back(JacobianFactor(X(1), -ones(1, 1), zero(1), noise));
|
||||
graph.push_back(JacobianFactor(X(2), -ones(1, 1), zero(1), noise));
|
||||
|
||||
return graph;
|
||||
}
|
||||
|
@ -306,23 +321,31 @@ TEST(QPSolver, optimizeNocedal06bookEx16_4_findInitialPoint) {
|
|||
EXPECT(assert_equal(zero(1), initialsLP.at(firstSlackKey+4)));
|
||||
|
||||
VectorValues objCoeffs = solver.objectiveCoeffsLP(firstSlackKey);
|
||||
for (size_t i = 0; i<5; ++i)
|
||||
for (size_t i = 0; i < 5; ++i)
|
||||
EXPECT(assert_equal(ones(1), objCoeffs.at(firstSlackKey+i)));
|
||||
|
||||
GaussianFactorGraph::shared_ptr constraints;
|
||||
VectorValues lowerBounds;
|
||||
boost::tie(constraints, lowerBounds) = solver.constraintsLP(firstSlackKey);
|
||||
for (size_t i = 0; i<5; ++i)
|
||||
for (size_t i = 0; i < 5; ++i)
|
||||
EXPECT(assert_equal(zero(1), lowerBounds.at(firstSlackKey+i)));
|
||||
|
||||
GaussianFactorGraph expectedConstraints;
|
||||
noiseModel::Constrained::shared_ptr noise = noiseModel::Constrained::MixedSigmas(
|
||||
(Vector(1) << -1));
|
||||
expectedConstraints.push_back(JacobianFactor(X(1), -ones(1,1), X(2), 2*ones(1,1), X(3), -ones(1,1),-1*ones(1), noise));
|
||||
expectedConstraints.push_back(JacobianFactor(X(1), ones(1,1), X(2), 2*ones(1,1), X(4), -ones(1,1), 6*ones(1), noise));
|
||||
expectedConstraints.push_back(JacobianFactor(X(1), ones(1,1), X(2),-2*ones(1,1), X(5), -ones(1,1), 2*ones(1), noise));
|
||||
expectedConstraints.push_back(JacobianFactor(X(1), -ones(1,1), X(6), -ones(1,1), zero(1), noise));
|
||||
expectedConstraints.push_back(JacobianFactor(X(2), -ones(1,1), X(7), -ones(1,1), zero(1), noise));
|
||||
noiseModel::Constrained::shared_ptr noise =
|
||||
noiseModel::Constrained::MixedSigmas((Vector(1) << -1));
|
||||
expectedConstraints.push_back(
|
||||
JacobianFactor(X(1), -ones(1, 1), X(2), 2 * ones(1, 1), X(3), -ones(1, 1),
|
||||
-1 * ones(1), noise));
|
||||
expectedConstraints.push_back(
|
||||
JacobianFactor(X(1), ones(1, 1), X(2), 2 * ones(1, 1), X(4), -ones(1, 1),
|
||||
6 * ones(1), noise));
|
||||
expectedConstraints.push_back(
|
||||
JacobianFactor(X(1), ones(1, 1), X(2), -2 * ones(1, 1), X(5), -ones(1, 1),
|
||||
2 * ones(1), noise));
|
||||
expectedConstraints.push_back(
|
||||
JacobianFactor(X(1), -ones(1, 1), X(6), -ones(1, 1), zero(1), noise));
|
||||
expectedConstraints.push_back(
|
||||
JacobianFactor(X(2), -ones(1, 1), X(7), -ones(1, 1), zero(1), noise));
|
||||
EXPECT(assert_equal(expectedConstraints, *constraints));
|
||||
|
||||
bool isFeasible;
|
||||
|
@ -341,12 +364,12 @@ TEST(QPSolver, optimizeNocedal06bookEx16_4_2) {
|
|||
GaussianFactorGraph graph = createTestNocedal06bookEx16_4();
|
||||
QPSolver solver(graph);
|
||||
VectorValues initials;
|
||||
initials.insert(X(1), (Vector(1)<<0.0));
|
||||
initials.insert(X(2), (Vector(1)<<100.0));
|
||||
initials.insert(X(1), (Vector(1) << 0.0));
|
||||
initials.insert(X(2), (Vector(1) << 100.0));
|
||||
|
||||
VectorValues expectedSolution;
|
||||
expectedSolution.insert(X(1), (Vector(1)<< 1.4));
|
||||
expectedSolution.insert(X(2), (Vector(1)<< 1.7));
|
||||
expectedSolution.insert(X(1), (Vector(1) << 1.4));
|
||||
expectedSolution.insert(X(2), (Vector(1) << 1.7));
|
||||
|
||||
VectorValues solution;
|
||||
boost::tie(solution, boost::tuples::ignore) = solver.optimize(initials);
|
||||
|
@ -363,12 +386,13 @@ TEST(QPSolver, optimizeNocedal06bookEx16_4_2) {
|
|||
TEST(QPSolver, failedSubproblem) {
|
||||
GaussianFactorGraph graph;
|
||||
graph.push_back(JacobianFactor(X(1), eye(2), zero(2)));
|
||||
graph.push_back(HessianFactor(X(1), zeros(2,2), zero(2), 100.0));
|
||||
graph.push_back(JacobianFactor(X(1), (Matrix(1,2)<<-1.0, 0.0), -ones(1),
|
||||
noiseModel::Constrained::MixedSigmas(-ones(1))));
|
||||
graph.push_back(HessianFactor(X(1), zeros(2, 2), zero(2), 100.0));
|
||||
graph.push_back(
|
||||
JacobianFactor(X(1), (Matrix(1, 2) << -1.0, 0.0), -ones(1),
|
||||
noiseModel::Constrained::MixedSigmas(-ones(1))));
|
||||
|
||||
VectorValues expected;
|
||||
expected.insert(X(1), (Vector(2)<< 1.0, 0.0));
|
||||
expected.insert(X(1), (Vector(2) << 1.0, 0.0));
|
||||
|
||||
QPSolver solver(graph);
|
||||
VectorValues solution;
|
||||
|
|
Loading…
Reference in New Issue