commit
7977f77887
|
|
@ -219,6 +219,16 @@ class DiscreteBayesTree {
|
||||||
};
|
};
|
||||||
|
|
||||||
#include <gtsam/discrete/DiscreteLookupDAG.h>
|
#include <gtsam/discrete/DiscreteLookupDAG.h>
|
||||||
|
|
||||||
|
class DiscreteLookupTable : gtsam::DiscreteConditional{
|
||||||
|
DiscreteLookupTable(size_t nFrontals, const gtsam::DiscreteKeys& keys,
|
||||||
|
const gtsam::DecisionTreeFactor::ADT& potentials);
|
||||||
|
void print(
|
||||||
|
const std::string& s = "Discrete Lookup Table: ",
|
||||||
|
const gtsam::KeyFormatter& keyFormatter = gtsam::DefaultKeyFormatter) const;
|
||||||
|
size_t argmax(const gtsam::DiscreteValues& parentsValues) const;
|
||||||
|
};
|
||||||
|
|
||||||
class DiscreteLookupDAG {
|
class DiscreteLookupDAG {
|
||||||
DiscreteLookupDAG();
|
DiscreteLookupDAG();
|
||||||
void push_back(const gtsam::DiscreteLookupTable* table);
|
void push_back(const gtsam::DiscreteLookupTable* table);
|
||||||
|
|
|
||||||
|
|
@ -51,7 +51,7 @@ GaussianMixtureFactor GaussianMixtureFactor::FromFactors(
|
||||||
void GaussianMixtureFactor::print(const std::string &s,
|
void GaussianMixtureFactor::print(const std::string &s,
|
||||||
const KeyFormatter &formatter) const {
|
const KeyFormatter &formatter) const {
|
||||||
HybridFactor::print(s, formatter);
|
HybridFactor::print(s, formatter);
|
||||||
std::cout << "]{\n";
|
std::cout << "{\n";
|
||||||
factors_.print(
|
factors_.print(
|
||||||
"", [&](Key k) { return formatter(k); },
|
"", [&](Key k) { return formatter(k); },
|
||||||
[&](const GaussianFactor::shared_ptr &gf) -> std::string {
|
[&](const GaussianFactor::shared_ptr &gf) -> std::string {
|
||||||
|
|
|
||||||
|
|
@ -22,7 +22,7 @@
|
||||||
|
|
||||||
#include <gtsam/discrete/DecisionTree.h>
|
#include <gtsam/discrete/DecisionTree.h>
|
||||||
#include <gtsam/discrete/DiscreteKey.h>
|
#include <gtsam/discrete/DiscreteKey.h>
|
||||||
#include <gtsam/hybrid/HybridFactor.h>
|
#include <gtsam/hybrid/HybridGaussianFactor.h>
|
||||||
#include <gtsam/linear/GaussianFactor.h>
|
#include <gtsam/linear/GaussianFactor.h>
|
||||||
|
|
||||||
namespace gtsam {
|
namespace gtsam {
|
||||||
|
|
|
||||||
|
|
@ -76,7 +76,10 @@ class GTSAM_EXPORT HybridBayesTree : public BayesTree<HybridBayesTreeClique> {
|
||||||
/**
|
/**
|
||||||
* @brief Class for Hybrid Bayes tree orphan subtrees.
|
* @brief Class for Hybrid Bayes tree orphan subtrees.
|
||||||
*
|
*
|
||||||
* This does special stuff for the hybrid case
|
* This object stores parent keys in our base type factor so that
|
||||||
|
* eliminating those parent keys will pull this subtree into the
|
||||||
|
* elimination.
|
||||||
|
* This does special stuff for the hybrid case.
|
||||||
*
|
*
|
||||||
* @tparam CLIQUE
|
* @tparam CLIQUE
|
||||||
*/
|
*/
|
||||||
|
|
|
||||||
|
|
@ -89,17 +89,23 @@ void HybridFactor::print(const std::string &s,
|
||||||
if (isContinuous_) std::cout << "Continuous ";
|
if (isContinuous_) std::cout << "Continuous ";
|
||||||
if (isDiscrete_) std::cout << "Discrete ";
|
if (isDiscrete_) std::cout << "Discrete ";
|
||||||
if (isHybrid_) std::cout << "Hybrid ";
|
if (isHybrid_) std::cout << "Hybrid ";
|
||||||
for (size_t c=0; c<continuousKeys_.size(); c++) {
|
std::cout << "[";
|
||||||
|
for (size_t c = 0; c < continuousKeys_.size(); c++) {
|
||||||
std::cout << formatter(continuousKeys_.at(c));
|
std::cout << formatter(continuousKeys_.at(c));
|
||||||
if (c < continuousKeys_.size() - 1) {
|
if (c < continuousKeys_.size() - 1) {
|
||||||
std::cout << " ";
|
std::cout << " ";
|
||||||
} else {
|
} else {
|
||||||
std::cout << "; ";
|
std::cout << (discreteKeys_.size() > 0 ? "; " : "");
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
for(auto && discreteKey: discreteKeys_) {
|
for (size_t d = 0; d < discreteKeys_.size(); d++) {
|
||||||
std::cout << formatter(discreteKey.first) << " ";
|
std::cout << formatter(discreteKeys_.at(d).first);
|
||||||
|
if (d < discreteKeys_.size() - 1) {
|
||||||
|
std::cout << " ";
|
||||||
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
std::cout << "]";
|
||||||
}
|
}
|
||||||
|
|
||||||
} // namespace gtsam
|
} // namespace gtsam
|
||||||
|
|
|
||||||
|
|
@ -37,6 +37,8 @@ class GTSAM_EXPORT HybridGaussianFactor : public HybridFactor {
|
||||||
using This = HybridGaussianFactor;
|
using This = HybridGaussianFactor;
|
||||||
using shared_ptr = boost::shared_ptr<This>;
|
using shared_ptr = boost::shared_ptr<This>;
|
||||||
|
|
||||||
|
HybridGaussianFactor() = default;
|
||||||
|
|
||||||
// Explicit conversion from a shared ptr of GF
|
// Explicit conversion from a shared ptr of GF
|
||||||
explicit HybridGaussianFactor(GaussianFactor::shared_ptr other);
|
explicit HybridGaussianFactor(GaussianFactor::shared_ptr other);
|
||||||
|
|
||||||
|
|
@ -52,7 +54,7 @@ class GTSAM_EXPORT HybridGaussianFactor : public HybridFactor {
|
||||||
|
|
||||||
/// GTSAM print utility.
|
/// GTSAM print utility.
|
||||||
void print(
|
void print(
|
||||||
const std::string &s = "HybridFactor\n",
|
const std::string &s = "HybridGaussianFactor\n",
|
||||||
const KeyFormatter &formatter = DefaultKeyFormatter) const override;
|
const KeyFormatter &formatter = DefaultKeyFormatter) const override;
|
||||||
|
|
||||||
/// @}
|
/// @}
|
||||||
|
|
|
||||||
|
|
@ -98,6 +98,12 @@ GaussianMixtureFactor::Sum sumFrontals(
|
||||||
} else if (f->isContinuous()) {
|
} else if (f->isContinuous()) {
|
||||||
deferredFactors.push_back(
|
deferredFactors.push_back(
|
||||||
boost::dynamic_pointer_cast<HybridGaussianFactor>(f)->inner());
|
boost::dynamic_pointer_cast<HybridGaussianFactor>(f)->inner());
|
||||||
|
|
||||||
|
} else if (f->isDiscrete()) {
|
||||||
|
// Don't do anything for discrete-only factors
|
||||||
|
// since we want to eliminate continuous values only.
|
||||||
|
continue;
|
||||||
|
|
||||||
} else {
|
} else {
|
||||||
// We need to handle the case where the object is actually an
|
// We need to handle the case where the object is actually an
|
||||||
// BayesTreeOrphanWrapper!
|
// BayesTreeOrphanWrapper!
|
||||||
|
|
@ -106,8 +112,8 @@ GaussianMixtureFactor::Sum sumFrontals(
|
||||||
if (!orphan) {
|
if (!orphan) {
|
||||||
auto &fr = *f;
|
auto &fr = *f;
|
||||||
throw std::invalid_argument(
|
throw std::invalid_argument(
|
||||||
std::string("factor is discrete in continuous elimination") +
|
std::string("factor is discrete in continuous elimination ") +
|
||||||
typeid(fr).name());
|
demangle(typeid(fr).name()));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
@ -158,7 +164,7 @@ discreteElimination(const HybridGaussianFactorGraph &factors,
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
auto result = EliminateDiscrete(dfg, frontalKeys);
|
auto result = EliminateForMPE(dfg, frontalKeys);
|
||||||
|
|
||||||
return {boost::make_shared<HybridConditional>(result.first),
|
return {boost::make_shared<HybridConditional>(result.first),
|
||||||
boost::make_shared<HybridDiscreteFactor>(result.second)};
|
boost::make_shared<HybridDiscreteFactor>(result.second)};
|
||||||
|
|
|
||||||
|
|
@ -24,6 +24,7 @@
|
||||||
#include <gtsam/inference/EliminateableFactorGraph.h>
|
#include <gtsam/inference/EliminateableFactorGraph.h>
|
||||||
#include <gtsam/inference/FactorGraph.h>
|
#include <gtsam/inference/FactorGraph.h>
|
||||||
#include <gtsam/inference/Ordering.h>
|
#include <gtsam/inference/Ordering.h>
|
||||||
|
#include <gtsam/linear/GaussianFactor.h>
|
||||||
|
|
||||||
namespace gtsam {
|
namespace gtsam {
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -0,0 +1,41 @@
|
||||||
|
/* ----------------------------------------------------------------------------
|
||||||
|
|
||||||
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||||
|
* Atlanta, Georgia 30332-0415
|
||||||
|
* All Rights Reserved
|
||||||
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||||
|
|
||||||
|
* See LICENSE for the license information
|
||||||
|
|
||||||
|
* -------------------------------------------------------------------------- */
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @file HybridNonlinearFactor.cpp
|
||||||
|
* @date May 28, 2022
|
||||||
|
* @author Varun Agrawal
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include <gtsam/hybrid/HybridNonlinearFactor.h>
|
||||||
|
|
||||||
|
#include <boost/make_shared.hpp>
|
||||||
|
|
||||||
|
namespace gtsam {
|
||||||
|
|
||||||
|
/* ************************************************************************* */
|
||||||
|
HybridNonlinearFactor::HybridNonlinearFactor(
|
||||||
|
const NonlinearFactor::shared_ptr &other)
|
||||||
|
: Base(other->keys()), inner_(other) {}
|
||||||
|
|
||||||
|
/* ************************************************************************* */
|
||||||
|
bool HybridNonlinearFactor::equals(const HybridFactor &lf, double tol) const {
|
||||||
|
return Base::equals(lf, tol);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* ************************************************************************* */
|
||||||
|
void HybridNonlinearFactor::print(const std::string &s,
|
||||||
|
const KeyFormatter &formatter) const {
|
||||||
|
HybridFactor::print(s, formatter);
|
||||||
|
inner_->print("\n", formatter);
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace gtsam
|
||||||
|
|
@ -0,0 +1,62 @@
|
||||||
|
/* ----------------------------------------------------------------------------
|
||||||
|
|
||||||
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||||
|
* Atlanta, Georgia 30332-0415
|
||||||
|
* All Rights Reserved
|
||||||
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||||
|
|
||||||
|
* See LICENSE for the license information
|
||||||
|
|
||||||
|
* -------------------------------------------------------------------------- */
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @file HybridNonlinearFactor.h
|
||||||
|
* @date May 28, 2022
|
||||||
|
* @author Varun Agrawal
|
||||||
|
*/
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <gtsam/hybrid/HybridFactor.h>
|
||||||
|
#include <gtsam/hybrid/HybridGaussianFactor.h>
|
||||||
|
#include <gtsam/nonlinear/NonlinearFactor.h>
|
||||||
|
|
||||||
|
namespace gtsam {
|
||||||
|
|
||||||
|
/**
|
||||||
|
* A HybridNonlinearFactor is a layer over NonlinearFactor so that we do not
|
||||||
|
* have a diamond inheritance.
|
||||||
|
*/
|
||||||
|
class HybridNonlinearFactor : public HybridFactor {
|
||||||
|
private:
|
||||||
|
NonlinearFactor::shared_ptr inner_;
|
||||||
|
|
||||||
|
public:
|
||||||
|
using Base = HybridFactor;
|
||||||
|
using This = HybridNonlinearFactor;
|
||||||
|
using shared_ptr = boost::shared_ptr<This>;
|
||||||
|
|
||||||
|
// Explicit conversion from a shared ptr of NonlinearFactor
|
||||||
|
explicit HybridNonlinearFactor(const NonlinearFactor::shared_ptr &other);
|
||||||
|
|
||||||
|
/// @name Testable
|
||||||
|
/// @{
|
||||||
|
|
||||||
|
/// Check equality.
|
||||||
|
virtual bool equals(const HybridFactor &lf, double tol) const override;
|
||||||
|
|
||||||
|
/// GTSAM print utility.
|
||||||
|
void print(
|
||||||
|
const std::string &s = "HybridNonlinearFactor\n",
|
||||||
|
const KeyFormatter &formatter = DefaultKeyFormatter) const override;
|
||||||
|
|
||||||
|
/// @}
|
||||||
|
|
||||||
|
NonlinearFactor::shared_ptr inner() const { return inner_; }
|
||||||
|
|
||||||
|
/// Linearize to a HybridGaussianFactor at the linearization point `c`.
|
||||||
|
boost::shared_ptr<HybridGaussianFactor> linearize(const Values &c) const {
|
||||||
|
return boost::make_shared<HybridGaussianFactor>(inner_->linearize(c));
|
||||||
|
}
|
||||||
|
};
|
||||||
|
} // namespace gtsam
|
||||||
|
|
@ -0,0 +1,94 @@
|
||||||
|
/* ----------------------------------------------------------------------------
|
||||||
|
|
||||||
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||||
|
* Atlanta, Georgia 30332-0415
|
||||||
|
* All Rights Reserved
|
||||||
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||||
|
|
||||||
|
* See LICENSE for the license information
|
||||||
|
|
||||||
|
* -------------------------------------------------------------------------- */
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @file HybridNonlinearFactorGraph.cpp
|
||||||
|
* @brief Nonlinear hybrid factor graph that uses type erasure
|
||||||
|
* @author Varun Agrawal
|
||||||
|
* @date May 28, 2022
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include <gtsam/hybrid/HybridNonlinearFactorGraph.h>
|
||||||
|
|
||||||
|
namespace gtsam {
|
||||||
|
|
||||||
|
/* ************************************************************************* */
|
||||||
|
void HybridNonlinearFactorGraph::add(
|
||||||
|
boost::shared_ptr<NonlinearFactor> factor) {
|
||||||
|
FactorGraph::add(boost::make_shared<HybridNonlinearFactor>(factor));
|
||||||
|
}
|
||||||
|
|
||||||
|
/* ************************************************************************* */
|
||||||
|
void HybridNonlinearFactorGraph::print(const std::string& s,
|
||||||
|
const KeyFormatter& keyFormatter) const {
|
||||||
|
// Base::print(str, keyFormatter);
|
||||||
|
std::cout << (s.empty() ? "" : s + " ") << std::endl;
|
||||||
|
std::cout << "size: " << size() << std::endl;
|
||||||
|
for (size_t i = 0; i < factors_.size(); i++) {
|
||||||
|
std::stringstream ss;
|
||||||
|
ss << "factor " << i << ": ";
|
||||||
|
if (factors_[i]) {
|
||||||
|
factors_[i]->print(ss.str(), keyFormatter);
|
||||||
|
std::cout << std::endl;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* ************************************************************************* */
|
||||||
|
HybridGaussianFactorGraph HybridNonlinearFactorGraph::linearize(
|
||||||
|
const Values& continuousValues) const {
|
||||||
|
// create an empty linear FG
|
||||||
|
HybridGaussianFactorGraph linearFG;
|
||||||
|
|
||||||
|
linearFG.reserve(size());
|
||||||
|
|
||||||
|
// linearize all hybrid factors
|
||||||
|
for (auto&& factor : factors_) {
|
||||||
|
// First check if it is a valid factor
|
||||||
|
if (factor) {
|
||||||
|
// Check if the factor is a hybrid factor.
|
||||||
|
// It can be either a nonlinear MixtureFactor or a linear
|
||||||
|
// GaussianMixtureFactor.
|
||||||
|
if (factor->isHybrid()) {
|
||||||
|
// Check if it is a nonlinear mixture factor
|
||||||
|
if (auto nlmf = boost::dynamic_pointer_cast<MixtureFactor>(factor)) {
|
||||||
|
linearFG.push_back(nlmf->linearize(continuousValues));
|
||||||
|
} else {
|
||||||
|
linearFG.push_back(factor);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Now check if the factor is a continuous only factor.
|
||||||
|
} else if (factor->isContinuous()) {
|
||||||
|
// In this case, we check if factor->inner() is nonlinear since
|
||||||
|
// HybridFactors wrap over continuous factors.
|
||||||
|
auto nlhf = boost::dynamic_pointer_cast<HybridNonlinearFactor>(factor);
|
||||||
|
if (auto nlf =
|
||||||
|
boost::dynamic_pointer_cast<NonlinearFactor>(nlhf->inner())) {
|
||||||
|
auto hgf = boost::make_shared<HybridGaussianFactor>(
|
||||||
|
nlf->linearize(continuousValues));
|
||||||
|
linearFG.push_back(hgf);
|
||||||
|
} else {
|
||||||
|
linearFG.push_back(factor);
|
||||||
|
}
|
||||||
|
// Finally if nothing else, we are discrete-only which doesn't need
|
||||||
|
// lineariztion.
|
||||||
|
} else {
|
||||||
|
linearFG.push_back(factor);
|
||||||
|
}
|
||||||
|
|
||||||
|
} else {
|
||||||
|
linearFG.push_back(GaussianFactor::shared_ptr());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return linearFG;
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace gtsam
|
||||||
|
|
@ -0,0 +1,134 @@
|
||||||
|
/* ----------------------------------------------------------------------------
|
||||||
|
|
||||||
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||||
|
* Atlanta, Georgia 30332-0415
|
||||||
|
* All Rights Reserved
|
||||||
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||||
|
|
||||||
|
* See LICENSE for the license information
|
||||||
|
|
||||||
|
* -------------------------------------------------------------------------- */
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @file HybridNonlinearFactorGraph.h
|
||||||
|
* @brief Nonlinear hybrid factor graph that uses type erasure
|
||||||
|
* @author Varun Agrawal
|
||||||
|
* @date May 28, 2022
|
||||||
|
*/
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <gtsam/hybrid/HybridFactor.h>
|
||||||
|
#include <gtsam/hybrid/HybridFactorGraph.h>
|
||||||
|
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
|
||||||
|
#include <gtsam/hybrid/HybridNonlinearFactor.h>
|
||||||
|
#include <gtsam/hybrid/MixtureFactor.h>
|
||||||
|
#include <gtsam/inference/Ordering.h>
|
||||||
|
#include <gtsam/nonlinear/NonlinearFactor.h>
|
||||||
|
|
||||||
|
#include <boost/format.hpp>
|
||||||
|
namespace gtsam {
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Nonlinear Hybrid Factor Graph
|
||||||
|
* -----------------------
|
||||||
|
* This is the non-linear version of a hybrid factor graph.
|
||||||
|
* Everything inside needs to be hybrid factor or hybrid conditional.
|
||||||
|
*/
|
||||||
|
class GTSAM_EXPORT HybridNonlinearFactorGraph : public HybridFactorGraph {
|
||||||
|
protected:
|
||||||
|
/// Check if FACTOR type is derived from NonlinearFactor.
|
||||||
|
template <typename FACTOR>
|
||||||
|
using IsNonlinear = typename std::enable_if<
|
||||||
|
std::is_base_of<NonlinearFactor, FACTOR>::value>::type;
|
||||||
|
|
||||||
|
public:
|
||||||
|
using Base = HybridFactorGraph;
|
||||||
|
using This = HybridNonlinearFactorGraph; ///< this class
|
||||||
|
using shared_ptr = boost::shared_ptr<This>; ///< shared_ptr to This
|
||||||
|
|
||||||
|
using Values = gtsam::Values; ///< backwards compatibility
|
||||||
|
using Indices = KeyVector; ///> map from keys to values
|
||||||
|
|
||||||
|
/// @name Constructors
|
||||||
|
/// @{
|
||||||
|
|
||||||
|
HybridNonlinearFactorGraph() = default;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Implicit copy/downcast constructor to override explicit template container
|
||||||
|
* constructor. In BayesTree this is used for:
|
||||||
|
* `cachedSeparatorMarginal_.reset(*separatorMarginal)`
|
||||||
|
* */
|
||||||
|
template <class DERIVEDFACTOR>
|
||||||
|
HybridNonlinearFactorGraph(const FactorGraph<DERIVEDFACTOR>& graph)
|
||||||
|
: Base(graph) {}
|
||||||
|
|
||||||
|
/// @}
|
||||||
|
|
||||||
|
// Allow use of selected FactorGraph methods:
|
||||||
|
using Base::empty;
|
||||||
|
using Base::reserve;
|
||||||
|
using Base::size;
|
||||||
|
using Base::operator[];
|
||||||
|
using Base::add;
|
||||||
|
using Base::resize;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Add a nonlinear factor *pointer* to the internal nonlinear factor graph
|
||||||
|
* @param nonlinearFactor - boost::shared_ptr to the factor to add
|
||||||
|
*/
|
||||||
|
template <typename FACTOR>
|
||||||
|
IsNonlinear<FACTOR> push_nonlinear(
|
||||||
|
const boost::shared_ptr<FACTOR>& nonlinearFactor) {
|
||||||
|
Base::push_back(boost::make_shared<HybridNonlinearFactor>(nonlinearFactor));
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Construct a factor and add (shared pointer to it) to factor graph.
|
||||||
|
template <class FACTOR, class... Args>
|
||||||
|
IsNonlinear<FACTOR> emplace_nonlinear(Args&&... args) {
|
||||||
|
auto factor = boost::allocate_shared<FACTOR>(
|
||||||
|
Eigen::aligned_allocator<FACTOR>(), std::forward<Args>(args)...);
|
||||||
|
push_nonlinear(factor);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Add a single factor shared pointer to the hybrid factor graph.
|
||||||
|
* Dynamically handles the factor type and assigns it to the correct
|
||||||
|
* underlying container.
|
||||||
|
*
|
||||||
|
* @tparam FACTOR The factor type template
|
||||||
|
* @param sharedFactor The factor to add to this factor graph.
|
||||||
|
*/
|
||||||
|
template <typename FACTOR>
|
||||||
|
void push_back(const boost::shared_ptr<FACTOR>& sharedFactor) {
|
||||||
|
if (auto p = boost::dynamic_pointer_cast<NonlinearFactor>(sharedFactor)) {
|
||||||
|
push_nonlinear(p);
|
||||||
|
} else {
|
||||||
|
Base::push_back(sharedFactor);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Add a nonlinear factor as a shared ptr.
|
||||||
|
void add(boost::shared_ptr<NonlinearFactor> factor);
|
||||||
|
|
||||||
|
/// Print the factor graph.
|
||||||
|
void print(
|
||||||
|
const std::string& s = "HybridNonlinearFactorGraph",
|
||||||
|
const KeyFormatter& keyFormatter = DefaultKeyFormatter) const override;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Linearize all the continuous factors in the
|
||||||
|
* HybridNonlinearFactorGraph.
|
||||||
|
*
|
||||||
|
* @param continuousValues: Dictionary of continuous values.
|
||||||
|
* @return HybridGaussianFactorGraph::shared_ptr
|
||||||
|
*/
|
||||||
|
HybridGaussianFactorGraph linearize(const Values& continuousValues) const;
|
||||||
|
};
|
||||||
|
|
||||||
|
template <>
|
||||||
|
struct traits<HybridNonlinearFactorGraph>
|
||||||
|
: public Testable<HybridNonlinearFactorGraph> {};
|
||||||
|
|
||||||
|
} // namespace gtsam
|
||||||
|
|
@ -0,0 +1,244 @@
|
||||||
|
/* ----------------------------------------------------------------------------
|
||||||
|
|
||||||
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||||
|
* Atlanta, Georgia 30332-0415
|
||||||
|
* All Rights Reserved
|
||||||
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||||
|
|
||||||
|
* See LICENSE for the license information
|
||||||
|
|
||||||
|
* -------------------------------------------------------------------------- */
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @file MixtureFactor.h
|
||||||
|
* @brief Nonlinear Mixture factor of continuous and discrete.
|
||||||
|
* @author Kevin Doherty, kdoherty@mit.edu
|
||||||
|
* @author Varun Agrawal
|
||||||
|
* @date December 2021
|
||||||
|
*/
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <gtsam/discrete/DiscreteValues.h>
|
||||||
|
#include <gtsam/hybrid/GaussianMixtureFactor.h>
|
||||||
|
#include <gtsam/hybrid/HybridNonlinearFactor.h>
|
||||||
|
#include <gtsam/nonlinear/NonlinearFactor.h>
|
||||||
|
#include <gtsam/nonlinear/Symbol.h>
|
||||||
|
|
||||||
|
#include <algorithm>
|
||||||
|
#include <boost/format.hpp>
|
||||||
|
#include <cmath>
|
||||||
|
#include <limits>
|
||||||
|
#include <vector>
|
||||||
|
|
||||||
|
namespace gtsam {
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Implementation of a discrete conditional mixture factor.
|
||||||
|
*
|
||||||
|
* Implements a joint discrete-continuous factor where the discrete variable
|
||||||
|
* serves to "select" a mixture component corresponding to a NonlinearFactor
|
||||||
|
* type of measurement.
|
||||||
|
*
|
||||||
|
* This class stores all factors as HybridFactors which can then be typecast to
|
||||||
|
* one of (NonlinearFactor, GaussianFactor) which can then be checked to perform
|
||||||
|
* the correct operation.
|
||||||
|
*/
|
||||||
|
class MixtureFactor : public HybridFactor {
|
||||||
|
public:
|
||||||
|
using Base = HybridFactor;
|
||||||
|
using This = MixtureFactor;
|
||||||
|
using shared_ptr = boost::shared_ptr<MixtureFactor>;
|
||||||
|
using sharedFactor = boost::shared_ptr<NonlinearFactor>;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief typedef for DecisionTree which has Keys as node labels and
|
||||||
|
* NonlinearFactor as leaf nodes.
|
||||||
|
*/
|
||||||
|
using Factors = DecisionTree<Key, sharedFactor>;
|
||||||
|
|
||||||
|
private:
|
||||||
|
/// Decision tree of Gaussian factors indexed by discrete keys.
|
||||||
|
Factors factors_;
|
||||||
|
bool normalized_;
|
||||||
|
|
||||||
|
public:
|
||||||
|
MixtureFactor() = default;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Construct from Decision tree.
|
||||||
|
*
|
||||||
|
* @param keys Vector of keys for continuous factors.
|
||||||
|
* @param discreteKeys Vector of discrete keys.
|
||||||
|
* @param factors Decision tree with of shared factors.
|
||||||
|
* @param normalized Flag indicating if the factor error is already
|
||||||
|
* normalized.
|
||||||
|
*/
|
||||||
|
MixtureFactor(const KeyVector& keys, const DiscreteKeys& discreteKeys,
|
||||||
|
const Factors& factors, bool normalized = false)
|
||||||
|
: Base(keys, discreteKeys), factors_(factors), normalized_(normalized) {}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Convenience constructor that generates the underlying factor
|
||||||
|
* decision tree for us.
|
||||||
|
*
|
||||||
|
* Here it is important that the vector of factors has the correct number of
|
||||||
|
* elements based on the number of discrete keys and the cardinality of the
|
||||||
|
* keys, so that the decision tree is constructed appropriately.
|
||||||
|
*
|
||||||
|
* @tparam FACTOR The type of the factor shared pointers being passed in. Will
|
||||||
|
* be typecast to NonlinearFactor shared pointers.
|
||||||
|
* @param keys Vector of keys for continuous factors.
|
||||||
|
* @param discreteKeys Vector of discrete keys.
|
||||||
|
* @param factors Vector of shared pointers to factors.
|
||||||
|
* @param normalized Flag indicating if the factor error is already
|
||||||
|
* normalized.
|
||||||
|
*/
|
||||||
|
template <typename FACTOR>
|
||||||
|
MixtureFactor(const KeyVector& keys, const DiscreteKeys& discreteKeys,
|
||||||
|
const std::vector<boost::shared_ptr<FACTOR>>& factors,
|
||||||
|
bool normalized = false)
|
||||||
|
: Base(keys, discreteKeys), normalized_(normalized) {
|
||||||
|
std::vector<NonlinearFactor::shared_ptr> nonlinear_factors;
|
||||||
|
for (auto&& f : factors) {
|
||||||
|
nonlinear_factors.push_back(
|
||||||
|
boost::dynamic_pointer_cast<NonlinearFactor>(f));
|
||||||
|
}
|
||||||
|
factors_ = Factors(discreteKeys, nonlinear_factors);
|
||||||
|
}
|
||||||
|
|
||||||
|
~MixtureFactor() = default;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Compute error of factor given both continuous and discrete values.
|
||||||
|
*
|
||||||
|
* @param continuousVals The continuous Values.
|
||||||
|
* @param discreteVals The discrete Values.
|
||||||
|
* @return double The error of this factor.
|
||||||
|
*/
|
||||||
|
double error(const Values& continuousVals,
|
||||||
|
const DiscreteValues& discreteVals) const {
|
||||||
|
// Retrieve the factor corresponding to the assignment in discreteVals.
|
||||||
|
auto factor = factors_(discreteVals);
|
||||||
|
// Compute the error for the selected factor
|
||||||
|
const double factorError = factor->error(continuousVals);
|
||||||
|
if (normalized_) return factorError;
|
||||||
|
return factorError +
|
||||||
|
this->nonlinearFactorLogNormalizingConstant(factor, continuousVals);
|
||||||
|
}
|
||||||
|
|
||||||
|
size_t dim() const {
|
||||||
|
// TODO(Varun)
|
||||||
|
throw std::runtime_error("MixtureFactor::dim not implemented.");
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Testable
|
||||||
|
/// @{
|
||||||
|
|
||||||
|
/// print to stdout
|
||||||
|
void print(
|
||||||
|
const std::string& s = "MixtureFactor",
|
||||||
|
const KeyFormatter& keyFormatter = DefaultKeyFormatter) const override {
|
||||||
|
std::cout << (s.empty() ? "" : s + " ");
|
||||||
|
Base::print("", keyFormatter);
|
||||||
|
std::cout << "\nMixtureFactor\n";
|
||||||
|
auto valueFormatter = [](const sharedFactor& v) {
|
||||||
|
if (v) {
|
||||||
|
return (boost::format("Nonlinear factor on %d keys") % v->size()).str();
|
||||||
|
} else {
|
||||||
|
return std::string("nullptr");
|
||||||
|
}
|
||||||
|
};
|
||||||
|
factors_.print("", keyFormatter, valueFormatter);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Check equality
|
||||||
|
bool equals(const HybridFactor& other, double tol = 1e-9) const override {
|
||||||
|
// We attempt a dynamic cast from HybridFactor to MixtureFactor. If it
|
||||||
|
// fails, return false.
|
||||||
|
if (!dynamic_cast<const MixtureFactor*>(&other)) return false;
|
||||||
|
|
||||||
|
// If the cast is successful, we'll properly construct a MixtureFactor
|
||||||
|
// object from `other`
|
||||||
|
const MixtureFactor& f(static_cast<const MixtureFactor&>(other));
|
||||||
|
|
||||||
|
// Ensure that this MixtureFactor and `f` have the same `factors_`.
|
||||||
|
auto compare = [tol](const sharedFactor& a, const sharedFactor& b) {
|
||||||
|
return traits<NonlinearFactor>::Equals(*a, *b, tol);
|
||||||
|
};
|
||||||
|
if (!factors_.equals(f.factors_, compare)) return false;
|
||||||
|
|
||||||
|
// If everything above passes, and the keys_, discreteKeys_ and normalized_
|
||||||
|
// member variables are identical, return true.
|
||||||
|
return (std::equal(keys_.begin(), keys_.end(), f.keys().begin()) &&
|
||||||
|
(discreteKeys_ == f.discreteKeys_) &&
|
||||||
|
(normalized_ == f.normalized_));
|
||||||
|
}
|
||||||
|
|
||||||
|
/// @}
|
||||||
|
|
||||||
|
/// Linearize specific nonlinear factors based on the assignment in
|
||||||
|
/// discreteValues.
|
||||||
|
GaussianFactor::shared_ptr linearize(
|
||||||
|
const Values& continuousVals, const DiscreteValues& discreteVals) const {
|
||||||
|
auto factor = factors_(discreteVals);
|
||||||
|
return factor->linearize(continuousVals);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Linearize all the continuous factors to get a GaussianMixtureFactor.
|
||||||
|
boost::shared_ptr<GaussianMixtureFactor> linearize(
|
||||||
|
const Values& continuousVals) const {
|
||||||
|
// functional to linearize each factor in the decision tree
|
||||||
|
auto linearizeDT = [continuousVals](const sharedFactor& factor) {
|
||||||
|
return factor->linearize(continuousVals);
|
||||||
|
};
|
||||||
|
|
||||||
|
DecisionTree<Key, GaussianFactor::shared_ptr> linearized_factors(
|
||||||
|
factors_, linearizeDT);
|
||||||
|
|
||||||
|
return boost::make_shared<GaussianMixtureFactor>(
|
||||||
|
continuousKeys_, discreteKeys_, linearized_factors);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* If the component factors are not already normalized, we want to compute
|
||||||
|
* their normalizing constants so that the resulting joint distribution is
|
||||||
|
* appropriately computed. Remember, this is the _negative_ normalizing
|
||||||
|
* constant for the measurement likelihood (since we are minimizing the
|
||||||
|
* _negative_ log-likelihood).
|
||||||
|
*/
|
||||||
|
double nonlinearFactorLogNormalizingConstant(const sharedFactor& factor,
|
||||||
|
const Values& values) const {
|
||||||
|
// Information matrix (inverse covariance matrix) for the factor.
|
||||||
|
Matrix infoMat;
|
||||||
|
|
||||||
|
// If this is a NoiseModelFactor, we'll use its noiseModel to
|
||||||
|
// otherwise noiseModelFactor will be nullptr
|
||||||
|
if (auto noiseModelFactor =
|
||||||
|
boost::dynamic_pointer_cast<NoiseModelFactor>(factor)) {
|
||||||
|
// If dynamic cast to NoiseModelFactor succeeded, see if the noise model
|
||||||
|
// is Gaussian
|
||||||
|
auto noiseModel = noiseModelFactor->noiseModel();
|
||||||
|
|
||||||
|
auto gaussianNoiseModel =
|
||||||
|
boost::dynamic_pointer_cast<noiseModel::Gaussian>(noiseModel);
|
||||||
|
if (gaussianNoiseModel) {
|
||||||
|
// If the noise model is Gaussian, retrieve the information matrix
|
||||||
|
infoMat = gaussianNoiseModel->information();
|
||||||
|
} else {
|
||||||
|
// If the factor is not a Gaussian factor, we'll linearize it to get
|
||||||
|
// something with a normalized noise model
|
||||||
|
// TODO(kevin): does this make sense to do? I think maybe not in
|
||||||
|
// general? Should we just yell at the user?
|
||||||
|
auto gaussianFactor = factor->linearize(values);
|
||||||
|
infoMat = gaussianFactor->information();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Compute the (negative) log of the normalizing constant
|
||||||
|
return -(factor->dim() * log(2.0 * M_PI) / 2.0) -
|
||||||
|
(log(infoMat.determinant()) / 2.0);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace gtsam
|
||||||
|
|
@ -21,10 +21,16 @@
|
||||||
#include <gtsam/discrete/DiscreteDistribution.h>
|
#include <gtsam/discrete/DiscreteDistribution.h>
|
||||||
#include <gtsam/hybrid/GaussianMixtureFactor.h>
|
#include <gtsam/hybrid/GaussianMixtureFactor.h>
|
||||||
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
|
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
|
||||||
|
#include <gtsam/hybrid/HybridNonlinearFactorGraph.h>
|
||||||
|
#include <gtsam/hybrid/MixtureFactor.h>
|
||||||
#include <gtsam/inference/Symbol.h>
|
#include <gtsam/inference/Symbol.h>
|
||||||
#include <gtsam/linear/JacobianFactor.h>
|
#include <gtsam/linear/JacobianFactor.h>
|
||||||
|
#include <gtsam/linear/NoiseModel.h>
|
||||||
|
#include <gtsam/nonlinear/PriorFactor.h>
|
||||||
#include <gtsam/slam/BetweenFactor.h>
|
#include <gtsam/slam/BetweenFactor.h>
|
||||||
|
|
||||||
|
#include <vector>
|
||||||
|
|
||||||
#pragma once
|
#pragma once
|
||||||
|
|
||||||
namespace gtsam {
|
namespace gtsam {
|
||||||
|
|
@ -33,111 +39,6 @@ using symbol_shorthand::C;
|
||||||
using symbol_shorthand::M;
|
using symbol_shorthand::M;
|
||||||
using symbol_shorthand::X;
|
using symbol_shorthand::X;
|
||||||
|
|
||||||
/* ****************************************************************************/
|
|
||||||
// Test fixture with switching network.
|
|
||||||
// TODO(Varun) Currently this is only linear. We need to add nonlinear support
|
|
||||||
// and then update to
|
|
||||||
// https://github.com/borglab/gtsam/pull/973/files#diff-58c02b3b197ebf731694946e87762d252e9eaa2f5c6c4ba22d618085b321ca23
|
|
||||||
struct Switching {
|
|
||||||
size_t K;
|
|
||||||
DiscreteKeys modes;
|
|
||||||
HybridGaussianFactorGraph linearizedFactorGraph;
|
|
||||||
Values linearizationPoint;
|
|
||||||
|
|
||||||
using MotionModel = BetweenFactor<double>;
|
|
||||||
// using MotionMixture = MixtureFactor<MotionModel>;
|
|
||||||
|
|
||||||
/// Create with given number of time steps.
|
|
||||||
Switching(size_t K, double between_sigma = 1.0, double prior_sigma = 0.1)
|
|
||||||
: K(K) {
|
|
||||||
// Create DiscreteKeys for binary K modes, modes[0] will not be used.
|
|
||||||
modes = addDiscreteModes(K);
|
|
||||||
|
|
||||||
// Create hybrid factor graph.
|
|
||||||
// Add a prior on X(1).
|
|
||||||
auto prior = boost::make_shared<JacobianFactor>(
|
|
||||||
X(1), Matrix11::Ones() / prior_sigma, Vector1::Zero());
|
|
||||||
linearizedFactorGraph.push_back(prior);
|
|
||||||
|
|
||||||
// Add "motion models".
|
|
||||||
linearizedFactorGraph = addMotionModels(K);
|
|
||||||
|
|
||||||
// Add measurement factors
|
|
||||||
for (size_t k = 1; k <= K; k++) {
|
|
||||||
linearizedFactorGraph.emplace_gaussian<JacobianFactor>(
|
|
||||||
X(k), Matrix11::Ones() / 0.1, Vector1::Zero());
|
|
||||||
}
|
|
||||||
|
|
||||||
// Add "mode chain"
|
|
||||||
linearizedFactorGraph = addModeChain(linearizedFactorGraph);
|
|
||||||
|
|
||||||
// Create the linearization point.
|
|
||||||
for (size_t k = 1; k <= K; k++) {
|
|
||||||
linearizationPoint.insert<double>(X(k), static_cast<double>(k));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Create DiscreteKeys for K binary modes.
|
|
||||||
DiscreteKeys addDiscreteModes(size_t K) {
|
|
||||||
DiscreteKeys m;
|
|
||||||
for (size_t k = 0; k <= K; k++) {
|
|
||||||
m.emplace_back(M(k), 2);
|
|
||||||
}
|
|
||||||
return m;
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Helper function to add motion models for each [k, k+1] interval.
|
|
||||||
HybridGaussianFactorGraph addMotionModels(size_t K) {
|
|
||||||
HybridGaussianFactorGraph hgfg;
|
|
||||||
for (size_t k = 1; k < K; k++) {
|
|
||||||
auto keys = {X(k), X(k + 1)};
|
|
||||||
auto components = motionModels(k);
|
|
||||||
hgfg.emplace_hybrid<GaussianMixtureFactor>(keys, DiscreteKeys{modes[k]},
|
|
||||||
components);
|
|
||||||
}
|
|
||||||
return hgfg;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Create motion models for a given time step
|
|
||||||
static std::vector<GaussianFactor::shared_ptr> motionModels(
|
|
||||||
size_t k, double sigma = 1.0) {
|
|
||||||
auto noise_model = noiseModel::Isotropic::Sigma(1, sigma);
|
|
||||||
auto still = boost::make_shared<JacobianFactor>(
|
|
||||||
X(k), -Matrix11::Ones() / sigma, X(k + 1),
|
|
||||||
Matrix11::Ones() / sigma, Vector1::Zero()),
|
|
||||||
moving = boost::make_shared<JacobianFactor>(
|
|
||||||
X(k), -Matrix11::Ones() / sigma, X(k + 1),
|
|
||||||
Matrix11::Ones() / sigma, -Vector1::Ones() / sigma);
|
|
||||||
return {boost::dynamic_pointer_cast<GaussianFactor>(still),
|
|
||||||
boost::dynamic_pointer_cast<GaussianFactor>(moving)};
|
|
||||||
}
|
|
||||||
|
|
||||||
// // Add "mode chain" to NonlinearHybridFactorGraph
|
|
||||||
// void addModeChain(HybridNonlinearFactorGraph& fg) {
|
|
||||||
// auto prior = boost::make_shared<DiscreteDistribution>(modes[1], "1/1");
|
|
||||||
// fg.push_discrete(prior);
|
|
||||||
// for (size_t k = 1; k < K - 1; k++) {
|
|
||||||
// auto parents = {modes[k]};
|
|
||||||
// auto conditional = boost::make_shared<DiscreteConditional>(
|
|
||||||
// modes[k + 1], parents, "1/2 3/2");
|
|
||||||
// fg.push_discrete(conditional);
|
|
||||||
// }
|
|
||||||
// }
|
|
||||||
|
|
||||||
// Add "mode chain" to GaussianHybridFactorGraph
|
|
||||||
HybridGaussianFactorGraph addModeChain(HybridGaussianFactorGraph& fg) {
|
|
||||||
auto prior = boost::make_shared<DiscreteDistribution>(modes[1], "1/1");
|
|
||||||
fg.push_discrete(prior);
|
|
||||||
for (size_t k = 1; k < K - 1; k++) {
|
|
||||||
auto parents = {modes[k]};
|
|
||||||
auto conditional = boost::make_shared<DiscreteConditional>(
|
|
||||||
modes[k + 1], parents, "1/2 3/2");
|
|
||||||
fg.push_discrete(conditional);
|
|
||||||
}
|
|
||||||
return fg;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @brief Create a switching system chain. A switching system is a continuous
|
* @brief Create a switching system chain. A switching system is a continuous
|
||||||
* system which depends on a discrete mode at each time step of the chain.
|
* system which depends on a discrete mode at each time step of the chain.
|
||||||
|
|
@ -149,7 +50,7 @@ struct Switching {
|
||||||
*/
|
*/
|
||||||
inline HybridGaussianFactorGraph::shared_ptr makeSwitchingChain(
|
inline HybridGaussianFactorGraph::shared_ptr makeSwitchingChain(
|
||||||
size_t n, std::function<Key(int)> keyFunc = X,
|
size_t n, std::function<Key(int)> keyFunc = X,
|
||||||
std::function<Key(int)> dKeyFunc = C) {
|
std::function<Key(int)> dKeyFunc = M) {
|
||||||
HybridGaussianFactorGraph hfg;
|
HybridGaussianFactorGraph hfg;
|
||||||
|
|
||||||
hfg.add(JacobianFactor(keyFunc(1), I_3x3, Z_3x1));
|
hfg.add(JacobianFactor(keyFunc(1), I_3x3, Z_3x1));
|
||||||
|
|
@ -182,7 +83,7 @@ inline HybridGaussianFactorGraph::shared_ptr makeSwitchingChain(
|
||||||
* @return std::pair<KeyVector, std::vector<int>>
|
* @return std::pair<KeyVector, std::vector<int>>
|
||||||
*/
|
*/
|
||||||
inline std::pair<KeyVector, std::vector<int>> makeBinaryOrdering(
|
inline std::pair<KeyVector, std::vector<int>> makeBinaryOrdering(
|
||||||
std::vector<Key>& input) {
|
std::vector<Key> &input) {
|
||||||
KeyVector new_order;
|
KeyVector new_order;
|
||||||
|
|
||||||
std::vector<int> levels(input.size());
|
std::vector<int> levels(input.size());
|
||||||
|
|
@ -211,4 +112,103 @@ inline std::pair<KeyVector, std::vector<int>> makeBinaryOrdering(
|
||||||
return {new_order, levels};
|
return {new_order, levels};
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/* ***************************************************************************
|
||||||
|
*/
|
||||||
|
using MotionModel = BetweenFactor<double>;
|
||||||
|
// using MotionMixture = MixtureFactor<MotionModel>;
|
||||||
|
|
||||||
|
// Test fixture with switching network.
|
||||||
|
struct Switching {
|
||||||
|
size_t K;
|
||||||
|
DiscreteKeys modes;
|
||||||
|
HybridNonlinearFactorGraph nonlinearFactorGraph;
|
||||||
|
HybridGaussianFactorGraph linearizedFactorGraph;
|
||||||
|
Values linearizationPoint;
|
||||||
|
|
||||||
|
/// Create with given number of time steps.
|
||||||
|
Switching(size_t K, double between_sigma = 1.0, double prior_sigma = 0.1)
|
||||||
|
: K(K) {
|
||||||
|
using symbol_shorthand::M;
|
||||||
|
using symbol_shorthand::X;
|
||||||
|
|
||||||
|
// Create DiscreteKeys for binary K modes, modes[0] will not be used.
|
||||||
|
for (size_t k = 0; k <= K; k++) {
|
||||||
|
modes.emplace_back(M(k), 2);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Create hybrid factor graph.
|
||||||
|
// Add a prior on X(1).
|
||||||
|
auto prior = boost::make_shared<PriorFactor<double>>(
|
||||||
|
X(1), 0, noiseModel::Isotropic::Sigma(1, prior_sigma));
|
||||||
|
nonlinearFactorGraph.push_nonlinear(prior);
|
||||||
|
|
||||||
|
// Add "motion models".
|
||||||
|
for (size_t k = 1; k < K; k++) {
|
||||||
|
KeyVector keys = {X(k), X(k + 1)};
|
||||||
|
auto motion_models = motionModels(k);
|
||||||
|
std::vector<NonlinearFactor::shared_ptr> components;
|
||||||
|
for (auto &&f : motion_models) {
|
||||||
|
components.push_back(boost::dynamic_pointer_cast<NonlinearFactor>(f));
|
||||||
|
}
|
||||||
|
nonlinearFactorGraph.emplace_hybrid<MixtureFactor>(
|
||||||
|
keys, DiscreteKeys{modes[k]}, components);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Add measurement factors
|
||||||
|
auto measurement_noise = noiseModel::Isotropic::Sigma(1, 0.1);
|
||||||
|
for (size_t k = 2; k <= K; k++) {
|
||||||
|
nonlinearFactorGraph.emplace_nonlinear<PriorFactor<double>>(
|
||||||
|
X(k), 1.0 * (k - 1), measurement_noise);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Add "mode chain"
|
||||||
|
addModeChain(&nonlinearFactorGraph);
|
||||||
|
|
||||||
|
// Create the linearization point.
|
||||||
|
for (size_t k = 1; k <= K; k++) {
|
||||||
|
linearizationPoint.insert<double>(X(k), static_cast<double>(k));
|
||||||
|
}
|
||||||
|
|
||||||
|
linearizedFactorGraph = nonlinearFactorGraph.linearize(linearizationPoint);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Create motion models for a given time step
|
||||||
|
static std::vector<MotionModel::shared_ptr> motionModels(size_t k,
|
||||||
|
double sigma = 1.0) {
|
||||||
|
using symbol_shorthand::M;
|
||||||
|
using symbol_shorthand::X;
|
||||||
|
|
||||||
|
auto noise_model = noiseModel::Isotropic::Sigma(1, sigma);
|
||||||
|
auto still =
|
||||||
|
boost::make_shared<MotionModel>(X(k), X(k + 1), 0.0, noise_model),
|
||||||
|
moving =
|
||||||
|
boost::make_shared<MotionModel>(X(k), X(k + 1), 1.0, noise_model);
|
||||||
|
return {still, moving};
|
||||||
|
}
|
||||||
|
|
||||||
|
// Add "mode chain" to HybridNonlinearFactorGraph
|
||||||
|
void addModeChain(HybridNonlinearFactorGraph *fg) {
|
||||||
|
auto prior = boost::make_shared<DiscreteDistribution>(modes[1], "1/1");
|
||||||
|
fg->push_discrete(prior);
|
||||||
|
for (size_t k = 1; k < K - 1; k++) {
|
||||||
|
auto parents = {modes[k]};
|
||||||
|
auto conditional = boost::make_shared<DiscreteConditional>(
|
||||||
|
modes[k + 1], parents, "1/2 3/2");
|
||||||
|
fg->push_discrete(conditional);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Add "mode chain" to HybridGaussianFactorGraph
|
||||||
|
void addModeChain(HybridGaussianFactorGraph *fg) {
|
||||||
|
auto prior = boost::make_shared<DiscreteDistribution>(modes[1], "1/1");
|
||||||
|
fg->push_discrete(prior);
|
||||||
|
for (size_t k = 1; k < K - 1; k++) {
|
||||||
|
auto parents = {modes[k]};
|
||||||
|
auto conditional = boost::make_shared<DiscreteConditional>(
|
||||||
|
modes[k + 1], parents, "1/2 3/2");
|
||||||
|
fg->push_discrete(conditional);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
} // namespace gtsam
|
} // namespace gtsam
|
||||||
|
|
|
||||||
|
|
@ -52,8 +52,8 @@ using namespace boost::assign;
|
||||||
using namespace std;
|
using namespace std;
|
||||||
using namespace gtsam;
|
using namespace gtsam;
|
||||||
|
|
||||||
using gtsam::symbol_shorthand::C;
|
|
||||||
using gtsam::symbol_shorthand::D;
|
using gtsam::symbol_shorthand::D;
|
||||||
|
using gtsam::symbol_shorthand::M;
|
||||||
using gtsam::symbol_shorthand::X;
|
using gtsam::symbol_shorthand::X;
|
||||||
using gtsam::symbol_shorthand::Y;
|
using gtsam::symbol_shorthand::Y;
|
||||||
|
|
||||||
|
|
@ -67,9 +67,9 @@ TEST(HybridGaussianFactorGraph, Creation) {
|
||||||
|
|
||||||
// Define a gaussian mixture conditional P(x0|x1, c0) and add it to the factor
|
// Define a gaussian mixture conditional P(x0|x1, c0) and add it to the factor
|
||||||
// graph
|
// graph
|
||||||
GaussianMixture gm({X(0)}, {X(1)}, DiscreteKeys(DiscreteKey{C(0), 2}),
|
GaussianMixture gm({X(0)}, {X(1)}, DiscreteKeys(DiscreteKey{M(0), 2}),
|
||||||
GaussianMixture::Conditionals(
|
GaussianMixture::Conditionals(
|
||||||
C(0),
|
M(0),
|
||||||
boost::make_shared<GaussianConditional>(
|
boost::make_shared<GaussianConditional>(
|
||||||
X(0), Z_3x1, I_3x3, X(1), I_3x3),
|
X(0), Z_3x1, I_3x3, X(1), I_3x3),
|
||||||
boost::make_shared<GaussianConditional>(
|
boost::make_shared<GaussianConditional>(
|
||||||
|
|
@ -96,11 +96,11 @@ TEST(HybridGaussianFactorGraph, EliminateMultifrontal) {
|
||||||
// Test multifrontal elimination
|
// Test multifrontal elimination
|
||||||
HybridGaussianFactorGraph hfg;
|
HybridGaussianFactorGraph hfg;
|
||||||
|
|
||||||
DiscreteKey c(C(1), 2);
|
DiscreteKey m(M(1), 2);
|
||||||
|
|
||||||
// Add priors on x0 and c1
|
// Add priors on x0 and c1
|
||||||
hfg.add(JacobianFactor(X(0), I_3x3, Z_3x1));
|
hfg.add(JacobianFactor(X(0), I_3x3, Z_3x1));
|
||||||
hfg.add(HybridDiscreteFactor(DecisionTreeFactor(c, {2, 8})));
|
hfg.add(HybridDiscreteFactor(DecisionTreeFactor(m, {2, 8})));
|
||||||
|
|
||||||
Ordering ordering;
|
Ordering ordering;
|
||||||
ordering.push_back(X(0));
|
ordering.push_back(X(0));
|
||||||
|
|
@ -114,7 +114,7 @@ TEST(HybridGaussianFactorGraph, EliminateMultifrontal) {
|
||||||
TEST(HybridGaussianFactorGraph, eliminateFullSequentialEqualChance) {
|
TEST(HybridGaussianFactorGraph, eliminateFullSequentialEqualChance) {
|
||||||
HybridGaussianFactorGraph hfg;
|
HybridGaussianFactorGraph hfg;
|
||||||
|
|
||||||
DiscreteKey c1(C(1), 2);
|
DiscreteKey m1(M(1), 2);
|
||||||
|
|
||||||
// Add prior on x0
|
// Add prior on x0
|
||||||
hfg.add(JacobianFactor(X(0), I_3x3, Z_3x1));
|
hfg.add(JacobianFactor(X(0), I_3x3, Z_3x1));
|
||||||
|
|
@ -123,45 +123,45 @@ TEST(HybridGaussianFactorGraph, eliminateFullSequentialEqualChance) {
|
||||||
|
|
||||||
// Add a gaussian mixture factor ϕ(x1, c1)
|
// Add a gaussian mixture factor ϕ(x1, c1)
|
||||||
DecisionTree<Key, GaussianFactor::shared_ptr> dt(
|
DecisionTree<Key, GaussianFactor::shared_ptr> dt(
|
||||||
C(1), boost::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1),
|
M(1), boost::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1),
|
||||||
boost::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones()));
|
boost::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones()));
|
||||||
|
|
||||||
hfg.add(GaussianMixtureFactor({X(1)}, {c1}, dt));
|
hfg.add(GaussianMixtureFactor({X(1)}, {m1}, dt));
|
||||||
|
|
||||||
auto result =
|
auto result =
|
||||||
hfg.eliminateSequential(Ordering::ColamdConstrainedLast(hfg, {C(1)}));
|
hfg.eliminateSequential(Ordering::ColamdConstrainedLast(hfg, {M(1)}));
|
||||||
|
|
||||||
auto dc = result->at(2)->asDiscreteConditional();
|
auto dc = result->at(2)->asDiscreteConditional();
|
||||||
DiscreteValues mode;
|
DiscreteValues dv;
|
||||||
mode[C(1)] = 0;
|
dv[M(1)] = 0;
|
||||||
EXPECT_DOUBLES_EQUAL(0.6225, (*dc)(mode), 1e-3);
|
EXPECT_DOUBLES_EQUAL(1, dc->operator()(dv), 1e-3);
|
||||||
}
|
}
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
TEST(HybridGaussianFactorGraph, eliminateFullSequentialSimple) {
|
TEST(HybridGaussianFactorGraph, eliminateFullSequentialSimple) {
|
||||||
HybridGaussianFactorGraph hfg;
|
HybridGaussianFactorGraph hfg;
|
||||||
|
|
||||||
DiscreteKey c1(C(1), 2);
|
DiscreteKey m1(M(1), 2);
|
||||||
|
|
||||||
// Add prior on x0
|
// Add prior on x0
|
||||||
hfg.add(JacobianFactor(X(0), I_3x3, Z_3x1));
|
hfg.add(JacobianFactor(X(0), I_3x3, Z_3x1));
|
||||||
// Add factor between x0 and x1
|
// Add factor between x0 and x1
|
||||||
hfg.add(JacobianFactor(X(0), I_3x3, X(1), -I_3x3, Z_3x1));
|
hfg.add(JacobianFactor(X(0), I_3x3, X(1), -I_3x3, Z_3x1));
|
||||||
|
|
||||||
DecisionTree<Key, GaussianFactor::shared_ptr> dt(
|
std::vector<GaussianFactor::shared_ptr> factors = {
|
||||||
C(1), boost::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1),
|
boost::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1),
|
||||||
boost::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones()));
|
boost::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones())};
|
||||||
hfg.add(GaussianMixtureFactor({X(1)}, {c1}, dt));
|
hfg.add(GaussianMixtureFactor({X(1)}, {m1}, factors));
|
||||||
|
|
||||||
// Discrete probability table for c1
|
// Discrete probability table for c1
|
||||||
hfg.add(HybridDiscreteFactor(DecisionTreeFactor(c1, {2, 8})));
|
hfg.add(DecisionTreeFactor(m1, {2, 8}));
|
||||||
// Joint discrete probability table for c1, c2
|
// Joint discrete probability table for c1, c2
|
||||||
hfg.add(HybridDiscreteFactor(
|
hfg.add(DecisionTreeFactor({{M(1), 2}, {M(2), 2}}, "1 2 3 4"));
|
||||||
DecisionTreeFactor({{C(1), 2}, {C(2), 2}}, "1 2 3 4")));
|
|
||||||
|
|
||||||
auto result = hfg.eliminateSequential(
|
HybridBayesNet::shared_ptr result = hfg.eliminateSequential(
|
||||||
Ordering::ColamdConstrainedLast(hfg, {C(1), C(2)}));
|
Ordering::ColamdConstrainedLast(hfg, {M(1), M(2)}));
|
||||||
|
|
||||||
|
// There are 4 variables (2 continuous + 2 discrete) in the bayes net.
|
||||||
EXPECT_LONGS_EQUAL(4, result->size());
|
EXPECT_LONGS_EQUAL(4, result->size());
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
@ -169,31 +169,33 @@ TEST(HybridGaussianFactorGraph, eliminateFullSequentialSimple) {
|
||||||
TEST(HybridGaussianFactorGraph, eliminateFullMultifrontalSimple) {
|
TEST(HybridGaussianFactorGraph, eliminateFullMultifrontalSimple) {
|
||||||
HybridGaussianFactorGraph hfg;
|
HybridGaussianFactorGraph hfg;
|
||||||
|
|
||||||
DiscreteKey c1(C(1), 2);
|
DiscreteKey m1(M(1), 2);
|
||||||
|
|
||||||
hfg.add(JacobianFactor(X(0), I_3x3, Z_3x1));
|
hfg.add(JacobianFactor(X(0), I_3x3, Z_3x1));
|
||||||
hfg.add(JacobianFactor(X(0), I_3x3, X(1), -I_3x3, Z_3x1));
|
hfg.add(JacobianFactor(X(0), I_3x3, X(1), -I_3x3, Z_3x1));
|
||||||
|
|
||||||
hfg.add(GaussianMixtureFactor::FromFactors(
|
hfg.add(GaussianMixtureFactor::FromFactors(
|
||||||
{X(1)}, {{C(1), 2}},
|
{X(1)}, {{M(1), 2}},
|
||||||
{boost::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1),
|
{boost::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1),
|
||||||
boost::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones())}));
|
boost::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones())}));
|
||||||
|
|
||||||
hfg.add(DecisionTreeFactor(c1, {2, 8}));
|
hfg.add(DecisionTreeFactor(m1, {2, 8}));
|
||||||
hfg.add(DecisionTreeFactor({{C(1), 2}, {C(2), 2}}, "1 2 3 4"));
|
hfg.add(DecisionTreeFactor({{M(1), 2}, {M(2), 2}}, "1 2 3 4"));
|
||||||
|
|
||||||
auto result = hfg.eliminateMultifrontal(
|
HybridBayesTree::shared_ptr result = hfg.eliminateMultifrontal(
|
||||||
Ordering::ColamdConstrainedLast(hfg, {C(1), C(2)}));
|
Ordering::ColamdConstrainedLast(hfg, {M(1), M(2)}));
|
||||||
|
|
||||||
|
// The bayes tree should have 3 cliques
|
||||||
|
EXPECT_LONGS_EQUAL(3, result->size());
|
||||||
// GTSAM_PRINT(*result);
|
// GTSAM_PRINT(*result);
|
||||||
// GTSAM_PRINT(*result->marginalFactor(C(2)));
|
// GTSAM_PRINT(*result->marginalFactor(M(2)));
|
||||||
}
|
}
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
TEST(HybridGaussianFactorGraph, eliminateFullMultifrontalCLG) {
|
TEST(HybridGaussianFactorGraph, eliminateFullMultifrontalCLG) {
|
||||||
HybridGaussianFactorGraph hfg;
|
HybridGaussianFactorGraph hfg;
|
||||||
|
|
||||||
DiscreteKey c(C(1), 2);
|
DiscreteKey m(M(1), 2);
|
||||||
|
|
||||||
// Prior on x0
|
// Prior on x0
|
||||||
hfg.add(JacobianFactor(X(0), I_3x3, Z_3x1));
|
hfg.add(JacobianFactor(X(0), I_3x3, Z_3x1));
|
||||||
|
|
@ -202,16 +204,16 @@ TEST(HybridGaussianFactorGraph, eliminateFullMultifrontalCLG) {
|
||||||
|
|
||||||
// Decision tree with different modes on x1
|
// Decision tree with different modes on x1
|
||||||
DecisionTree<Key, GaussianFactor::shared_ptr> dt(
|
DecisionTree<Key, GaussianFactor::shared_ptr> dt(
|
||||||
C(1), boost::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1),
|
M(1), boost::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1),
|
||||||
boost::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones()));
|
boost::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones()));
|
||||||
|
|
||||||
// Hybrid factor P(x1|c1)
|
// Hybrid factor P(x1|c1)
|
||||||
hfg.add(GaussianMixtureFactor({X(1)}, {c}, dt));
|
hfg.add(GaussianMixtureFactor({X(1)}, {m}, dt));
|
||||||
// Prior factor on c1
|
// Prior factor on c1
|
||||||
hfg.add(HybridDiscreteFactor(DecisionTreeFactor(c, {2, 8})));
|
hfg.add(HybridDiscreteFactor(DecisionTreeFactor(m, {2, 8})));
|
||||||
|
|
||||||
// Get a constrained ordering keeping c1 last
|
// Get a constrained ordering keeping c1 last
|
||||||
auto ordering_full = Ordering::ColamdConstrainedLast(hfg, {C(1)});
|
auto ordering_full = Ordering::ColamdConstrainedLast(hfg, {M(1)});
|
||||||
|
|
||||||
// Returns a Hybrid Bayes Tree with distribution P(x0|x1)P(x1|c1)P(c1)
|
// Returns a Hybrid Bayes Tree with distribution P(x0|x1)P(x1|c1)P(c1)
|
||||||
HybridBayesTree::shared_ptr hbt = hfg.eliminateMultifrontal(ordering_full);
|
HybridBayesTree::shared_ptr hbt = hfg.eliminateMultifrontal(ordering_full);
|
||||||
|
|
@ -232,48 +234,48 @@ TEST(HybridGaussianFactorGraph, eliminateFullMultifrontalTwoClique) {
|
||||||
|
|
||||||
{
|
{
|
||||||
hfg.add(GaussianMixtureFactor::FromFactors(
|
hfg.add(GaussianMixtureFactor::FromFactors(
|
||||||
{X(0)}, {{C(0), 2}},
|
{X(0)}, {{M(0), 2}},
|
||||||
{boost::make_shared<JacobianFactor>(X(0), I_3x3, Z_3x1),
|
{boost::make_shared<JacobianFactor>(X(0), I_3x3, Z_3x1),
|
||||||
boost::make_shared<JacobianFactor>(X(0), I_3x3, Vector3::Ones())}));
|
boost::make_shared<JacobianFactor>(X(0), I_3x3, Vector3::Ones())}));
|
||||||
|
|
||||||
DecisionTree<Key, GaussianFactor::shared_ptr> dt1(
|
DecisionTree<Key, GaussianFactor::shared_ptr> dt1(
|
||||||
C(1), boost::make_shared<JacobianFactor>(X(2), I_3x3, Z_3x1),
|
M(1), boost::make_shared<JacobianFactor>(X(2), I_3x3, Z_3x1),
|
||||||
boost::make_shared<JacobianFactor>(X(2), I_3x3, Vector3::Ones()));
|
boost::make_shared<JacobianFactor>(X(2), I_3x3, Vector3::Ones()));
|
||||||
|
|
||||||
hfg.add(GaussianMixtureFactor({X(2)}, {{C(1), 2}}, dt1));
|
hfg.add(GaussianMixtureFactor({X(2)}, {{M(1), 2}}, dt1));
|
||||||
}
|
}
|
||||||
|
|
||||||
hfg.add(HybridDiscreteFactor(
|
hfg.add(HybridDiscreteFactor(
|
||||||
DecisionTreeFactor({{C(1), 2}, {C(2), 2}}, "1 2 3 4")));
|
DecisionTreeFactor({{M(1), 2}, {M(2), 2}}, "1 2 3 4")));
|
||||||
|
|
||||||
hfg.add(JacobianFactor(X(3), I_3x3, X(4), -I_3x3, Z_3x1));
|
hfg.add(JacobianFactor(X(3), I_3x3, X(4), -I_3x3, Z_3x1));
|
||||||
hfg.add(JacobianFactor(X(4), I_3x3, X(5), -I_3x3, Z_3x1));
|
hfg.add(JacobianFactor(X(4), I_3x3, X(5), -I_3x3, Z_3x1));
|
||||||
|
|
||||||
{
|
{
|
||||||
DecisionTree<Key, GaussianFactor::shared_ptr> dt(
|
DecisionTree<Key, GaussianFactor::shared_ptr> dt(
|
||||||
C(3), boost::make_shared<JacobianFactor>(X(3), I_3x3, Z_3x1),
|
M(3), boost::make_shared<JacobianFactor>(X(3), I_3x3, Z_3x1),
|
||||||
boost::make_shared<JacobianFactor>(X(3), I_3x3, Vector3::Ones()));
|
boost::make_shared<JacobianFactor>(X(3), I_3x3, Vector3::Ones()));
|
||||||
|
|
||||||
hfg.add(GaussianMixtureFactor({X(3)}, {{C(3), 2}}, dt));
|
hfg.add(GaussianMixtureFactor({X(3)}, {{M(3), 2}}, dt));
|
||||||
|
|
||||||
DecisionTree<Key, GaussianFactor::shared_ptr> dt1(
|
DecisionTree<Key, GaussianFactor::shared_ptr> dt1(
|
||||||
C(2), boost::make_shared<JacobianFactor>(X(5), I_3x3, Z_3x1),
|
M(2), boost::make_shared<JacobianFactor>(X(5), I_3x3, Z_3x1),
|
||||||
boost::make_shared<JacobianFactor>(X(5), I_3x3, Vector3::Ones()));
|
boost::make_shared<JacobianFactor>(X(5), I_3x3, Vector3::Ones()));
|
||||||
|
|
||||||
hfg.add(GaussianMixtureFactor({X(5)}, {{C(2), 2}}, dt1));
|
hfg.add(GaussianMixtureFactor({X(5)}, {{M(2), 2}}, dt1));
|
||||||
}
|
}
|
||||||
|
|
||||||
auto ordering_full =
|
auto ordering_full =
|
||||||
Ordering::ColamdConstrainedLast(hfg, {C(0), C(1), C(2), C(3)});
|
Ordering::ColamdConstrainedLast(hfg, {M(0), M(1), M(2), M(3)});
|
||||||
|
|
||||||
HybridBayesTree::shared_ptr hbt;
|
HybridBayesTree::shared_ptr hbt;
|
||||||
HybridGaussianFactorGraph::shared_ptr remaining;
|
HybridGaussianFactorGraph::shared_ptr remaining;
|
||||||
std::tie(hbt, remaining) = hfg.eliminatePartialMultifrontal(ordering_full);
|
std::tie(hbt, remaining) = hfg.eliminatePartialMultifrontal(ordering_full);
|
||||||
|
|
||||||
// GTSAM_PRINT(*hbt);
|
// 9 cliques in the bayes tree and 0 remaining variables to eliminate.
|
||||||
// GTSAM_PRINT(*remaining);
|
EXPECT_LONGS_EQUAL(9, hbt->size());
|
||||||
|
EXPECT_LONGS_EQUAL(0, remaining->size());
|
||||||
|
|
||||||
// hbt->marginalFactor(X(1))->print("HBT: ");
|
|
||||||
/*
|
/*
|
||||||
(Fan) Explanation: the Junction tree will need to reeliminate to get to the
|
(Fan) Explanation: the Junction tree will need to reeliminate to get to the
|
||||||
marginal on X(1), which is not possible because it involves eliminating
|
marginal on X(1), which is not possible because it involves eliminating
|
||||||
|
|
@ -307,13 +309,13 @@ TEST(HybridGaussianFactorGraph, Switching) {
|
||||||
// X(3), X(7)
|
// X(3), X(7)
|
||||||
// X(2), X(8)
|
// X(2), X(8)
|
||||||
// X(1), X(4), X(6), X(9)
|
// X(1), X(4), X(6), X(9)
|
||||||
// C(5) will be the center, C(1-4), C(6-8)
|
// M(5) will be the center, M(1-4), M(6-8)
|
||||||
// C(3), C(7)
|
// M(3), M(7)
|
||||||
// C(1), C(4), C(2), C(6), C(8)
|
// M(1), M(4), M(2), M(6), M(8)
|
||||||
// auto ordering_full =
|
// auto ordering_full =
|
||||||
// Ordering(KeyVector{X(1), X(4), X(2), X(6), X(9), X(8), X(3), X(7),
|
// Ordering(KeyVector{X(1), X(4), X(2), X(6), X(9), X(8), X(3), X(7),
|
||||||
// X(5),
|
// X(5),
|
||||||
// C(1), C(4), C(2), C(6), C(8), C(3), C(7), C(5)});
|
// M(1), M(4), M(2), M(6), M(8), M(3), M(7), M(5)});
|
||||||
KeyVector ordering;
|
KeyVector ordering;
|
||||||
|
|
||||||
{
|
{
|
||||||
|
|
@ -336,7 +338,7 @@ TEST(HybridGaussianFactorGraph, Switching) {
|
||||||
std::iota(naturalC.begin(), naturalC.end(), 1);
|
std::iota(naturalC.begin(), naturalC.end(), 1);
|
||||||
std::vector<Key> ordC;
|
std::vector<Key> ordC;
|
||||||
std::transform(naturalC.begin(), naturalC.end(), std::back_inserter(ordC),
|
std::transform(naturalC.begin(), naturalC.end(), std::back_inserter(ordC),
|
||||||
[](int x) { return C(x); });
|
[](int x) { return M(x); });
|
||||||
KeyVector ndC;
|
KeyVector ndC;
|
||||||
std::vector<int> lvls;
|
std::vector<int> lvls;
|
||||||
|
|
||||||
|
|
@ -353,9 +355,9 @@ TEST(HybridGaussianFactorGraph, Switching) {
|
||||||
HybridGaussianFactorGraph::shared_ptr remaining;
|
HybridGaussianFactorGraph::shared_ptr remaining;
|
||||||
std::tie(hbt, remaining) = hfg->eliminatePartialMultifrontal(ordering_full);
|
std::tie(hbt, remaining) = hfg->eliminatePartialMultifrontal(ordering_full);
|
||||||
|
|
||||||
// GTSAM_PRINT(*hbt);
|
// 12 cliques in the bayes tree and 0 remaining variables to eliminate.
|
||||||
// GTSAM_PRINT(*remaining);
|
EXPECT_LONGS_EQUAL(12, hbt->size());
|
||||||
// hbt->marginalFactor(C(11))->print("HBT: ");
|
EXPECT_LONGS_EQUAL(0, remaining->size());
|
||||||
}
|
}
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
|
|
@ -368,13 +370,13 @@ TEST(HybridGaussianFactorGraph, SwitchingISAM) {
|
||||||
// X(3), X(7)
|
// X(3), X(7)
|
||||||
// X(2), X(8)
|
// X(2), X(8)
|
||||||
// X(1), X(4), X(6), X(9)
|
// X(1), X(4), X(6), X(9)
|
||||||
// C(5) will be the center, C(1-4), C(6-8)
|
// M(5) will be the center, M(1-4), M(6-8)
|
||||||
// C(3), C(7)
|
// M(3), M(7)
|
||||||
// C(1), C(4), C(2), C(6), C(8)
|
// M(1), M(4), M(2), M(6), M(8)
|
||||||
// auto ordering_full =
|
// auto ordering_full =
|
||||||
// Ordering(KeyVector{X(1), X(4), X(2), X(6), X(9), X(8), X(3), X(7),
|
// Ordering(KeyVector{X(1), X(4), X(2), X(6), X(9), X(8), X(3), X(7),
|
||||||
// X(5),
|
// X(5),
|
||||||
// C(1), C(4), C(2), C(6), C(8), C(3), C(7), C(5)});
|
// M(1), M(4), M(2), M(6), M(8), M(3), M(7), M(5)});
|
||||||
KeyVector ordering;
|
KeyVector ordering;
|
||||||
|
|
||||||
{
|
{
|
||||||
|
|
@ -397,7 +399,7 @@ TEST(HybridGaussianFactorGraph, SwitchingISAM) {
|
||||||
std::iota(naturalC.begin(), naturalC.end(), 1);
|
std::iota(naturalC.begin(), naturalC.end(), 1);
|
||||||
std::vector<Key> ordC;
|
std::vector<Key> ordC;
|
||||||
std::transform(naturalC.begin(), naturalC.end(), std::back_inserter(ordC),
|
std::transform(naturalC.begin(), naturalC.end(), std::back_inserter(ordC),
|
||||||
[](int x) { return C(x); });
|
[](int x) { return M(x); });
|
||||||
KeyVector ndC;
|
KeyVector ndC;
|
||||||
std::vector<int> lvls;
|
std::vector<int> lvls;
|
||||||
|
|
||||||
|
|
@ -407,9 +409,6 @@ TEST(HybridGaussianFactorGraph, SwitchingISAM) {
|
||||||
}
|
}
|
||||||
auto ordering_full = Ordering(ordering);
|
auto ordering_full = Ordering(ordering);
|
||||||
|
|
||||||
// GTSAM_PRINT(*hfg);
|
|
||||||
// GTSAM_PRINT(ordering_full);
|
|
||||||
|
|
||||||
HybridBayesTree::shared_ptr hbt;
|
HybridBayesTree::shared_ptr hbt;
|
||||||
HybridGaussianFactorGraph::shared_ptr remaining;
|
HybridGaussianFactorGraph::shared_ptr remaining;
|
||||||
std::tie(hbt, remaining) = hfg->eliminatePartialMultifrontal(ordering_full);
|
std::tie(hbt, remaining) = hfg->eliminatePartialMultifrontal(ordering_full);
|
||||||
|
|
@ -417,19 +416,18 @@ TEST(HybridGaussianFactorGraph, SwitchingISAM) {
|
||||||
auto new_fg = makeSwitchingChain(12);
|
auto new_fg = makeSwitchingChain(12);
|
||||||
auto isam = HybridGaussianISAM(*hbt);
|
auto isam = HybridGaussianISAM(*hbt);
|
||||||
|
|
||||||
{
|
// Run an ISAM update.
|
||||||
HybridGaussianFactorGraph factorGraph;
|
HybridGaussianFactorGraph factorGraph;
|
||||||
factorGraph.push_back(new_fg->at(new_fg->size() - 2));
|
factorGraph.push_back(new_fg->at(new_fg->size() - 2));
|
||||||
factorGraph.push_back(new_fg->at(new_fg->size() - 1));
|
factorGraph.push_back(new_fg->at(new_fg->size() - 1));
|
||||||
isam.update(factorGraph);
|
isam.update(factorGraph);
|
||||||
// std::cout << isam.dot();
|
|
||||||
// isam.marginalFactor(C(11))->print();
|
// ISAM should have 12 factors after the last update
|
||||||
}
|
EXPECT_LONGS_EQUAL(12, isam.size());
|
||||||
}
|
}
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
// TODO(Varun) Actually test something!
|
TEST(HybridGaussianFactorGraph, SwitchingTwoVar) {
|
||||||
TEST_DISABLED(HybridGaussianFactorGraph, SwitchingTwoVar) {
|
|
||||||
const int N = 7;
|
const int N = 7;
|
||||||
auto hfg = makeSwitchingChain(N, X);
|
auto hfg = makeSwitchingChain(N, X);
|
||||||
hfg->push_back(*makeSwitchingChain(N, Y, D));
|
hfg->push_back(*makeSwitchingChain(N, Y, D));
|
||||||
|
|
@ -449,7 +447,7 @@ TEST_DISABLED(HybridGaussianFactorGraph, SwitchingTwoVar) {
|
||||||
}
|
}
|
||||||
|
|
||||||
for (size_t i = 1; i <= N - 1; i++) {
|
for (size_t i = 1; i <= N - 1; i++) {
|
||||||
ordX.emplace_back(C(i));
|
ordX.emplace_back(M(i));
|
||||||
}
|
}
|
||||||
for (size_t i = 1; i <= N - 1; i++) {
|
for (size_t i = 1; i <= N - 1; i++) {
|
||||||
ordX.emplace_back(D(i));
|
ordX.emplace_back(D(i));
|
||||||
|
|
@ -461,8 +459,8 @@ TEST_DISABLED(HybridGaussianFactorGraph, SwitchingTwoVar) {
|
||||||
dw.positionHints['c'] = 0;
|
dw.positionHints['c'] = 0;
|
||||||
dw.positionHints['d'] = 3;
|
dw.positionHints['d'] = 3;
|
||||||
dw.positionHints['y'] = 2;
|
dw.positionHints['y'] = 2;
|
||||||
std::cout << hfg->dot(DefaultKeyFormatter, dw);
|
// std::cout << hfg->dot(DefaultKeyFormatter, dw);
|
||||||
std::cout << "\n";
|
// std::cout << "\n";
|
||||||
}
|
}
|
||||||
|
|
||||||
{
|
{
|
||||||
|
|
@ -471,10 +469,10 @@ TEST_DISABLED(HybridGaussianFactorGraph, SwitchingTwoVar) {
|
||||||
// dw.positionHints['c'] = 0;
|
// dw.positionHints['c'] = 0;
|
||||||
// dw.positionHints['d'] = 3;
|
// dw.positionHints['d'] = 3;
|
||||||
dw.positionHints['x'] = 1;
|
dw.positionHints['x'] = 1;
|
||||||
std::cout << "\n";
|
// std::cout << "\n";
|
||||||
// std::cout << hfg->eliminateSequential(Ordering(ordX))
|
// std::cout << hfg->eliminateSequential(Ordering(ordX))
|
||||||
// ->dot(DefaultKeyFormatter, dw);
|
// ->dot(DefaultKeyFormatter, dw);
|
||||||
hfg->eliminateMultifrontal(Ordering(ordX))->dot(std::cout);
|
// hfg->eliminateMultifrontal(Ordering(ordX))->dot(std::cout);
|
||||||
}
|
}
|
||||||
|
|
||||||
Ordering ordering_partial;
|
Ordering ordering_partial;
|
||||||
|
|
@ -482,22 +480,22 @@ TEST_DISABLED(HybridGaussianFactorGraph, SwitchingTwoVar) {
|
||||||
ordering_partial.emplace_back(X(i));
|
ordering_partial.emplace_back(X(i));
|
||||||
ordering_partial.emplace_back(Y(i));
|
ordering_partial.emplace_back(Y(i));
|
||||||
}
|
}
|
||||||
{
|
HybridBayesNet::shared_ptr hbn;
|
||||||
HybridBayesNet::shared_ptr hbn;
|
HybridGaussianFactorGraph::shared_ptr remaining;
|
||||||
HybridGaussianFactorGraph::shared_ptr remaining;
|
std::tie(hbn, remaining) =
|
||||||
std::tie(hbn, remaining) =
|
hfg->eliminatePartialSequential(ordering_partial);
|
||||||
hfg->eliminatePartialSequential(ordering_partial);
|
|
||||||
|
|
||||||
// remaining->print();
|
EXPECT_LONGS_EQUAL(14, hbn->size());
|
||||||
{
|
EXPECT_LONGS_EQUAL(11, remaining->size());
|
||||||
DotWriter dw;
|
|
||||||
dw.positionHints['x'] = 1;
|
{
|
||||||
dw.positionHints['c'] = 0;
|
DotWriter dw;
|
||||||
dw.positionHints['d'] = 3;
|
dw.positionHints['x'] = 1;
|
||||||
dw.positionHints['y'] = 2;
|
dw.positionHints['c'] = 0;
|
||||||
std::cout << remaining->dot(DefaultKeyFormatter, dw);
|
dw.positionHints['d'] = 3;
|
||||||
std::cout << "\n";
|
dw.positionHints['y'] = 2;
|
||||||
}
|
// std::cout << remaining->dot(DefaultKeyFormatter, dw);
|
||||||
|
// std::cout << "\n";
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -74,7 +74,7 @@ TEST(GaussianMixtureFactor, Sum) {
|
||||||
// Check that number of keys is 3
|
// Check that number of keys is 3
|
||||||
EXPECT_LONGS_EQUAL(3, mixtureFactorA.keys().size());
|
EXPECT_LONGS_EQUAL(3, mixtureFactorA.keys().size());
|
||||||
|
|
||||||
// Check that number of discrete keys is 1 // TODO(Frank): should not exist?
|
// Check that number of discrete keys is 1
|
||||||
EXPECT_LONGS_EQUAL(1, mixtureFactorA.discreteKeys().size());
|
EXPECT_LONGS_EQUAL(1, mixtureFactorA.discreteKeys().size());
|
||||||
|
|
||||||
// Create sum of two mixture factors: it will be a decision tree now on both
|
// Create sum of two mixture factors: it will be a decision tree now on both
|
||||||
|
|
@ -104,7 +104,7 @@ TEST(GaussianMixtureFactor, Printing) {
|
||||||
GaussianMixtureFactor mixtureFactor({X(1), X(2)}, {m1}, factors);
|
GaussianMixtureFactor mixtureFactor({X(1), X(2)}, {m1}, factors);
|
||||||
|
|
||||||
std::string expected =
|
std::string expected =
|
||||||
R"(Hybrid x1 x2; 1 ]{
|
R"(Hybrid [x1 x2; 1]{
|
||||||
Choice(1)
|
Choice(1)
|
||||||
0 Leaf :
|
0 Leaf :
|
||||||
A[x1] = [
|
A[x1] = [
|
||||||
|
|
|
||||||
|
|
@ -0,0 +1,45 @@
|
||||||
|
/* ----------------------------------------------------------------------------
|
||||||
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||||
|
* Atlanta, Georgia 30332-0415
|
||||||
|
* All Rights Reserved
|
||||||
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||||
|
* See LICENSE for the license information
|
||||||
|
* -------------------------------------------------------------------------- */
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @file testHybridFactorGraph.cpp
|
||||||
|
* @brief Unit tests for HybridFactorGraph
|
||||||
|
* @author Varun Agrawal
|
||||||
|
* @date May 2021
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include <CppUnitLite/Test.h>
|
||||||
|
#include <CppUnitLite/TestHarness.h>
|
||||||
|
#include <gtsam/base/TestableAssertions.h>
|
||||||
|
#include <gtsam/base/utilities.h>
|
||||||
|
#include <gtsam/hybrid/HybridFactorGraph.h>
|
||||||
|
#include <gtsam/inference/Symbol.h>
|
||||||
|
#include <gtsam/nonlinear/PriorFactor.h>
|
||||||
|
|
||||||
|
using namespace std;
|
||||||
|
using namespace gtsam;
|
||||||
|
using noiseModel::Isotropic;
|
||||||
|
using symbol_shorthand::L;
|
||||||
|
using symbol_shorthand::M;
|
||||||
|
using symbol_shorthand::X;
|
||||||
|
|
||||||
|
/* ****************************************************************************
|
||||||
|
* Test that any linearizedFactorGraph gaussian factors are appended to the
|
||||||
|
* existing gaussian factor graph in the hybrid factor graph.
|
||||||
|
*/
|
||||||
|
TEST(HybridFactorGraph, Constructor) {
|
||||||
|
// Initialize the hybrid factor graph
|
||||||
|
HybridFactorGraph fg;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* ************************************************************************* */
|
||||||
|
int main() {
|
||||||
|
TestResult tr;
|
||||||
|
return TestRegistry::runAllTests(tr);
|
||||||
|
}
|
||||||
|
/* ************************************************************************* */
|
||||||
|
|
@ -0,0 +1,649 @@
|
||||||
|
/* ----------------------------------------------------------------------------
|
||||||
|
|
||||||
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||||
|
* Atlanta, Georgia 30332-0415
|
||||||
|
* All Rights Reserved
|
||||||
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||||
|
|
||||||
|
* See LICENSE for the license information
|
||||||
|
|
||||||
|
* -------------------------------------------------------------------------- */
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @file testHybridIncremental.cpp
|
||||||
|
* @brief Unit tests for incremental inference
|
||||||
|
* @author Fan Jiang, Varun Agrawal, Frank Dellaert
|
||||||
|
* @date Jan 2021
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include <gtsam/discrete/DiscreteBayesNet.h>
|
||||||
|
#include <gtsam/discrete/DiscreteDistribution.h>
|
||||||
|
#include <gtsam/geometry/Pose2.h>
|
||||||
|
#include <gtsam/hybrid/HybridGaussianISAM.h>
|
||||||
|
#include <gtsam/linear/GaussianBayesNet.h>
|
||||||
|
#include <gtsam/linear/GaussianFactorGraph.h>
|
||||||
|
#include <gtsam/nonlinear/PriorFactor.h>
|
||||||
|
#include <gtsam/sam/BearingRangeFactor.h>
|
||||||
|
|
||||||
|
#include <numeric>
|
||||||
|
|
||||||
|
#include "Switching.h"
|
||||||
|
|
||||||
|
// Include for test suite
|
||||||
|
#include <CppUnitLite/TestHarness.h>
|
||||||
|
|
||||||
|
using namespace std;
|
||||||
|
using namespace gtsam;
|
||||||
|
using noiseModel::Isotropic;
|
||||||
|
using symbol_shorthand::L;
|
||||||
|
using symbol_shorthand::M;
|
||||||
|
using symbol_shorthand::W;
|
||||||
|
using symbol_shorthand::X;
|
||||||
|
using symbol_shorthand::Y;
|
||||||
|
using symbol_shorthand::Z;
|
||||||
|
|
||||||
|
/* ****************************************************************************/
|
||||||
|
// Test if we can perform elimination incrementally.
|
||||||
|
TEST(HybridGaussianElimination, IncrementalElimination) {
|
||||||
|
Switching switching(3);
|
||||||
|
HybridGaussianISAM isam;
|
||||||
|
HybridGaussianFactorGraph graph1;
|
||||||
|
|
||||||
|
// Create initial factor graph
|
||||||
|
// * * *
|
||||||
|
// | | |
|
||||||
|
// *- X1 -*- X2 -*- X3
|
||||||
|
// \*-M1-*/
|
||||||
|
graph1.push_back(switching.linearizedFactorGraph.at(0)); // P(X1)
|
||||||
|
graph1.push_back(switching.linearizedFactorGraph.at(1)); // P(X1, X2 | M1)
|
||||||
|
graph1.push_back(switching.linearizedFactorGraph.at(2)); // P(X2, X3 | M2)
|
||||||
|
graph1.push_back(switching.linearizedFactorGraph.at(5)); // P(M1)
|
||||||
|
|
||||||
|
// Create ordering.
|
||||||
|
Ordering ordering;
|
||||||
|
ordering += X(1);
|
||||||
|
ordering += X(2);
|
||||||
|
|
||||||
|
// Run update step
|
||||||
|
isam.update(graph1);
|
||||||
|
|
||||||
|
// Check that after update we have 3 hybrid Bayes net nodes:
|
||||||
|
// P(X1 | X2, M1) and P(X2, X3 | M1, M2), P(M1, M2)
|
||||||
|
EXPECT_LONGS_EQUAL(3, isam.size());
|
||||||
|
EXPECT(isam[X(1)]->conditional()->frontals() == KeyVector{X(1)});
|
||||||
|
EXPECT(isam[X(1)]->conditional()->parents() == KeyVector({X(2), M(1)}));
|
||||||
|
EXPECT(isam[X(2)]->conditional()->frontals() == KeyVector({X(2), X(3)}));
|
||||||
|
EXPECT(isam[X(2)]->conditional()->parents() == KeyVector({M(1), M(2)}));
|
||||||
|
|
||||||
|
/********************************************************/
|
||||||
|
// New factor graph for incremental update.
|
||||||
|
HybridGaussianFactorGraph graph2;
|
||||||
|
|
||||||
|
graph1.push_back(switching.linearizedFactorGraph.at(3)); // P(X2)
|
||||||
|
graph2.push_back(switching.linearizedFactorGraph.at(4)); // P(X3)
|
||||||
|
graph2.push_back(switching.linearizedFactorGraph.at(6)); // P(M1, M2)
|
||||||
|
|
||||||
|
// Create ordering.
|
||||||
|
Ordering ordering2;
|
||||||
|
ordering2 += X(2);
|
||||||
|
ordering2 += X(3);
|
||||||
|
|
||||||
|
isam.update(graph2);
|
||||||
|
|
||||||
|
// Check that after the second update we have
|
||||||
|
// 1 additional hybrid Bayes net node:
|
||||||
|
// P(X2, X3 | M1, M2)
|
||||||
|
EXPECT_LONGS_EQUAL(3, isam.size());
|
||||||
|
EXPECT(isam[X(3)]->conditional()->frontals() == KeyVector({X(2), X(3)}));
|
||||||
|
EXPECT(isam[X(3)]->conditional()->parents() == KeyVector({M(1), M(2)}));
|
||||||
|
}
|
||||||
|
|
||||||
|
/* ****************************************************************************/
|
||||||
|
// Test if we can incrementally do the inference
|
||||||
|
TEST(HybridGaussianElimination, IncrementalInference) {
|
||||||
|
Switching switching(3);
|
||||||
|
HybridGaussianISAM isam;
|
||||||
|
HybridGaussianFactorGraph graph1;
|
||||||
|
|
||||||
|
// Create initial factor graph
|
||||||
|
// * * *
|
||||||
|
// | | |
|
||||||
|
// *- X1 -*- X2 -*- X3
|
||||||
|
// | |
|
||||||
|
// *-M1 - * - M2
|
||||||
|
graph1.push_back(switching.linearizedFactorGraph.at(0)); // P(X1)
|
||||||
|
graph1.push_back(switching.linearizedFactorGraph.at(1)); // P(X1, X2 | M1)
|
||||||
|
graph1.push_back(switching.linearizedFactorGraph.at(3)); // P(X2)
|
||||||
|
graph1.push_back(switching.linearizedFactorGraph.at(5)); // P(M1)
|
||||||
|
|
||||||
|
//TODO(Varun) we cannot enforce ordering
|
||||||
|
// // Create ordering.
|
||||||
|
// Ordering ordering1;
|
||||||
|
// ordering1 += X(1);
|
||||||
|
// ordering1 += X(2);
|
||||||
|
|
||||||
|
// Run update step
|
||||||
|
isam.update(graph1);
|
||||||
|
|
||||||
|
/********************************************************/
|
||||||
|
// New factor graph for incremental update.
|
||||||
|
HybridGaussianFactorGraph graph2;
|
||||||
|
|
||||||
|
graph2.push_back(switching.linearizedFactorGraph.at(2)); // P(X2, X3 | M2)
|
||||||
|
graph2.push_back(switching.linearizedFactorGraph.at(4)); // P(X3)
|
||||||
|
graph2.push_back(switching.linearizedFactorGraph.at(6)); // P(M1, M2)
|
||||||
|
|
||||||
|
//TODO(Varun) we cannot enforce ordering
|
||||||
|
// // Create ordering.
|
||||||
|
// Ordering ordering2;
|
||||||
|
// ordering2 += X(2);
|
||||||
|
// ordering2 += X(3);
|
||||||
|
|
||||||
|
isam.update(graph2);
|
||||||
|
GTSAM_PRINT(isam);
|
||||||
|
|
||||||
|
/********************************************************/
|
||||||
|
// Run batch elimination so we can compare results.
|
||||||
|
Ordering ordering;
|
||||||
|
ordering += X(1);
|
||||||
|
ordering += X(2);
|
||||||
|
ordering += X(3);
|
||||||
|
|
||||||
|
// Now we calculate the actual factors using full elimination
|
||||||
|
HybridBayesNet::shared_ptr expectedHybridBayesNet;
|
||||||
|
HybridGaussianFactorGraph::shared_ptr expectedRemainingGraph;
|
||||||
|
std::tie(expectedHybridBayesNet, expectedRemainingGraph) =
|
||||||
|
switching.linearizedFactorGraph.eliminatePartialSequential(ordering);
|
||||||
|
|
||||||
|
// The densities on X(1) should be the same
|
||||||
|
auto x1_conditional =
|
||||||
|
dynamic_pointer_cast<GaussianMixture>(isam[X(1)]->conditional()->inner());
|
||||||
|
EXPECT(
|
||||||
|
assert_equal(*x1_conditional, *(expectedHybridBayesNet->atGaussian(0))));
|
||||||
|
|
||||||
|
// The densities on X(2) should be the same
|
||||||
|
auto x2_conditional =
|
||||||
|
dynamic_pointer_cast<GaussianMixture>(isam[X(2)]->conditional()->inner());
|
||||||
|
EXPECT(
|
||||||
|
assert_equal(*x2_conditional, *(expectedHybridBayesNet->atGaussian(1))));
|
||||||
|
|
||||||
|
// // The densities on X(3) should be the same
|
||||||
|
// auto x3_conditional =
|
||||||
|
// dynamic_pointer_cast<GaussianMixture>(isam[X(3)]->conditional()->inner());
|
||||||
|
// EXPECT(
|
||||||
|
// assert_equal(*x3_conditional, *(expectedHybridBayesNet->atGaussian(2))));
|
||||||
|
|
||||||
|
GTSAM_PRINT(*expectedHybridBayesNet);
|
||||||
|
|
||||||
|
// we only do the manual continuous elimination for 0,0
|
||||||
|
// the other discrete probabilities on M(2) are calculated the same way
|
||||||
|
auto m00_prob = [&]() {
|
||||||
|
GaussianFactorGraph gf;
|
||||||
|
// gf.add(switching.linearizedFactorGraph.gaussianGraph().at(3));
|
||||||
|
|
||||||
|
DiscreteValues m00;
|
||||||
|
m00[M(1)] = 0, m00[M(2)] = 0;
|
||||||
|
// auto dcMixture =
|
||||||
|
// dynamic_pointer_cast<DCGaussianMixtureFactor>(graph2.dcGraph().at(0));
|
||||||
|
// gf.add(dcMixture->factors()(m00));
|
||||||
|
// auto x2_mixed =
|
||||||
|
// boost::dynamic_pointer_cast<GaussianMixture>(hybridBayesNet.at(1));
|
||||||
|
// gf.add(x2_mixed->factors()(m00));
|
||||||
|
auto result_gf = gf.eliminateSequential();
|
||||||
|
return gf.probPrime(result_gf->optimize());
|
||||||
|
}();
|
||||||
|
|
||||||
|
/// Test if the probability values are as expected with regression tests.
|
||||||
|
// DiscreteValues assignment;
|
||||||
|
// EXPECT(assert_equal(m00_prob, 0.60656, 1e-5));
|
||||||
|
// assignment[M(1)] = 0;
|
||||||
|
// assignment[M(2)] = 0;
|
||||||
|
// EXPECT(assert_equal(m00_prob, (*discreteFactor)(assignment), 1e-5));
|
||||||
|
// assignment[M(1)] = 1;
|
||||||
|
// assignment[M(2)] = 0;
|
||||||
|
// EXPECT(assert_equal(0.612477, (*discreteFactor)(assignment), 1e-5));
|
||||||
|
// assignment[M(1)] = 0;
|
||||||
|
// assignment[M(2)] = 1;
|
||||||
|
// EXPECT(assert_equal(0.999952, (*discreteFactor)(assignment), 1e-5));
|
||||||
|
// assignment[M(1)] = 1;
|
||||||
|
// assignment[M(2)] = 1;
|
||||||
|
// EXPECT(assert_equal(1.0, (*discreteFactor)(assignment), 1e-5));
|
||||||
|
|
||||||
|
// DiscreteFactorGraph dfg;
|
||||||
|
// dfg.add(*discreteFactor);
|
||||||
|
// dfg.add(discreteFactor_m1);
|
||||||
|
// dfg.add_factors(switching.linearizedFactorGraph.discreteGraph());
|
||||||
|
|
||||||
|
// // Check if the chordal graph generated from incremental elimination
|
||||||
|
// matches
|
||||||
|
// // that of batch elimination.
|
||||||
|
// auto chordal = dfg.eliminateSequential();
|
||||||
|
// auto expectedChordal =
|
||||||
|
// expectedRemainingGraph->discreteGraph().eliminateSequential();
|
||||||
|
|
||||||
|
// EXPECT(assert_equal(*expectedChordal, *chordal, 1e-6));
|
||||||
|
}
|
||||||
|
|
||||||
|
/* ****************************************************************************/
|
||||||
|
// // Test if we can approximately do the inference
|
||||||
|
// TEST(DCGaussianElimination, Approx_inference) {
|
||||||
|
// Switching switching(4);
|
||||||
|
// IncrementalHybrid incrementalHybrid;
|
||||||
|
// HybridGaussianFactorGraph graph1;
|
||||||
|
|
||||||
|
// // Add the 3 DC factors, x1-x2, x2-x3, x3-x4
|
||||||
|
// for (size_t i = 0; i < 3; i++) {
|
||||||
|
// graph1.push_back(switching.linearizedFactorGraph.dcGraph().at(i));
|
||||||
|
// }
|
||||||
|
|
||||||
|
// // Add the Gaussian factors, 1 prior on X(1), 4 measurements
|
||||||
|
// for (size_t i = 0; i <= 4; i++) {
|
||||||
|
// graph1.push_back(switching.linearizedFactorGraph.gaussianGraph().at(i));
|
||||||
|
// }
|
||||||
|
|
||||||
|
// // Create ordering.
|
||||||
|
// Ordering ordering;
|
||||||
|
// for (size_t j = 1; j <= 4; j++) {
|
||||||
|
// ordering += X(j);
|
||||||
|
// }
|
||||||
|
|
||||||
|
// // Now we calculate the actual factors using full elimination
|
||||||
|
// HybridBayesNet::shared_ptr unprunedHybridBayesNet;
|
||||||
|
// HybridGaussianFactorGraph::shared_ptr unprunedRemainingGraph;
|
||||||
|
// std::tie(unprunedHybridBayesNet, unprunedRemainingGraph) =
|
||||||
|
// switching.linearizedFactorGraph.eliminatePartialSequential(ordering);
|
||||||
|
|
||||||
|
// size_t maxComponents = 5;
|
||||||
|
// incrementalHybrid.update(graph1, ordering, maxComponents);
|
||||||
|
|
||||||
|
// /*
|
||||||
|
// unpruned factor is:
|
||||||
|
// Choice(m3)
|
||||||
|
// 0 Choice(m2)
|
||||||
|
// 0 0 Choice(m1)
|
||||||
|
// 0 0 0 Leaf 0.2248 -
|
||||||
|
// 0 0 1 Leaf 0.3715 -
|
||||||
|
// 0 1 Choice(m1)
|
||||||
|
// 0 1 0 Leaf 0.3742 *
|
||||||
|
// 0 1 1 Leaf 0.6125 *
|
||||||
|
// 1 Choice(m2)
|
||||||
|
// 1 0 Choice(m1)
|
||||||
|
// 1 0 0 Leaf 0.3706 -
|
||||||
|
// 1 0 1 Leaf 0.6124 *
|
||||||
|
// 1 1 Choice(m1)
|
||||||
|
// 1 1 0 Leaf 0.611 *
|
||||||
|
// 1 1 1 Leaf 1 *
|
||||||
|
|
||||||
|
// pruned factors is:
|
||||||
|
// Choice(m3)
|
||||||
|
// 0 Choice(m2)
|
||||||
|
// 0 0 Leaf 0
|
||||||
|
// 0 1 Choice(m1)
|
||||||
|
// 0 1 0 Leaf 0.3742
|
||||||
|
// 0 1 1 Leaf 0.6125
|
||||||
|
// 1 Choice(m2)
|
||||||
|
// 1 0 Choice(m1)
|
||||||
|
// 1 0 0 Leaf 0
|
||||||
|
// 1 0 1 Leaf 0.6124
|
||||||
|
// 1 1 Choice(m1)
|
||||||
|
// 1 1 0 Leaf 0.611
|
||||||
|
// 1 1 1 Leaf 1
|
||||||
|
// */
|
||||||
|
|
||||||
|
// // Test that the remaining factor graph has one
|
||||||
|
// // DecisionTreeFactor on {M3, M2, M1}.
|
||||||
|
// auto remainingFactorGraph = incrementalHybrid.remainingFactorGraph();
|
||||||
|
// EXPECT_LONGS_EQUAL(1, remainingFactorGraph.size());
|
||||||
|
|
||||||
|
// auto discreteFactor_m1 = *dynamic_pointer_cast<DecisionTreeFactor>(
|
||||||
|
// incrementalHybrid.remainingDiscreteGraph().at(0));
|
||||||
|
// EXPECT(discreteFactor_m1.keys() == KeyVector({M(3), M(2), M(1)}));
|
||||||
|
|
||||||
|
// // Get the number of elements which are equal to 0.
|
||||||
|
// auto count = [](const double &value, int count) {
|
||||||
|
// return value > 0 ? count + 1 : count;
|
||||||
|
// };
|
||||||
|
// // Check that the number of leaves after pruning is 5.
|
||||||
|
// EXPECT_LONGS_EQUAL(5, discreteFactor_m1.fold(count, 0));
|
||||||
|
|
||||||
|
// /* Expected hybrid Bayes net
|
||||||
|
// * factor 0: [x1 | x2 m1 ], 2 components
|
||||||
|
// * factor 1: [x2 | x3 m2 m1 ], 4 components
|
||||||
|
// * factor 2: [x3 | x4 m3 m2 m1 ], 8 components
|
||||||
|
// * factor 3: [x4 | m3 m2 m1 ], 8 components
|
||||||
|
// */
|
||||||
|
// auto hybridBayesNet = incrementalHybrid.hybridBayesNet();
|
||||||
|
|
||||||
|
// // Check if we have a bayes net with 4 hybrid nodes,
|
||||||
|
// // each with 2, 4, 5 (pruned), and 5 (pruned) leaves respetively.
|
||||||
|
// EXPECT_LONGS_EQUAL(4, hybridBayesNet.size());
|
||||||
|
// EXPECT_LONGS_EQUAL(2, hybridBayesNet.atGaussian(0)->nrComponents());
|
||||||
|
// EXPECT_LONGS_EQUAL(4, hybridBayesNet.atGaussian(1)->nrComponents());
|
||||||
|
// EXPECT_LONGS_EQUAL(5, hybridBayesNet.atGaussian(2)->nrComponents());
|
||||||
|
// EXPECT_LONGS_EQUAL(5, hybridBayesNet.atGaussian(3)->nrComponents());
|
||||||
|
|
||||||
|
// // Check that the hybrid nodes of the bayes net match those of the bayes
|
||||||
|
// net
|
||||||
|
// // before pruning, at the same positions.
|
||||||
|
// auto &lastDensity = *(hybridBayesNet.atGaussian(3));
|
||||||
|
// auto &unprunedLastDensity = *(unprunedHybridBayesNet->atGaussian(3));
|
||||||
|
// std::vector<std::pair<DiscreteValues, double>> assignments =
|
||||||
|
// discreteFactor_m1.enumerate();
|
||||||
|
// // Loop over all assignments and check the pruned components
|
||||||
|
// for (auto &&av : assignments) {
|
||||||
|
// const DiscreteValues &assignment = av.first;
|
||||||
|
// const double value = av.second;
|
||||||
|
|
||||||
|
// if (value == 0.0) {
|
||||||
|
// EXPECT(lastDensity(assignment) == nullptr);
|
||||||
|
// } else {
|
||||||
|
// CHECK(lastDensity(assignment));
|
||||||
|
// EXPECT(assert_equal(*unprunedLastDensity(assignment),
|
||||||
|
// *lastDensity(assignment)));
|
||||||
|
// }
|
||||||
|
// }
|
||||||
|
// }
|
||||||
|
|
||||||
|
/* ****************************************************************************/
|
||||||
|
// // Test approximate inference with an additional pruning step.
|
||||||
|
// TEST(DCGaussianElimination, Incremental_approximate) {
|
||||||
|
// Switching switching(5);
|
||||||
|
// IncrementalHybrid incrementalHybrid;
|
||||||
|
// HybridGaussianFactorGraph graph1;
|
||||||
|
|
||||||
|
// // Add the 3 DC factors, x1-x2, x2-x3, x3-x4
|
||||||
|
// for (size_t i = 0; i < 3; i++) {
|
||||||
|
// graph1.push_back(switching.linearizedFactorGraph.dcGraph().at(i));
|
||||||
|
// }
|
||||||
|
|
||||||
|
// // Add the Gaussian factors, 1 prior on X(1), 4 measurements
|
||||||
|
// for (size_t i = 0; i <= 4; i++) {
|
||||||
|
// graph1.push_back(switching.linearizedFactorGraph.gaussianGraph().at(i));
|
||||||
|
// }
|
||||||
|
|
||||||
|
// // Create ordering.
|
||||||
|
// Ordering ordering;
|
||||||
|
// for (size_t j = 1; j <= 4; j++) {
|
||||||
|
// ordering += X(j);
|
||||||
|
// }
|
||||||
|
|
||||||
|
// // Run update with pruning
|
||||||
|
// size_t maxComponents = 5;
|
||||||
|
// incrementalHybrid.update(graph1, ordering, maxComponents);
|
||||||
|
|
||||||
|
// // Check if we have a bayes net with 4 hybrid nodes,
|
||||||
|
// // each with 2, 4, 8, and 5 (pruned) leaves respetively.
|
||||||
|
// auto actualBayesNet1 = incrementalHybrid.hybridBayesNet();
|
||||||
|
// CHECK_EQUAL(4, actualBayesNet1.size());
|
||||||
|
// EXPECT_LONGS_EQUAL(2, actualBayesNet1.atGaussian(0)->nrComponents());
|
||||||
|
// EXPECT_LONGS_EQUAL(4, actualBayesNet1.atGaussian(1)->nrComponents());
|
||||||
|
// EXPECT_LONGS_EQUAL(8, actualBayesNet1.atGaussian(2)->nrComponents());
|
||||||
|
// EXPECT_LONGS_EQUAL(5, actualBayesNet1.atGaussian(3)->nrComponents());
|
||||||
|
|
||||||
|
// /***** Run Round 2 *****/
|
||||||
|
// HybridGaussianFactorGraph graph2;
|
||||||
|
// graph2.push_back(switching.linearizedFactorGraph.dcGraph().at(3));
|
||||||
|
// graph2.push_back(switching.linearizedFactorGraph.gaussianGraph().at(5));
|
||||||
|
|
||||||
|
// Ordering ordering2;
|
||||||
|
// ordering2 += X(4);
|
||||||
|
// ordering2 += X(5);
|
||||||
|
|
||||||
|
// // Run update with pruning a second time.
|
||||||
|
// incrementalHybrid.update(graph2, ordering2, maxComponents);
|
||||||
|
|
||||||
|
// // Check if we have a bayes net with 2 hybrid nodes,
|
||||||
|
// // each with 10 (pruned), and 5 (pruned) leaves respetively.
|
||||||
|
// auto actualBayesNet = incrementalHybrid.hybridBayesNet();
|
||||||
|
// CHECK_EQUAL(2, actualBayesNet.size());
|
||||||
|
// EXPECT_LONGS_EQUAL(10, actualBayesNet.atGaussian(0)->nrComponents());
|
||||||
|
// EXPECT_LONGS_EQUAL(5, actualBayesNet.atGaussian(1)->nrComponents());
|
||||||
|
// }
|
||||||
|
|
||||||
|
/* ************************************************************************/
|
||||||
|
// // Test for figuring out the optimal ordering to ensure we get
|
||||||
|
// // a discrete graph after elimination.
|
||||||
|
// TEST(IncrementalHybrid, NonTrivial) {
|
||||||
|
// // This is a GTSAM-only test for running inference on a single legged
|
||||||
|
// robot.
|
||||||
|
// // The leg links are represented by the chain X-Y-Z-W, where X is the base
|
||||||
|
// and
|
||||||
|
// // W is the foot.
|
||||||
|
// // We use BetweenFactor<Pose2> as constraints between each of the poses.
|
||||||
|
|
||||||
|
// /*************** Run Round 1 ***************/
|
||||||
|
// NonlinearHybridFactorGraph fg;
|
||||||
|
|
||||||
|
// // Add a prior on pose x1 at the origin.
|
||||||
|
// // A prior factor consists of a mean and
|
||||||
|
// // a noise model (covariance matrix)
|
||||||
|
// Pose2 prior(0.0, 0.0, 0.0); // prior mean is at origin
|
||||||
|
// auto priorNoise = noiseModel::Diagonal::Sigmas(
|
||||||
|
// Vector3(0.3, 0.3, 0.1)); // 30cm std on x,y, 0.1 rad on theta
|
||||||
|
// fg.emplace_nonlinear<PriorFactor<Pose2>>(X(0), prior, priorNoise);
|
||||||
|
|
||||||
|
// // create a noise model for the landmark measurements
|
||||||
|
// auto poseNoise = noiseModel::Isotropic::Sigma(3, 0.1);
|
||||||
|
|
||||||
|
// // We model a robot's single leg as X - Y - Z - W
|
||||||
|
// // where X is the base link and W is the foot link.
|
||||||
|
|
||||||
|
// // Add connecting poses similar to PoseFactors in GTD
|
||||||
|
// fg.emplace_nonlinear<BetweenFactor<Pose2>>(X(0), Y(0), Pose2(0, 1.0, 0),
|
||||||
|
// poseNoise);
|
||||||
|
// fg.emplace_nonlinear<BetweenFactor<Pose2>>(Y(0), Z(0), Pose2(0, 1.0, 0),
|
||||||
|
// poseNoise);
|
||||||
|
// fg.emplace_nonlinear<BetweenFactor<Pose2>>(Z(0), W(0), Pose2(0, 1.0, 0),
|
||||||
|
// poseNoise);
|
||||||
|
|
||||||
|
// // Create initial estimate
|
||||||
|
// Values initial;
|
||||||
|
// initial.insert(X(0), Pose2(0.0, 0.0, 0.0));
|
||||||
|
// initial.insert(Y(0), Pose2(0.0, 1.0, 0.0));
|
||||||
|
// initial.insert(Z(0), Pose2(0.0, 2.0, 0.0));
|
||||||
|
// initial.insert(W(0), Pose2(0.0, 3.0, 0.0));
|
||||||
|
|
||||||
|
// HybridGaussianFactorGraph gfg = fg.linearize(initial);
|
||||||
|
// fg = NonlinearHybridFactorGraph();
|
||||||
|
|
||||||
|
// IncrementalHybrid inc;
|
||||||
|
|
||||||
|
// // Regular ordering going up the chain.
|
||||||
|
// Ordering ordering;
|
||||||
|
// ordering += W(0);
|
||||||
|
// ordering += Z(0);
|
||||||
|
// ordering += Y(0);
|
||||||
|
// ordering += X(0);
|
||||||
|
|
||||||
|
// // Update without pruning
|
||||||
|
// // The result is a HybridBayesNet with no discrete variables
|
||||||
|
// // (equivalent to a GaussianBayesNet).
|
||||||
|
// // Factorization is:
|
||||||
|
// // `P(X | measurements) = P(W0|Z0) P(Z0|Y0) P(Y0|X0) P(X0)`
|
||||||
|
// inc.update(gfg, ordering);
|
||||||
|
|
||||||
|
// /*************** Run Round 2 ***************/
|
||||||
|
// using PlanarMotionModel = BetweenFactor<Pose2>;
|
||||||
|
|
||||||
|
// // Add odometry factor with discrete modes.
|
||||||
|
// Pose2 odometry(1.0, 0.0, 0.0);
|
||||||
|
// KeyVector contKeys = {W(0), W(1)};
|
||||||
|
// auto noise_model = noiseModel::Isotropic::Sigma(3, 1.0);
|
||||||
|
// auto still = boost::make_shared<PlanarMotionModel>(W(0), W(1), Pose2(0, 0,
|
||||||
|
// 0),
|
||||||
|
// noise_model),
|
||||||
|
// moving = boost::make_shared<PlanarMotionModel>(W(0), W(1), odometry,
|
||||||
|
// noise_model);
|
||||||
|
// std::vector<PlanarMotionModel::shared_ptr> components = {moving, still};
|
||||||
|
// auto dcFactor = boost::make_shared<DCMixtureFactor<PlanarMotionModel>>(
|
||||||
|
// contKeys, DiscreteKeys{gtsam::DiscreteKey(M(1), 2)}, components);
|
||||||
|
// fg.push_back(dcFactor);
|
||||||
|
|
||||||
|
// // Add equivalent of ImuFactor
|
||||||
|
// fg.emplace_nonlinear<BetweenFactor<Pose2>>(X(0), X(1), Pose2(1.0, 0.0, 0),
|
||||||
|
// poseNoise);
|
||||||
|
// // PoseFactors-like at k=1
|
||||||
|
// fg.emplace_nonlinear<BetweenFactor<Pose2>>(X(1), Y(1), Pose2(0, 1, 0),
|
||||||
|
// poseNoise);
|
||||||
|
// fg.emplace_nonlinear<BetweenFactor<Pose2>>(Y(1), Z(1), Pose2(0, 1, 0),
|
||||||
|
// poseNoise);
|
||||||
|
// fg.emplace_nonlinear<BetweenFactor<Pose2>>(Z(1), W(1), Pose2(-1, 1, 0),
|
||||||
|
// poseNoise);
|
||||||
|
|
||||||
|
// initial.insert(X(1), Pose2(1.0, 0.0, 0.0));
|
||||||
|
// initial.insert(Y(1), Pose2(1.0, 1.0, 0.0));
|
||||||
|
// initial.insert(Z(1), Pose2(1.0, 2.0, 0.0));
|
||||||
|
// // The leg link did not move so we set the expected pose accordingly.
|
||||||
|
// initial.insert(W(1), Pose2(0.0, 3.0, 0.0));
|
||||||
|
|
||||||
|
// // Ordering for k=1.
|
||||||
|
// // This ordering follows the intuition that we eliminate the previous
|
||||||
|
// // timestep, and then the current timestep.
|
||||||
|
// ordering = Ordering();
|
||||||
|
// ordering += W(0);
|
||||||
|
// ordering += Z(0);
|
||||||
|
// ordering += Y(0);
|
||||||
|
// ordering += X(0);
|
||||||
|
// ordering += W(1);
|
||||||
|
// ordering += Z(1);
|
||||||
|
// ordering += Y(1);
|
||||||
|
// ordering += X(1);
|
||||||
|
|
||||||
|
// gfg = fg.linearize(initial);
|
||||||
|
// fg = NonlinearHybridFactorGraph();
|
||||||
|
|
||||||
|
// // Update without pruning
|
||||||
|
// // The result is a HybridBayesNet with 1 discrete variable M(1).
|
||||||
|
// // P(X | measurements) = P(W0|Z0, W1, M1) P(Z0|Y0, W1, M1) P(Y0|X0, W1, M1)
|
||||||
|
// // P(X0 | X1, W1, M1) P(W1|Z1, X1, M1) P(Z1|Y1, X1,
|
||||||
|
// M1)
|
||||||
|
// // P(Y1 | X1, M1)P(X1 | M1)P(M1)
|
||||||
|
// // The MHS tree is a 2 level tree for time indices (0, 1) with 2 leaves.
|
||||||
|
// inc.update(gfg, ordering);
|
||||||
|
|
||||||
|
// /*************** Run Round 3 ***************/
|
||||||
|
// // Add odometry factor with discrete modes.
|
||||||
|
// contKeys = {W(1), W(2)};
|
||||||
|
// still = boost::make_shared<PlanarMotionModel>(W(1), W(2), Pose2(0, 0, 0),
|
||||||
|
// noise_model);
|
||||||
|
// moving =
|
||||||
|
// boost::make_shared<PlanarMotionModel>(W(1), W(2), odometry,
|
||||||
|
// noise_model);
|
||||||
|
// components = {moving, still};
|
||||||
|
// dcFactor = boost::make_shared<DCMixtureFactor<PlanarMotionModel>>(
|
||||||
|
// contKeys, DiscreteKeys{gtsam::DiscreteKey(M(2), 2)}, components);
|
||||||
|
// fg.push_back(dcFactor);
|
||||||
|
|
||||||
|
// // Add equivalent of ImuFactor
|
||||||
|
// fg.emplace_nonlinear<BetweenFactor<Pose2>>(X(1), X(2), Pose2(1.0, 0.0, 0),
|
||||||
|
// poseNoise);
|
||||||
|
// // PoseFactors-like at k=1
|
||||||
|
// fg.emplace_nonlinear<BetweenFactor<Pose2>>(X(2), Y(2), Pose2(0, 1, 0),
|
||||||
|
// poseNoise);
|
||||||
|
// fg.emplace_nonlinear<BetweenFactor<Pose2>>(Y(2), Z(2), Pose2(0, 1, 0),
|
||||||
|
// poseNoise);
|
||||||
|
// fg.emplace_nonlinear<BetweenFactor<Pose2>>(Z(2), W(2), Pose2(-2, 1, 0),
|
||||||
|
// poseNoise);
|
||||||
|
|
||||||
|
// initial.insert(X(2), Pose2(2.0, 0.0, 0.0));
|
||||||
|
// initial.insert(Y(2), Pose2(2.0, 1.0, 0.0));
|
||||||
|
// initial.insert(Z(2), Pose2(2.0, 2.0, 0.0));
|
||||||
|
// initial.insert(W(2), Pose2(0.0, 3.0, 0.0));
|
||||||
|
|
||||||
|
// // Ordering at k=2. Same intuition as before.
|
||||||
|
// ordering = Ordering();
|
||||||
|
// ordering += W(1);
|
||||||
|
// ordering += Z(1);
|
||||||
|
// ordering += Y(1);
|
||||||
|
// ordering += X(1);
|
||||||
|
// ordering += W(2);
|
||||||
|
// ordering += Z(2);
|
||||||
|
// ordering += Y(2);
|
||||||
|
// ordering += X(2);
|
||||||
|
|
||||||
|
// gfg = fg.linearize(initial);
|
||||||
|
// fg = NonlinearHybridFactorGraph();
|
||||||
|
|
||||||
|
// // Now we prune!
|
||||||
|
// // P(X | measurements) = P(W0|Z0, W1, M1) P(Z0|Y0, W1, M1) P(Y0|X0, W1, M1)
|
||||||
|
// P(X0 | X1, W1, M1)
|
||||||
|
// // P(W1|W2, Z1, X1, M1, M2) P(Z1| W2, Y1, X1, M1, M2)
|
||||||
|
// P(Y1 | W2, X1, M1, M2)
|
||||||
|
// // P(X1 | W2, X2, M1, M2) P(W2|Z2, X2, M1, M2)
|
||||||
|
// P(Z2|Y2, X2, M1, M2)
|
||||||
|
// // P(Y2 | X2, M1, M2)P(X2 | M1, M2) P(M1, M2)
|
||||||
|
// // The MHS at this point should be a 3 level tree on (0, 1, 2).
|
||||||
|
// // 0 has 2 choices, 1 has 4 choices and 2 has 4 choices.
|
||||||
|
// inc.update(gfg, ordering, 2);
|
||||||
|
|
||||||
|
// /*************** Run Round 4 ***************/
|
||||||
|
// // Add odometry factor with discrete modes.
|
||||||
|
// contKeys = {W(2), W(3)};
|
||||||
|
// still = boost::make_shared<PlanarMotionModel>(W(2), W(3), Pose2(0, 0, 0),
|
||||||
|
// noise_model);
|
||||||
|
// moving =
|
||||||
|
// boost::make_shared<PlanarMotionModel>(W(2), W(3), odometry,
|
||||||
|
// noise_model);
|
||||||
|
// components = {moving, still};
|
||||||
|
// dcFactor = boost::make_shared<DCMixtureFactor<PlanarMotionModel>>(
|
||||||
|
// contKeys, DiscreteKeys{gtsam::DiscreteKey(M(3), 2)}, components);
|
||||||
|
// fg.push_back(dcFactor);
|
||||||
|
|
||||||
|
// // Add equivalent of ImuFactor
|
||||||
|
// fg.emplace_nonlinear<BetweenFactor<Pose2>>(X(2), X(3), Pose2(1.0, 0.0, 0),
|
||||||
|
// poseNoise);
|
||||||
|
// // PoseFactors-like at k=3
|
||||||
|
// fg.emplace_nonlinear<BetweenFactor<Pose2>>(X(3), Y(3), Pose2(0, 1, 0),
|
||||||
|
// poseNoise);
|
||||||
|
// fg.emplace_nonlinear<BetweenFactor<Pose2>>(Y(3), Z(3), Pose2(0, 1, 0),
|
||||||
|
// poseNoise);
|
||||||
|
// fg.emplace_nonlinear<BetweenFactor<Pose2>>(Z(3), W(3), Pose2(-3, 1, 0),
|
||||||
|
// poseNoise);
|
||||||
|
|
||||||
|
// initial.insert(X(3), Pose2(3.0, 0.0, 0.0));
|
||||||
|
// initial.insert(Y(3), Pose2(3.0, 1.0, 0.0));
|
||||||
|
// initial.insert(Z(3), Pose2(3.0, 2.0, 0.0));
|
||||||
|
// initial.insert(W(3), Pose2(0.0, 3.0, 0.0));
|
||||||
|
|
||||||
|
// // Ordering at k=3. Same intuition as before.
|
||||||
|
// ordering = Ordering();
|
||||||
|
// ordering += W(2);
|
||||||
|
// ordering += Z(2);
|
||||||
|
// ordering += Y(2);
|
||||||
|
// ordering += X(2);
|
||||||
|
// ordering += W(3);
|
||||||
|
// ordering += Z(3);
|
||||||
|
// ordering += Y(3);
|
||||||
|
// ordering += X(3);
|
||||||
|
|
||||||
|
// gfg = fg.linearize(initial);
|
||||||
|
// fg = NonlinearHybridFactorGraph();
|
||||||
|
|
||||||
|
// // Keep pruning!
|
||||||
|
// inc.update(gfg, ordering, 3);
|
||||||
|
|
||||||
|
// // The final discrete graph should not be empty since we have eliminated
|
||||||
|
// // all continuous variables.
|
||||||
|
// EXPECT(!inc.remainingDiscreteGraph().empty());
|
||||||
|
|
||||||
|
// // Test if the optimal discrete mode assignment is (1, 1, 1).
|
||||||
|
// DiscreteValues optimal_assignment =
|
||||||
|
// inc.remainingDiscreteGraph().optimize(); DiscreteValues
|
||||||
|
// expected_assignment; expected_assignment[M(1)] = 1;
|
||||||
|
// expected_assignment[M(2)] = 1;
|
||||||
|
// expected_assignment[M(3)] = 1;
|
||||||
|
// EXPECT(assert_equal(expected_assignment, optimal_assignment));
|
||||||
|
|
||||||
|
// // Test if pruning worked correctly by checking that we only have 3 leaves
|
||||||
|
// in
|
||||||
|
// // the last node.
|
||||||
|
// auto lastConditional = boost::dynamic_pointer_cast<GaussianMixture>(
|
||||||
|
// inc.hybridBayesNet().at(inc.hybridBayesNet().size() - 1));
|
||||||
|
// EXPECT_LONGS_EQUAL(3, lastConditional->nrComponents());
|
||||||
|
// }
|
||||||
|
|
||||||
|
/* ************************************************************************* */
|
||||||
|
int main() {
|
||||||
|
TestResult tr;
|
||||||
|
return TestRegistry::runAllTests(tr);
|
||||||
|
}
|
||||||
|
|
@ -0,0 +1,761 @@
|
||||||
|
/* ----------------------------------------------------------------------------
|
||||||
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||||
|
* Atlanta, Georgia 30332-0415
|
||||||
|
* All Rights Reserved
|
||||||
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||||
|
* See LICENSE for the license information
|
||||||
|
* -------------------------------------------------------------------------- */
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @file testHybridNonlinearFactorGraph.cpp
|
||||||
|
* @brief Unit tests for HybridNonlinearFactorGraph
|
||||||
|
* @author Varun Agrawal
|
||||||
|
* @author Fan Jiang
|
||||||
|
* @author Frank Dellaert
|
||||||
|
* @date December 2021
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include <gtsam/base/TestableAssertions.h>
|
||||||
|
#include <gtsam/base/utilities.h>
|
||||||
|
#include <gtsam/discrete/DiscreteBayesNet.h>
|
||||||
|
#include <gtsam/discrete/DiscreteDistribution.h>
|
||||||
|
#include <gtsam/discrete/DiscreteFactorGraph.h>
|
||||||
|
#include <gtsam/geometry/Pose2.h>
|
||||||
|
#include <gtsam/hybrid/HybridEliminationTree.h>
|
||||||
|
#include <gtsam/hybrid/HybridFactor.h>
|
||||||
|
#include <gtsam/hybrid/HybridNonlinearFactorGraph.h>
|
||||||
|
#include <gtsam/hybrid/MixtureFactor.h>
|
||||||
|
#include <gtsam/linear/GaussianBayesNet.h>
|
||||||
|
#include <gtsam/linear/GaussianFactorGraph.h>
|
||||||
|
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||||
|
#include <gtsam/nonlinear/PriorFactor.h>
|
||||||
|
#include <gtsam/sam/BearingRangeFactor.h>
|
||||||
|
#include <gtsam/slam/BetweenFactor.h>
|
||||||
|
|
||||||
|
#include <numeric>
|
||||||
|
|
||||||
|
#include "Switching.h"
|
||||||
|
|
||||||
|
// Include for test suite
|
||||||
|
#include <CppUnitLite/TestHarness.h>
|
||||||
|
|
||||||
|
using namespace std;
|
||||||
|
using namespace gtsam;
|
||||||
|
using noiseModel::Isotropic;
|
||||||
|
using symbol_shorthand::L;
|
||||||
|
using symbol_shorthand::M;
|
||||||
|
using symbol_shorthand::X;
|
||||||
|
|
||||||
|
/* ****************************************************************************
|
||||||
|
* Test that any linearizedFactorGraph gaussian factors are appended to the
|
||||||
|
* existing gaussian factor graph in the hybrid factor graph.
|
||||||
|
*/
|
||||||
|
TEST(HybridFactorGraph, GaussianFactorGraph) {
|
||||||
|
HybridNonlinearFactorGraph fg;
|
||||||
|
|
||||||
|
// Add a simple prior factor to the nonlinear factor graph
|
||||||
|
fg.emplace_nonlinear<PriorFactor<double>>(X(0), 0, Isotropic::Sigma(1, 0.1));
|
||||||
|
|
||||||
|
// Linearization point
|
||||||
|
Values linearizationPoint;
|
||||||
|
linearizationPoint.insert<double>(X(0), 0);
|
||||||
|
|
||||||
|
HybridGaussianFactorGraph ghfg = fg.linearize(linearizationPoint);
|
||||||
|
|
||||||
|
// Add a factor to the GaussianFactorGraph
|
||||||
|
ghfg.add(JacobianFactor(X(0), I_1x1, Vector1(5)));
|
||||||
|
|
||||||
|
EXPECT_LONGS_EQUAL(2, ghfg.size());
|
||||||
|
}
|
||||||
|
|
||||||
|
/***************************************************************************
|
||||||
|
* Test equality for Hybrid Nonlinear Factor Graph.
|
||||||
|
*/
|
||||||
|
TEST(HybridNonlinearFactorGraph, Equals) {
|
||||||
|
HybridNonlinearFactorGraph graph1;
|
||||||
|
HybridNonlinearFactorGraph graph2;
|
||||||
|
|
||||||
|
// Test empty factor graphs
|
||||||
|
EXPECT(assert_equal(graph1, graph2));
|
||||||
|
|
||||||
|
auto f0 = boost::make_shared<PriorFactor<Pose2>>(
|
||||||
|
1, Pose2(), noiseModel::Isotropic::Sigma(3, 0.001));
|
||||||
|
graph1.push_back(f0);
|
||||||
|
graph2.push_back(f0);
|
||||||
|
|
||||||
|
auto f1 = boost::make_shared<BetweenFactor<Pose2>>(
|
||||||
|
1, 2, Pose2(), noiseModel::Isotropic::Sigma(3, 0.1));
|
||||||
|
graph1.push_back(f1);
|
||||||
|
graph2.push_back(f1);
|
||||||
|
|
||||||
|
// Test non-empty graphs
|
||||||
|
EXPECT(assert_equal(graph1, graph2));
|
||||||
|
}
|
||||||
|
|
||||||
|
/***************************************************************************
|
||||||
|
* Test that the resize method works correctly for a HybridNonlinearFactorGraph.
|
||||||
|
*/
|
||||||
|
TEST(HybridNonlinearFactorGraph, Resize) {
|
||||||
|
HybridNonlinearFactorGraph fg;
|
||||||
|
auto nonlinearFactor = boost::make_shared<BetweenFactor<double>>();
|
||||||
|
fg.push_back(nonlinearFactor);
|
||||||
|
|
||||||
|
auto discreteFactor = boost::make_shared<DecisionTreeFactor>();
|
||||||
|
fg.push_back(discreteFactor);
|
||||||
|
|
||||||
|
auto dcFactor = boost::make_shared<MixtureFactor>();
|
||||||
|
fg.push_back(dcFactor);
|
||||||
|
|
||||||
|
EXPECT_LONGS_EQUAL(fg.size(), 3);
|
||||||
|
|
||||||
|
fg.resize(0);
|
||||||
|
EXPECT_LONGS_EQUAL(fg.size(), 0);
|
||||||
|
}
|
||||||
|
|
||||||
|
/***************************************************************************
|
||||||
|
* Test that the resize method works correctly for a
|
||||||
|
* HybridGaussianFactorGraph.
|
||||||
|
*/
|
||||||
|
TEST(HybridGaussianFactorGraph, Resize) {
|
||||||
|
HybridNonlinearFactorGraph nhfg;
|
||||||
|
auto nonlinearFactor = boost::make_shared<BetweenFactor<double>>(
|
||||||
|
X(0), X(1), 0.0, Isotropic::Sigma(1, 0.1));
|
||||||
|
nhfg.push_back(nonlinearFactor);
|
||||||
|
auto discreteFactor = boost::make_shared<DecisionTreeFactor>();
|
||||||
|
nhfg.push_back(discreteFactor);
|
||||||
|
|
||||||
|
KeyVector contKeys = {X(0), X(1)};
|
||||||
|
auto noise_model = noiseModel::Isotropic::Sigma(1, 1.0);
|
||||||
|
auto still = boost::make_shared<MotionModel>(X(0), X(1), 0.0, noise_model),
|
||||||
|
moving = boost::make_shared<MotionModel>(X(0), X(1), 1.0, noise_model);
|
||||||
|
|
||||||
|
std::vector<MotionModel::shared_ptr> components = {still, moving};
|
||||||
|
auto dcFactor = boost::make_shared<MixtureFactor>(
|
||||||
|
contKeys, DiscreteKeys{gtsam::DiscreteKey(M(1), 2)}, components);
|
||||||
|
nhfg.push_back(dcFactor);
|
||||||
|
|
||||||
|
Values linearizationPoint;
|
||||||
|
linearizationPoint.insert<double>(X(0), 0);
|
||||||
|
linearizationPoint.insert<double>(X(1), 1);
|
||||||
|
|
||||||
|
// Generate `HybridGaussianFactorGraph` by linearizing
|
||||||
|
HybridGaussianFactorGraph gfg = nhfg.linearize(linearizationPoint);
|
||||||
|
|
||||||
|
EXPECT_LONGS_EQUAL(gfg.size(), 3);
|
||||||
|
|
||||||
|
gfg.resize(0);
|
||||||
|
EXPECT_LONGS_EQUAL(gfg.size(), 0);
|
||||||
|
}
|
||||||
|
|
||||||
|
/*****************************************************************************
|
||||||
|
* Test push_back on HFG makes the correct distinction.
|
||||||
|
*/
|
||||||
|
TEST(HybridFactorGraph, PushBack) {
|
||||||
|
HybridNonlinearFactorGraph fg;
|
||||||
|
|
||||||
|
auto nonlinearFactor = boost::make_shared<BetweenFactor<double>>();
|
||||||
|
fg.push_back(nonlinearFactor);
|
||||||
|
|
||||||
|
EXPECT_LONGS_EQUAL(fg.size(), 1);
|
||||||
|
|
||||||
|
fg = HybridNonlinearFactorGraph();
|
||||||
|
|
||||||
|
auto discreteFactor = boost::make_shared<DecisionTreeFactor>();
|
||||||
|
fg.push_back(discreteFactor);
|
||||||
|
|
||||||
|
EXPECT_LONGS_EQUAL(fg.size(), 1);
|
||||||
|
|
||||||
|
fg = HybridNonlinearFactorGraph();
|
||||||
|
|
||||||
|
auto dcFactor = boost::make_shared<MixtureFactor>();
|
||||||
|
fg.push_back(dcFactor);
|
||||||
|
|
||||||
|
EXPECT_LONGS_EQUAL(fg.size(), 1);
|
||||||
|
|
||||||
|
// Now do the same with HybridGaussianFactorGraph
|
||||||
|
HybridGaussianFactorGraph ghfg;
|
||||||
|
|
||||||
|
auto gaussianFactor = boost::make_shared<JacobianFactor>();
|
||||||
|
ghfg.push_back(gaussianFactor);
|
||||||
|
|
||||||
|
EXPECT_LONGS_EQUAL(ghfg.size(), 1);
|
||||||
|
|
||||||
|
ghfg = HybridGaussianFactorGraph();
|
||||||
|
ghfg.push_back(discreteFactor);
|
||||||
|
|
||||||
|
EXPECT_LONGS_EQUAL(ghfg.size(), 1);
|
||||||
|
|
||||||
|
ghfg = HybridGaussianFactorGraph();
|
||||||
|
ghfg.push_back(dcFactor);
|
||||||
|
|
||||||
|
EXPECT_LONGS_EQUAL(ghfg.size(), 1);
|
||||||
|
}
|
||||||
|
|
||||||
|
/****************************************************************************
|
||||||
|
* Test construction of switching-like hybrid factor graph.
|
||||||
|
*/
|
||||||
|
TEST(HybridFactorGraph, Switching) {
|
||||||
|
Switching self(3);
|
||||||
|
|
||||||
|
EXPECT_LONGS_EQUAL(7, self.nonlinearFactorGraph.size());
|
||||||
|
EXPECT_LONGS_EQUAL(7, self.linearizedFactorGraph.size());
|
||||||
|
}
|
||||||
|
|
||||||
|
/****************************************************************************
|
||||||
|
* Test linearization on a switching-like hybrid factor graph.
|
||||||
|
*/
|
||||||
|
TEST(HybridFactorGraph, Linearization) {
|
||||||
|
Switching self(3);
|
||||||
|
|
||||||
|
// Linearize here:
|
||||||
|
HybridGaussianFactorGraph actualLinearized =
|
||||||
|
self.nonlinearFactorGraph.linearize(self.linearizationPoint);
|
||||||
|
|
||||||
|
EXPECT_LONGS_EQUAL(7, actualLinearized.size());
|
||||||
|
}
|
||||||
|
|
||||||
|
/****************************************************************************
|
||||||
|
* Test elimination tree construction
|
||||||
|
*/
|
||||||
|
TEST(HybridFactorGraph, EliminationTree) {
|
||||||
|
Switching self(3);
|
||||||
|
|
||||||
|
// Create ordering.
|
||||||
|
Ordering ordering;
|
||||||
|
for (size_t k = 1; k <= self.K; k++) ordering += X(k);
|
||||||
|
|
||||||
|
// Create elimination tree.
|
||||||
|
HybridEliminationTree etree(self.linearizedFactorGraph, ordering);
|
||||||
|
EXPECT_LONGS_EQUAL(1, etree.roots().size())
|
||||||
|
}
|
||||||
|
|
||||||
|
/****************************************************************************
|
||||||
|
*Test elimination function by eliminating x1 in *-x1-*-x2 graph.
|
||||||
|
*/
|
||||||
|
TEST(GaussianElimination, Eliminate_x1) {
|
||||||
|
Switching self(3);
|
||||||
|
|
||||||
|
// Gather factors on x1, has a simple Gaussian and a mixture factor.
|
||||||
|
HybridGaussianFactorGraph factors;
|
||||||
|
// Add gaussian prior
|
||||||
|
factors.push_back(self.linearizedFactorGraph[0]);
|
||||||
|
// Add first hybrid factor
|
||||||
|
factors.push_back(self.linearizedFactorGraph[1]);
|
||||||
|
|
||||||
|
// TODO(Varun) remove this block since sum is no longer exposed.
|
||||||
|
// // Check that sum works:
|
||||||
|
// auto sum = factors.sum();
|
||||||
|
// Assignment<Key> mode;
|
||||||
|
// mode[M(1)] = 1;
|
||||||
|
// auto actual = sum(mode); // Selects one of 2 modes.
|
||||||
|
// EXPECT_LONGS_EQUAL(2, actual.size()); // Prior and motion model.
|
||||||
|
|
||||||
|
// Eliminate x1
|
||||||
|
Ordering ordering;
|
||||||
|
ordering += X(1);
|
||||||
|
|
||||||
|
auto result = EliminateHybrid(factors, ordering);
|
||||||
|
CHECK(result.first);
|
||||||
|
EXPECT_LONGS_EQUAL(1, result.first->nrFrontals());
|
||||||
|
CHECK(result.second);
|
||||||
|
// Has two keys, x2 and m1
|
||||||
|
EXPECT_LONGS_EQUAL(2, result.second->size());
|
||||||
|
}
|
||||||
|
|
||||||
|
/****************************************************************************
|
||||||
|
* Test elimination function by eliminating x2 in x1-*-x2-*-x3 chain.
|
||||||
|
* m1/ \m2
|
||||||
|
*/
|
||||||
|
TEST(HybridsGaussianElimination, Eliminate_x2) {
|
||||||
|
Switching self(3);
|
||||||
|
|
||||||
|
// Gather factors on x2, will be two mixture factors (with x1 and x3, resp.).
|
||||||
|
HybridGaussianFactorGraph factors;
|
||||||
|
factors.push_back(self.linearizedFactorGraph[1]); // involves m1
|
||||||
|
factors.push_back(self.linearizedFactorGraph[2]); // involves m2
|
||||||
|
|
||||||
|
// TODO(Varun) remove this block since sum is no longer exposed.
|
||||||
|
// // Check that sum works:
|
||||||
|
// auto sum = factors.sum();
|
||||||
|
// Assignment<Key> mode;
|
||||||
|
// mode[M(1)] = 0;
|
||||||
|
// mode[M(2)] = 1;
|
||||||
|
// auto actual = sum(mode); // Selects one of 4 mode
|
||||||
|
// combinations. EXPECT_LONGS_EQUAL(2, actual.size()); // 2 motion models.
|
||||||
|
|
||||||
|
// Eliminate x2
|
||||||
|
Ordering ordering;
|
||||||
|
ordering += X(2);
|
||||||
|
|
||||||
|
std::pair<HybridConditional::shared_ptr, HybridFactor::shared_ptr> result =
|
||||||
|
EliminateHybrid(factors, ordering);
|
||||||
|
CHECK(result.first);
|
||||||
|
EXPECT_LONGS_EQUAL(1, result.first->nrFrontals());
|
||||||
|
CHECK(result.second);
|
||||||
|
// Note: separator keys should include m1, m2.
|
||||||
|
EXPECT_LONGS_EQUAL(4, result.second->size());
|
||||||
|
}
|
||||||
|
|
||||||
|
/****************************************************************************
|
||||||
|
* Helper method to generate gaussian factor graphs with a specific mode.
|
||||||
|
*/
|
||||||
|
GaussianFactorGraph::shared_ptr batchGFG(double between,
|
||||||
|
Values linearizationPoint) {
|
||||||
|
NonlinearFactorGraph graph;
|
||||||
|
graph.addPrior<double>(X(1), 0, Isotropic::Sigma(1, 0.1));
|
||||||
|
|
||||||
|
auto between_x1_x2 = boost::make_shared<MotionModel>(
|
||||||
|
X(1), X(2), between, Isotropic::Sigma(1, 1.0));
|
||||||
|
|
||||||
|
graph.push_back(between_x1_x2);
|
||||||
|
|
||||||
|
return graph.linearize(linearizationPoint);
|
||||||
|
}
|
||||||
|
|
||||||
|
/****************************************************************************
|
||||||
|
* Test elimination function by eliminating x1 and x2 in graph.
|
||||||
|
*/
|
||||||
|
TEST(HybridGaussianElimination, EliminateHybrid_2_Variable) {
|
||||||
|
Switching self(2, 1.0, 0.1);
|
||||||
|
|
||||||
|
auto factors = self.linearizedFactorGraph;
|
||||||
|
|
||||||
|
// Eliminate x1
|
||||||
|
Ordering ordering;
|
||||||
|
ordering += X(1);
|
||||||
|
ordering += X(2);
|
||||||
|
|
||||||
|
HybridConditional::shared_ptr hybridConditionalMixture;
|
||||||
|
HybridFactor::shared_ptr factorOnModes;
|
||||||
|
|
||||||
|
std::tie(hybridConditionalMixture, factorOnModes) =
|
||||||
|
EliminateHybrid(factors, ordering);
|
||||||
|
|
||||||
|
auto gaussianConditionalMixture =
|
||||||
|
dynamic_pointer_cast<GaussianMixture>(hybridConditionalMixture->inner());
|
||||||
|
|
||||||
|
CHECK(gaussianConditionalMixture);
|
||||||
|
// Frontals = [x1, x2]
|
||||||
|
EXPECT_LONGS_EQUAL(2, gaussianConditionalMixture->nrFrontals());
|
||||||
|
// 1 parent, which is the mode
|
||||||
|
EXPECT_LONGS_EQUAL(1, gaussianConditionalMixture->nrParents());
|
||||||
|
|
||||||
|
// This is now a HybridDiscreteFactor
|
||||||
|
auto hybridDiscreteFactor =
|
||||||
|
dynamic_pointer_cast<HybridDiscreteFactor>(factorOnModes);
|
||||||
|
// Access the type-erased inner object and convert to DecisionTreeFactor
|
||||||
|
auto discreteFactor =
|
||||||
|
dynamic_pointer_cast<DecisionTreeFactor>(hybridDiscreteFactor->inner());
|
||||||
|
CHECK(discreteFactor);
|
||||||
|
EXPECT_LONGS_EQUAL(1, discreteFactor->discreteKeys().size());
|
||||||
|
EXPECT(discreteFactor->root_->isLeaf() == false);
|
||||||
|
}
|
||||||
|
|
||||||
|
// /*
|
||||||
|
// ****************************************************************************/
|
||||||
|
// /// Test the toDecisionTreeFactor method
|
||||||
|
// TEST(HybridFactorGraph, ToDecisionTreeFactor) {
|
||||||
|
// size_t K = 3;
|
||||||
|
|
||||||
|
// // Provide tight sigma values so that the errors are visibly different.
|
||||||
|
// double between_sigma = 5e-8, prior_sigma = 1e-7;
|
||||||
|
|
||||||
|
// Switching self(K, between_sigma, prior_sigma);
|
||||||
|
|
||||||
|
// // Clear out discrete factors since sum() cannot hanldle those
|
||||||
|
// HybridGaussianFactorGraph linearizedFactorGraph(
|
||||||
|
// self.linearizedFactorGraph.gaussianGraph(), DiscreteFactorGraph(),
|
||||||
|
// self.linearizedFactorGraph.dcGraph());
|
||||||
|
|
||||||
|
// auto decisionTreeFactor = linearizedFactorGraph.toDecisionTreeFactor();
|
||||||
|
|
||||||
|
// auto allAssignments =
|
||||||
|
// DiscreteValues::CartesianProduct(linearizedFactorGraph.discreteKeys());
|
||||||
|
|
||||||
|
// // Get the error of the discrete assignment m1=0, m2=1.
|
||||||
|
// double actual = (*decisionTreeFactor)(allAssignments[1]);
|
||||||
|
|
||||||
|
// /********************************************/
|
||||||
|
// // Create equivalent factor graph for m1=0, m2=1
|
||||||
|
// GaussianFactorGraph graph = linearizedFactorGraph.gaussianGraph();
|
||||||
|
|
||||||
|
// for (auto &p : linearizedFactorGraph.dcGraph()) {
|
||||||
|
// if (auto mixture =
|
||||||
|
// boost::dynamic_pointer_cast<DCGaussianMixtureFactor>(p)) {
|
||||||
|
// graph.add((*mixture)(allAssignments[1]));
|
||||||
|
// }
|
||||||
|
// }
|
||||||
|
|
||||||
|
// VectorValues values = graph.optimize();
|
||||||
|
// double expected = graph.probPrime(values);
|
||||||
|
// /********************************************/
|
||||||
|
// EXPECT_DOUBLES_EQUAL(expected, actual, 1e-12);
|
||||||
|
// // REGRESSION:
|
||||||
|
// EXPECT_DOUBLES_EQUAL(0.6125, actual, 1e-4);
|
||||||
|
// }
|
||||||
|
|
||||||
|
/****************************************************************************
|
||||||
|
* Test partial elimination
|
||||||
|
*/
|
||||||
|
TEST(HybridFactorGraph, Partial_Elimination) {
|
||||||
|
Switching self(3);
|
||||||
|
|
||||||
|
auto linearizedFactorGraph = self.linearizedFactorGraph;
|
||||||
|
|
||||||
|
// Create ordering.
|
||||||
|
Ordering ordering;
|
||||||
|
for (size_t k = 1; k <= self.K; k++) ordering += X(k);
|
||||||
|
|
||||||
|
// Eliminate partially.
|
||||||
|
HybridBayesNet::shared_ptr hybridBayesNet;
|
||||||
|
HybridGaussianFactorGraph::shared_ptr remainingFactorGraph;
|
||||||
|
std::tie(hybridBayesNet, remainingFactorGraph) =
|
||||||
|
linearizedFactorGraph.eliminatePartialSequential(ordering);
|
||||||
|
|
||||||
|
CHECK(hybridBayesNet);
|
||||||
|
// GTSAM_PRINT(*hybridBayesNet); // HybridBayesNet
|
||||||
|
EXPECT_LONGS_EQUAL(3, hybridBayesNet->size());
|
||||||
|
EXPECT(hybridBayesNet->at(0)->frontals() == KeyVector{X(1)});
|
||||||
|
EXPECT(hybridBayesNet->at(0)->parents() == KeyVector({X(2), M(1)}));
|
||||||
|
EXPECT(hybridBayesNet->at(1)->frontals() == KeyVector{X(2)});
|
||||||
|
EXPECT(hybridBayesNet->at(1)->parents() == KeyVector({X(3), M(1), M(2)}));
|
||||||
|
EXPECT(hybridBayesNet->at(2)->frontals() == KeyVector{X(3)});
|
||||||
|
EXPECT(hybridBayesNet->at(2)->parents() == KeyVector({M(1), M(2)}));
|
||||||
|
|
||||||
|
CHECK(remainingFactorGraph);
|
||||||
|
// GTSAM_PRINT(*remainingFactorGraph); // HybridFactorGraph
|
||||||
|
EXPECT_LONGS_EQUAL(3, remainingFactorGraph->size());
|
||||||
|
EXPECT(remainingFactorGraph->at(0)->keys() == KeyVector({M(1)}));
|
||||||
|
EXPECT(remainingFactorGraph->at(1)->keys() == KeyVector({M(2), M(1)}));
|
||||||
|
EXPECT(remainingFactorGraph->at(2)->keys() == KeyVector({M(1), M(2)}));
|
||||||
|
}
|
||||||
|
|
||||||
|
/****************************************************************************
|
||||||
|
* Test full elimination
|
||||||
|
*/
|
||||||
|
TEST(HybridFactorGraph, Full_Elimination) {
|
||||||
|
Switching self(3);
|
||||||
|
|
||||||
|
auto linearizedFactorGraph = self.linearizedFactorGraph;
|
||||||
|
|
||||||
|
// We first do a partial elimination
|
||||||
|
HybridBayesNet::shared_ptr hybridBayesNet_partial;
|
||||||
|
HybridGaussianFactorGraph::shared_ptr remainingFactorGraph_partial;
|
||||||
|
DiscreteBayesNet discreteBayesNet;
|
||||||
|
|
||||||
|
{
|
||||||
|
// Create ordering.
|
||||||
|
Ordering ordering;
|
||||||
|
for (size_t k = 1; k <= self.K; k++) ordering += X(k);
|
||||||
|
|
||||||
|
// Eliminate partially.
|
||||||
|
std::tie(hybridBayesNet_partial, remainingFactorGraph_partial) =
|
||||||
|
linearizedFactorGraph.eliminatePartialSequential(ordering);
|
||||||
|
|
||||||
|
DiscreteFactorGraph discrete_fg;
|
||||||
|
// TODO(Varun) Make this a function of HybridGaussianFactorGraph?
|
||||||
|
for (HybridFactor::shared_ptr& factor : (*remainingFactorGraph_partial)) {
|
||||||
|
auto df = dynamic_pointer_cast<HybridDiscreteFactor>(factor);
|
||||||
|
discrete_fg.push_back(df->inner());
|
||||||
|
}
|
||||||
|
ordering.clear();
|
||||||
|
for (size_t k = 1; k < self.K; k++) ordering += M(k);
|
||||||
|
discreteBayesNet =
|
||||||
|
*discrete_fg.eliminateSequential(ordering, EliminateForMPE);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Create ordering.
|
||||||
|
Ordering ordering;
|
||||||
|
for (size_t k = 1; k <= self.K; k++) ordering += X(k);
|
||||||
|
for (size_t k = 1; k < self.K; k++) ordering += M(k);
|
||||||
|
|
||||||
|
// Eliminate partially.
|
||||||
|
HybridBayesNet::shared_ptr hybridBayesNet =
|
||||||
|
linearizedFactorGraph.eliminateSequential(ordering);
|
||||||
|
|
||||||
|
CHECK(hybridBayesNet);
|
||||||
|
EXPECT_LONGS_EQUAL(5, hybridBayesNet->size());
|
||||||
|
// p(x1 | x2, m1)
|
||||||
|
EXPECT(hybridBayesNet->at(0)->frontals() == KeyVector{X(1)});
|
||||||
|
EXPECT(hybridBayesNet->at(0)->parents() == KeyVector({X(2), M(1)}));
|
||||||
|
// p(x2 | x3, m1, m2)
|
||||||
|
EXPECT(hybridBayesNet->at(1)->frontals() == KeyVector{X(2)});
|
||||||
|
EXPECT(hybridBayesNet->at(1)->parents() == KeyVector({X(3), M(1), M(2)}));
|
||||||
|
// p(x3 | m1, m2)
|
||||||
|
EXPECT(hybridBayesNet->at(2)->frontals() == KeyVector{X(3)});
|
||||||
|
EXPECT(hybridBayesNet->at(2)->parents() == KeyVector({M(1), M(2)}));
|
||||||
|
// P(m1 | m2)
|
||||||
|
EXPECT(hybridBayesNet->at(3)->frontals() == KeyVector{M(1)});
|
||||||
|
EXPECT(hybridBayesNet->at(3)->parents() == KeyVector({M(2)}));
|
||||||
|
EXPECT(
|
||||||
|
dynamic_pointer_cast<DiscreteConditional>(hybridBayesNet->at(3)->inner())
|
||||||
|
->equals(*discreteBayesNet.at(0)));
|
||||||
|
// P(m2)
|
||||||
|
EXPECT(hybridBayesNet->at(4)->frontals() == KeyVector{M(2)});
|
||||||
|
EXPECT_LONGS_EQUAL(0, hybridBayesNet->at(4)->nrParents());
|
||||||
|
EXPECT(
|
||||||
|
dynamic_pointer_cast<DiscreteConditional>(hybridBayesNet->at(4)->inner())
|
||||||
|
->equals(*discreteBayesNet.at(1)));
|
||||||
|
}
|
||||||
|
|
||||||
|
/****************************************************************************
|
||||||
|
* Test printing
|
||||||
|
*/
|
||||||
|
TEST(HybridFactorGraph, Printing) {
|
||||||
|
Switching self(3);
|
||||||
|
|
||||||
|
auto linearizedFactorGraph = self.linearizedFactorGraph;
|
||||||
|
|
||||||
|
// Create ordering.
|
||||||
|
Ordering ordering;
|
||||||
|
for (size_t k = 1; k <= self.K; k++) ordering += X(k);
|
||||||
|
|
||||||
|
// Eliminate partially.
|
||||||
|
HybridBayesNet::shared_ptr hybridBayesNet;
|
||||||
|
HybridGaussianFactorGraph::shared_ptr remainingFactorGraph;
|
||||||
|
std::tie(hybridBayesNet, remainingFactorGraph) =
|
||||||
|
linearizedFactorGraph.eliminatePartialSequential(ordering);
|
||||||
|
|
||||||
|
string expected_hybridFactorGraph = R"(
|
||||||
|
size: 7
|
||||||
|
factor 0: Continuous [x1]
|
||||||
|
|
||||||
|
A[x1] = [
|
||||||
|
10
|
||||||
|
]
|
||||||
|
b = [ -10 ]
|
||||||
|
No noise model
|
||||||
|
factor 1: Hybrid [x1 x2; m1]{
|
||||||
|
Choice(m1)
|
||||||
|
0 Leaf :
|
||||||
|
A[x1] = [
|
||||||
|
-1
|
||||||
|
]
|
||||||
|
A[x2] = [
|
||||||
|
1
|
||||||
|
]
|
||||||
|
b = [ -1 ]
|
||||||
|
No noise model
|
||||||
|
|
||||||
|
1 Leaf :
|
||||||
|
A[x1] = [
|
||||||
|
-1
|
||||||
|
]
|
||||||
|
A[x2] = [
|
||||||
|
1
|
||||||
|
]
|
||||||
|
b = [ -0 ]
|
||||||
|
No noise model
|
||||||
|
|
||||||
|
}
|
||||||
|
factor 2: Hybrid [x2 x3; m2]{
|
||||||
|
Choice(m2)
|
||||||
|
0 Leaf :
|
||||||
|
A[x2] = [
|
||||||
|
-1
|
||||||
|
]
|
||||||
|
A[x3] = [
|
||||||
|
1
|
||||||
|
]
|
||||||
|
b = [ -1 ]
|
||||||
|
No noise model
|
||||||
|
|
||||||
|
1 Leaf :
|
||||||
|
A[x2] = [
|
||||||
|
-1
|
||||||
|
]
|
||||||
|
A[x3] = [
|
||||||
|
1
|
||||||
|
]
|
||||||
|
b = [ -0 ]
|
||||||
|
No noise model
|
||||||
|
|
||||||
|
}
|
||||||
|
factor 3: Continuous [x2]
|
||||||
|
|
||||||
|
A[x2] = [
|
||||||
|
10
|
||||||
|
]
|
||||||
|
b = [ -10 ]
|
||||||
|
No noise model
|
||||||
|
factor 4: Continuous [x3]
|
||||||
|
|
||||||
|
A[x3] = [
|
||||||
|
10
|
||||||
|
]
|
||||||
|
b = [ -10 ]
|
||||||
|
No noise model
|
||||||
|
factor 5: Discrete [m1]
|
||||||
|
P( m1 ):
|
||||||
|
Leaf 0.5
|
||||||
|
|
||||||
|
factor 6: Discrete [m2 m1]
|
||||||
|
P( m2 | m1 ):
|
||||||
|
Choice(m2)
|
||||||
|
0 Choice(m1)
|
||||||
|
0 0 Leaf 0.33333333
|
||||||
|
0 1 Leaf 0.6
|
||||||
|
1 Choice(m1)
|
||||||
|
1 0 Leaf 0.66666667
|
||||||
|
1 1 Leaf 0.4
|
||||||
|
|
||||||
|
)";
|
||||||
|
EXPECT(assert_print_equal(expected_hybridFactorGraph, linearizedFactorGraph));
|
||||||
|
|
||||||
|
// Expected output for hybridBayesNet.
|
||||||
|
string expected_hybridBayesNet = R"(
|
||||||
|
size: 3
|
||||||
|
factor 0: Hybrid P( x1 | x2 m1)
|
||||||
|
Discrete Keys = (m1, 2),
|
||||||
|
Choice(m1)
|
||||||
|
0 Leaf p(x1 | x2)
|
||||||
|
R = [ 10.0499 ]
|
||||||
|
S[x2] = [ -0.0995037 ]
|
||||||
|
d = [ -9.85087 ]
|
||||||
|
No noise model
|
||||||
|
|
||||||
|
1 Leaf p(x1 | x2)
|
||||||
|
R = [ 10.0499 ]
|
||||||
|
S[x2] = [ -0.0995037 ]
|
||||||
|
d = [ -9.95037 ]
|
||||||
|
No noise model
|
||||||
|
|
||||||
|
factor 1: Hybrid P( x2 | x3 m1 m2)
|
||||||
|
Discrete Keys = (m1, 2), (m2, 2),
|
||||||
|
Choice(m2)
|
||||||
|
0 Choice(m1)
|
||||||
|
0 0 Leaf p(x2 | x3)
|
||||||
|
R = [ 10.099 ]
|
||||||
|
S[x3] = [ -0.0990196 ]
|
||||||
|
d = [ -9.99901 ]
|
||||||
|
No noise model
|
||||||
|
|
||||||
|
0 1 Leaf p(x2 | x3)
|
||||||
|
R = [ 10.099 ]
|
||||||
|
S[x3] = [ -0.0990196 ]
|
||||||
|
d = [ -9.90098 ]
|
||||||
|
No noise model
|
||||||
|
|
||||||
|
1 Choice(m1)
|
||||||
|
1 0 Leaf p(x2 | x3)
|
||||||
|
R = [ 10.099 ]
|
||||||
|
S[x3] = [ -0.0990196 ]
|
||||||
|
d = [ -10.098 ]
|
||||||
|
No noise model
|
||||||
|
|
||||||
|
1 1 Leaf p(x2 | x3)
|
||||||
|
R = [ 10.099 ]
|
||||||
|
S[x3] = [ -0.0990196 ]
|
||||||
|
d = [ -10 ]
|
||||||
|
No noise model
|
||||||
|
|
||||||
|
factor 2: Hybrid P( x3 | m1 m2)
|
||||||
|
Discrete Keys = (m1, 2), (m2, 2),
|
||||||
|
Choice(m2)
|
||||||
|
0 Choice(m1)
|
||||||
|
0 0 Leaf p(x3)
|
||||||
|
R = [ 10.0494 ]
|
||||||
|
d = [ -10.1489 ]
|
||||||
|
No noise model
|
||||||
|
|
||||||
|
0 1 Leaf p(x3)
|
||||||
|
R = [ 10.0494 ]
|
||||||
|
d = [ -10.1479 ]
|
||||||
|
No noise model
|
||||||
|
|
||||||
|
1 Choice(m1)
|
||||||
|
1 0 Leaf p(x3)
|
||||||
|
R = [ 10.0494 ]
|
||||||
|
d = [ -10.0504 ]
|
||||||
|
No noise model
|
||||||
|
|
||||||
|
1 1 Leaf p(x3)
|
||||||
|
R = [ 10.0494 ]
|
||||||
|
d = [ -10.0494 ]
|
||||||
|
No noise model
|
||||||
|
|
||||||
|
)";
|
||||||
|
EXPECT(assert_print_equal(expected_hybridBayesNet, *hybridBayesNet));
|
||||||
|
}
|
||||||
|
|
||||||
|
/****************************************************************************
|
||||||
|
* Simple PlanarSLAM example test with 2 poses and 2 landmarks (each pose
|
||||||
|
* connects to 1 landmark) to expose issue with default decision tree creation
|
||||||
|
* in hybrid elimination. The hybrid factor is between the poses X0 and X1.
|
||||||
|
* The issue arises if we eliminate a landmark variable first since it is not
|
||||||
|
* connected to a HybridFactor.
|
||||||
|
*/
|
||||||
|
TEST(HybridFactorGraph, DefaultDecisionTree) {
|
||||||
|
HybridNonlinearFactorGraph fg;
|
||||||
|
|
||||||
|
// Add a prior on pose x1 at the origin.
|
||||||
|
// A prior factor consists of a mean and a noise model (covariance matrix)
|
||||||
|
Pose2 prior(0.0, 0.0, 0.0); // prior mean is at origin
|
||||||
|
auto priorNoise = noiseModel::Diagonal::Sigmas(
|
||||||
|
Vector3(0.3, 0.3, 0.1)); // 30cm std on x,y, 0.1 rad on theta
|
||||||
|
fg.emplace_nonlinear<PriorFactor<Pose2>>(X(0), prior, priorNoise);
|
||||||
|
|
||||||
|
using PlanarMotionModel = BetweenFactor<Pose2>;
|
||||||
|
|
||||||
|
// Add odometry factor
|
||||||
|
Pose2 odometry(2.0, 0.0, 0.0);
|
||||||
|
KeyVector contKeys = {X(0), X(1)};
|
||||||
|
auto noise_model = noiseModel::Isotropic::Sigma(3, 1.0);
|
||||||
|
auto still = boost::make_shared<PlanarMotionModel>(X(0), X(1), Pose2(0, 0, 0),
|
||||||
|
noise_model),
|
||||||
|
moving = boost::make_shared<PlanarMotionModel>(X(0), X(1), odometry,
|
||||||
|
noise_model);
|
||||||
|
std::vector<PlanarMotionModel::shared_ptr> motion_models = {still, moving};
|
||||||
|
// TODO(Varun) Make a templated constructor for MixtureFactor which does this?
|
||||||
|
std::vector<NonlinearFactor::shared_ptr> components;
|
||||||
|
for (auto&& f : motion_models) {
|
||||||
|
components.push_back(boost::dynamic_pointer_cast<NonlinearFactor>(f));
|
||||||
|
}
|
||||||
|
fg.emplace_hybrid<MixtureFactor>(
|
||||||
|
contKeys, DiscreteKeys{gtsam::DiscreteKey(M(1), 2)}, components);
|
||||||
|
|
||||||
|
// Add Range-Bearing measurements to from X0 to L0 and X1 to L1.
|
||||||
|
// create a noise model for the landmark measurements
|
||||||
|
auto measurementNoise = noiseModel::Diagonal::Sigmas(
|
||||||
|
Vector2(0.1, 0.2)); // 0.1 rad std on bearing, 20cm on range
|
||||||
|
// create the measurement values - indices are (pose id, landmark id)
|
||||||
|
Rot2 bearing11 = Rot2::fromDegrees(45), bearing22 = Rot2::fromDegrees(90);
|
||||||
|
double range11 = std::sqrt(4.0 + 4.0), range22 = 2.0;
|
||||||
|
|
||||||
|
// Add Bearing-Range factors
|
||||||
|
fg.emplace_nonlinear<BearingRangeFactor<Pose2, Point2>>(
|
||||||
|
X(0), L(0), bearing11, range11, measurementNoise);
|
||||||
|
fg.emplace_nonlinear<BearingRangeFactor<Pose2, Point2>>(
|
||||||
|
X(1), L(1), bearing22, range22, measurementNoise);
|
||||||
|
|
||||||
|
// Create (deliberately inaccurate) initial estimate
|
||||||
|
Values initialEstimate;
|
||||||
|
initialEstimate.insert(X(0), Pose2(0.5, 0.0, 0.2));
|
||||||
|
initialEstimate.insert(X(1), Pose2(2.3, 0.1, -0.2));
|
||||||
|
initialEstimate.insert(L(0), Point2(1.8, 2.1));
|
||||||
|
initialEstimate.insert(L(1), Point2(4.1, 1.8));
|
||||||
|
|
||||||
|
// We want to eliminate variables not connected to DCFactors first.
|
||||||
|
Ordering ordering;
|
||||||
|
ordering += L(0);
|
||||||
|
ordering += L(1);
|
||||||
|
ordering += X(0);
|
||||||
|
ordering += X(1);
|
||||||
|
|
||||||
|
HybridGaussianFactorGraph linearized = fg.linearize(initialEstimate);
|
||||||
|
gtsam::HybridBayesNet::shared_ptr hybridBayesNet;
|
||||||
|
gtsam::HybridGaussianFactorGraph::shared_ptr remainingFactorGraph;
|
||||||
|
|
||||||
|
// This should NOT fail
|
||||||
|
std::tie(hybridBayesNet, remainingFactorGraph) =
|
||||||
|
linearized.eliminatePartialSequential(ordering);
|
||||||
|
EXPECT_LONGS_EQUAL(4, hybridBayesNet->size());
|
||||||
|
EXPECT_LONGS_EQUAL(1, remainingFactorGraph->size());
|
||||||
|
}
|
||||||
|
|
||||||
|
/* ************************************************************************* */
|
||||||
|
int main() {
|
||||||
|
TestResult tr;
|
||||||
|
return TestRegistry::runAllTests(tr);
|
||||||
|
}
|
||||||
|
/* ************************************************************************* */
|
||||||
Loading…
Reference in New Issue