trying to fix crucial test

release/4.3a0
lcarlone 2021-03-21 19:34:21 -04:00
parent 483a1995ba
commit 7a30d8b4d4
2 changed files with 65 additions and 64 deletions

View File

@ -103,11 +103,11 @@ double SmartStereoProjectionFactorPP::error(const Values& values) const {
SmartStereoProjectionFactorPP::Base::Cameras
SmartStereoProjectionFactorPP::cameras(const Values& values) const {
assert(keys_.size() == K_all_.size());
assert(keys_.size() == body_P_cam_keys_.size());
assert(w_P_body_keys_.size() == K_all_.size());
assert(w_P_body_keys_.size() == body_P_cam_keys_.size());
Base::Cameras cameras;
for (size_t i = 0; i < keys_.size(); i++) {
Pose3 w_P_body = values.at<Pose3>(keys_[i]);
for (size_t i = 0; i < w_P_body_keys_.size(); i++) {
Pose3 w_P_body = values.at<Pose3>(w_P_body_keys_[i]);
Pose3 body_P_cam = values.at<Pose3>(body_P_cam_keys_[i]);
Pose3 w_P_cam = w_P_body.compose(body_P_cam);
cameras.push_back(StereoCamera(w_P_cam, K_all_[i]));

View File

@ -18,6 +18,7 @@
#include <gtsam/slam/tests/smartFactorScenarios.h>
#include <gtsam_unstable/slam/SmartStereoProjectionFactorPP.h>
#include <gtsam_unstable/slam/ProjectionFactorPPP.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/slam/PoseTranslationPrior.h>
#include <gtsam/slam/ProjectionFactor.h>
@ -455,76 +456,76 @@ TEST( SmartStereoProjectionFactorPP, 3poses_smart_projection_factor ) {
Point3(0.1, -0.1, 1.9)), values.at<Pose3>(x3) * values.at<Pose3>(body_P_cam3_key)));
// cout << std::setprecision(10) << "\n----SmartStereoFactor graph initial error: " << graph.error(values) << endl;
EXPECT_DOUBLES_EQUAL(833953.92789459578, graph.error(values), 1e-7); // initial error
EXPECT_DOUBLES_EQUAL(833953.92789459578, graph.error(values), 1e-7); // initial error (note - this also matches error below)
// get triangulated landmarks from smart factors
Point3 landmark1_smart = *smartFactor1->point();
Point3 landmark2_smart = *smartFactor2->point();
Point3 landmark3_smart = *smartFactor3->point();
// cost is large before optimization
EXPECT_DOUBLES_EQUAL(833953.92789459461, graph.error(values), 1e-5);
Values result;
gttic_(SmartStereoProjectionFactorPP);
graph.print("/n ==== /n");
// LevenbergMarquardtOptimizer optimizer(graph, values, lm_params);
// result = optimizer.optimize();
// gttoc_(SmartStereoProjectionFactorPP);
// tictoc_finishedIteration_();
//
// // cout << std::setprecision(10) << "SmartStereoFactor graph optimized error: " << graph.error(result) << endl;
// EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-5);
LevenbergMarquardtOptimizer optimizer(graph, values, lm_params);
result = optimizer.optimize();
gttoc_(SmartStereoProjectionFactorPP);
tictoc_finishedIteration_();
// GaussianFactorGraph::shared_ptr GFG = graph.linearize(result);
// VectorValues delta = GFG->optimize();
// VectorValues expected = VectorValues::Zero(delta);
// EXPECT(assert_equal(expected, delta, 1e-6));
//
// // result.print("results of 3 camera, 3 landmark optimization \n");
// EXPECT(assert_equal(w_Pose_cam3, result.at<Pose3>(x3)));
//
// // ***************************************************************
// // Same problem with regular Stereo factors, expect same error!
// // ****************************************************************
//
//// landmark1_smart.print("landmark1_smart");
//// landmark2_smart.print("landmark2_smart");
//// landmark3_smart.print("landmark3_smart");
//
// // add landmarks to values
// values.insert(L(1), landmark1_smart);
// values.insert(L(2), landmark2_smart);
// values.insert(L(3), landmark3_smart);
//
// // add factors
// NonlinearFactorGraph graph2;
//
// graph2.addPrior(x1, w_Pose_cam1, noisePrior);
// graph2.addPrior(x2, w_Pose_cam2, noisePrior);
//
// typedef GenericStereoFactor<Pose3, Point3> ProjectionFactor;
//
// bool verboseCheirality = true;
//
// graph2.push_back(ProjectionFactor(measurements_l1[0], model, x1, L(1), K2, false, verboseCheirality));
// graph2.push_back(ProjectionFactor(measurements_l1[1], model, x2, L(1), K2, false, verboseCheirality));
// graph2.push_back(ProjectionFactor(measurements_l1[2], model, x3, L(1), K2, false, verboseCheirality));
//
// graph2.push_back(ProjectionFactor(measurements_l2[0], model, x1, L(2), K2, false, verboseCheirality));
// graph2.push_back(ProjectionFactor(measurements_l2[1], model, x2, L(2), K2, false, verboseCheirality));
// graph2.push_back(ProjectionFactor(measurements_l2[2], model, x3, L(2), K2, false, verboseCheirality));
//
// graph2.push_back(ProjectionFactor(measurements_l3[0], model, x1, L(3), K2, false, verboseCheirality));
// graph2.push_back(ProjectionFactor(measurements_l3[1], model, x2, L(3), K2, false, verboseCheirality));
// graph2.push_back(ProjectionFactor(measurements_l3[2], model, x3, L(3), K2, false, verboseCheirality));
//
//// cout << std::setprecision(10) << "\n----StereoFactor graph initial error: " << graph2.error(values) << endl;
// EXPECT_DOUBLES_EQUAL(833953.92789459578, graph2.error(values), 1e-7);
//
// LevenbergMarquardtOptimizer optimizer2(graph2, values, lm_params);
// Values result2 = optimizer2.optimize();
// EXPECT_DOUBLES_EQUAL(0, graph2.error(result2), 1e-5);
//
//// cout << std::setprecision(10) << "StereoFactor graph optimized error: " << graph2.error(result2) << endl;
// cout << std::setprecision(10) << "SmartStereoFactor graph optimized error: " << graph.error(result) << endl;
EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-5);
GaussianFactorGraph::shared_ptr GFG = graph.linearize(result);
VectorValues delta = GFG->optimize();
VectorValues expected = VectorValues::Zero(delta);
EXPECT(assert_equal(expected, delta, 1e-6));
// result.print("results of 3 camera, 3 landmark optimization \n");
EXPECT(assert_equal(body_Pose_cam3, result.at<Pose3>(body_P_cam3_key)));
// ***************************************************************
// Same problem with regular Stereo factors, expect same error!
// ****************************************************************
// add landmarks to values
values.insert(L(1), landmark1_smart);
values.insert(L(2), landmark2_smart);
values.insert(L(3), landmark3_smart);
// add factors
NonlinearFactorGraph graph2;
graph2.addPrior(x1, w_Pose_body1, noisePrior);
graph2.addPrior(x2, w_Pose_body2, noisePrior);
graph2.addPrior(x3, w_Pose_body3, noisePrior);
// we might need some prior on the calibration too
graph2.addPrior(body_P_cam1_key, body_Pose_cam1, noisePrior);
graph2.addPrior(body_P_cam2_key, body_Pose_cam2, noisePrior);
typedef ProjectionFactorPPP<Pose3, Point3, Cal3_S2Stereo> ProjectionFactorPPP;
bool verboseCheirality = true;
graph2.push_back(ProjectionFactorPPP(measurements_l1[0], model, x1, body_P_cam1_key, L(1), K2));
graph2.push_back(ProjectionFactorPPP(measurements_l1[1], model, x2, body_P_cam2_key, L(1), K2));
graph2.push_back(ProjectionFactorPPP(measurements_l1[2], model, x3, body_P_cam3_key, L(1), K2));
graph2.push_back(ProjectionFactorPPP(measurements_l2[0], model, x1, body_P_cam1_key, L(2), K2));
graph2.push_back(ProjectionFactorPPP(measurements_l2[1], model, x2, body_P_cam2_key, L(2), K2));
graph2.push_back(ProjectionFactorPPP(measurements_l2[2], model, x3, body_P_cam3_key, L(2), K2));
graph2.push_back(ProjectionFactorPPP(measurements_l3[0], model, x1, body_P_cam1_key, L(3), K2));
graph2.push_back(ProjectionFactorPPP(measurements_l3[1], model, x2, body_P_cam2_key, L(3), K2));
graph2.push_back(ProjectionFactorPPP(measurements_l3[2], model, x3, body_P_cam3_key, L(3), K2));
// cout << std::setprecision(10) << "\n----StereoFactor graph initial error: " << graph2.error(values) << endl;
EXPECT_DOUBLES_EQUAL(833953.92789459578, graph2.error(values), 1e-7);
LevenbergMarquardtOptimizer optimizer2(graph2, values, lm_params);
Values result2 = optimizer2.optimize();
EXPECT_DOUBLES_EQUAL(0, graph2.error(result2), 1e-5);
// cout << std::setprecision(10) << "StereoFactor graph optimized error: " << graph2.error(result2) << endl;
}
/* *************************************************************************
TEST( SmartStereoProjectionFactorPP, body_P_sensor ) {