Merge branch 'jtree_mania' into feature/CeresDefaults-2

release/4.3a0
dellaert 2015-06-21 14:39:46 -07:00
commit 786b762907
4 changed files with 558 additions and 507 deletions

View File

@ -1,19 +1,19 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
* -------------------------------------------------------------------------- */
/**
* @file treeTraversal-inst.h
* @author Richard Roberts
* @date April 9, 2013
*/
* @file treeTraversal-inst.h
* @author Richard Roberts
* @date April 9, 2013
*/
#pragma once
#include <gtsam/base/treeTraversal/parallelTraversalTasks.h>
@ -33,192 +33,197 @@
namespace gtsam {
/** Internal functions used for traversing trees */
namespace treeTraversal {
/** Internal functions used for traversing trees */
namespace treeTraversal {
/* ************************************************************************* */
namespace {
// Internal node used in DFS preorder stack
template<typename NODE, typename DATA>
struct TraversalNode {
bool expanded;
const boost::shared_ptr<NODE>& treeNode;
DATA& parentData;
typename FastList<DATA>::iterator dataPointer;
TraversalNode(const boost::shared_ptr<NODE>& _treeNode, DATA& _parentData) :
expanded(false), treeNode(_treeNode), parentData(_parentData) {}
};
// Do nothing - default argument for post-visitor for tree traversal
struct no_op {
template<typename NODE, typename DATA>
void operator()(const boost::shared_ptr<NODE>& node, const DATA& data) {}
};
}
/** Traverse a forest depth-first with pre-order and post-order visits.
* @param forest The forest of trees to traverse. The method \c forest.roots() should exist
* and return a collection of (shared) pointers to \c FOREST::Node.
* @param visitorPre \c visitorPre(node, parentData) will be called at every node, before
* visiting its children, and will be passed, by reference, the \c DATA object returned
* by the visit to its parent. Likewise, \c visitorPre should return the \c DATA object
* to pass to the children. The returned \c DATA object will be copy-constructed only
* upon returning to store internally, thus may be modified by visiting the children.
* Regarding efficiency, this copy-on-return is usually optimized out by the compiler.
* @param visitorPost \c visitorPost(node, data) will be called at every node, after visiting
* its children, and will be passed, by reference, the \c DATA object returned by the
* call to \c visitorPre (the \c DATA object may be modified by visiting the children).
* @param rootData The data to pass by reference to \c visitorPre when it is called on each
* root node. */
template<class FOREST, typename DATA, typename VISITOR_PRE, typename VISITOR_POST>
void DepthFirstForest(FOREST& forest, DATA& rootData, VISITOR_PRE& visitorPre, VISITOR_POST& visitorPost)
{
// Typedefs
typedef typename FOREST::Node Node;
typedef boost::shared_ptr<Node> sharedNode;
// Depth first traversal stack
typedef TraversalNode<typename FOREST::Node, DATA> TraversalNode;
typedef FastList<TraversalNode> Stack;
Stack stack;
FastList<DATA> dataList; // List to store node data as it is returned from the pre-order visitor
// Add roots to stack (insert such that they are visited and processed in order
{
typename Stack::iterator insertLocation = stack.begin();
BOOST_FOREACH(const sharedNode& root, forest.roots())
stack.insert(insertLocation, TraversalNode(root, rootData));
}
// Traverse
while(!stack.empty())
{
// Get next node
TraversalNode& node = stack.front();
if(node.expanded) {
// If already expanded, then the data stored in the node is no longer needed, so visit
// then delete it.
(void) visitorPost(node.treeNode, *node.dataPointer);
dataList.erase(node.dataPointer);
stack.pop_front();
} else {
// If not already visited, visit the node and add its children (use reverse iterators so
// children are processed in the order they appear)
node.dataPointer = dataList.insert(dataList.end(), visitorPre(node.treeNode, node.parentData));
typename Stack::iterator insertLocation = stack.begin();
BOOST_FOREACH(const sharedNode& child, node.treeNode->children)
stack.insert(insertLocation, TraversalNode(child, *node.dataPointer));
node.expanded = true;
}
}
assert(dataList.empty());
}
/** Traverse a forest depth-first, with a pre-order visit but no post-order visit.
* @param forest The forest of trees to traverse. The method \c forest.roots() should exist
* and return a collection of (shared) pointers to \c FOREST::Node.
* @param visitorPre \c visitorPre(node, parentData) will be called at every node, before
* visiting its children, and will be passed, by reference, the \c DATA object returned
* by the visit to its parent. Likewise, \c visitorPre should return the \c DATA object
* to pass to the children. The returned \c DATA object will be copy-constructed only
* upon returning to store internally, thus may be modified by visiting the children.
* Regarding efficiency, this copy-on-return is usually optimized out by the compiler.
* @param rootData The data to pass by reference to \c visitorPre when it is called on each
* root node. */
template<class FOREST, typename DATA, typename VISITOR_PRE>
void DepthFirstForest(FOREST& forest, DATA& rootData, VISITOR_PRE& visitorPre)
{
no_op visitorPost;
DepthFirstForest(forest, rootData, visitorPre, visitorPost);
}
/** Traverse a forest depth-first with pre-order and post-order visits.
* @param forest The forest of trees to traverse. The method \c forest.roots() should exist
* and return a collection of (shared) pointers to \c FOREST::Node.
* @param visitorPre \c visitorPre(node, parentData) will be called at every node, before
* visiting its children, and will be passed, by reference, the \c DATA object returned
* by the visit to its parent. Likewise, \c visitorPre should return the \c DATA object
* to pass to the children. The returned \c DATA object will be copy-constructed only
* upon returning to store internally, thus may be modified by visiting the children.
* Regarding efficiency, this copy-on-return is usually optimized out by the compiler.
* @param visitorPost \c visitorPost(node, data) will be called at every node, after visiting
* its children, and will be passed, by reference, the \c DATA object returned by the
* call to \c visitorPre (the \c DATA object may be modified by visiting the children).
* @param rootData The data to pass by reference to \c visitorPre when it is called on each
* root node. */
template<class FOREST, typename DATA, typename VISITOR_PRE, typename VISITOR_POST>
void DepthFirstForestParallel(FOREST& forest, DATA& rootData, VISITOR_PRE& visitorPre, VISITOR_POST& visitorPost,
int problemSizeThreshold = 10)
{
#ifdef GTSAM_USE_TBB
// Typedefs
typedef typename FOREST::Node Node;
typedef boost::shared_ptr<Node> sharedNode;
tbb::task::spawn_root_and_wait(internal::CreateRootTask<Node>(
forest.roots(), rootData, visitorPre, visitorPost, problemSizeThreshold));
#else
DepthFirstForest(forest, rootData, visitorPre, visitorPost);
#endif
}
/* ************************************************************************* */
/** Traversal function for CloneForest */
namespace {
template<typename NODE>
boost::shared_ptr<NODE>
CloneForestVisitorPre(const boost::shared_ptr<NODE>& node, const boost::shared_ptr<NODE>& parentPointer)
{
// Clone the current node and add it to its cloned parent
boost::shared_ptr<NODE> clone = boost::make_shared<NODE>(*node);
clone->children.clear();
parentPointer->children.push_back(clone);
return clone;
}
}
/** Clone a tree, copy-constructing new nodes (calling boost::make_shared) and setting up child
* pointers for a clone of the original tree.
* @param forest The forest of trees to clone. The method \c forest.roots() should exist and
* return a collection of shared pointers to \c FOREST::Node.
* @return The new collection of roots. */
template<class FOREST>
FastVector<boost::shared_ptr<typename FOREST::Node> > CloneForest(const FOREST& forest)
{
typedef typename FOREST::Node Node;
boost::shared_ptr<Node> rootContainer = boost::make_shared<Node>();
DepthFirstForest(forest, rootContainer, CloneForestVisitorPre<Node>);
return FastVector<boost::shared_ptr<Node> >(rootContainer->children.begin(), rootContainer->children.end());
}
/* ************************************************************************* */
/** Traversal function for PrintForest */
namespace {
struct PrintForestVisitorPre
{
const KeyFormatter& formatter;
PrintForestVisitorPre(const KeyFormatter& formatter) : formatter(formatter) {}
template<typename NODE> std::string operator()(const boost::shared_ptr<NODE>& node, const std::string& parentString)
{
// Print the current node
node->print(parentString + "-", formatter);
// Increment the indentation
return parentString + "| ";
}
};
}
/** Print a tree, prefixing each line with \c str, and formatting keys using \c keyFormatter.
* To print each node, this function calls the \c print function of the tree nodes. */
template<class FOREST>
void PrintForest(const FOREST& forest, std::string str, const KeyFormatter& keyFormatter) {
PrintForestVisitorPre visitor(keyFormatter);
DepthFirstForest(forest, str, visitor);
}
/* ************************************************************************* */
namespace {
// Internal node used in DFS preorder stack
template<typename NODE, typename DATA>
struct TraversalNode {
bool expanded;
const boost::shared_ptr<NODE>& treeNode;
DATA& parentData;
typename FastList<DATA>::iterator dataPointer;
TraversalNode(const boost::shared_ptr<NODE>& _treeNode, DATA& _parentData) :
expanded(false), treeNode(_treeNode), parentData(_parentData) {
}
};
// Do nothing - default argument for post-visitor for tree traversal
struct no_op {
template<typename NODE, typename DATA>
void operator()(const boost::shared_ptr<NODE>& node, const DATA& data) {
}
};
}
/** Traverse a forest depth-first with pre-order and post-order visits.
* @param forest The forest of trees to traverse. The method \c forest.roots() should exist
* and return a collection of (shared) pointers to \c FOREST::Node.
* @param visitorPre \c visitorPre(node, parentData) will be called at every node, before
* visiting its children, and will be passed, by reference, the \c DATA object returned
* by the visit to its parent. Likewise, \c visitorPre should return the \c DATA object
* to pass to the children. The returned \c DATA object will be copy-constructed only
* upon returning to store internally, thus may be modified by visiting the children.
* Regarding efficiency, this copy-on-return is usually optimized out by the compiler.
* @param visitorPost \c visitorPost(node, data) will be called at every node, after visiting
* its children, and will be passed, by reference, the \c DATA object returned by the
* call to \c visitorPre (the \c DATA object may be modified by visiting the children).
* @param rootData The data to pass by reference to \c visitorPre when it is called on each
* root node. */
template<class FOREST, typename DATA, typename VISITOR_PRE,
typename VISITOR_POST>
void DepthFirstForest(FOREST& forest, DATA& rootData, VISITOR_PRE& visitorPre,
VISITOR_POST& visitorPost) {
// Typedefs
typedef typename FOREST::Node Node;
typedef boost::shared_ptr<Node> sharedNode;
// Depth first traversal stack
typedef TraversalNode<typename FOREST::Node, DATA> TraversalNode;
typedef FastList<TraversalNode> Stack;
Stack stack;
FastList<DATA> dataList; // List to store node data as it is returned from the pre-order visitor
// Add roots to stack (insert such that they are visited and processed in order
{
typename Stack::iterator insertLocation = stack.begin();
BOOST_FOREACH(const sharedNode& root, forest.roots())
stack.insert(insertLocation, TraversalNode(root, rootData));
}
// Traverse
while (!stack.empty()) {
// Get next node
TraversalNode& node = stack.front();
if (node.expanded) {
// If already expanded, then the data stored in the node is no longer needed, so visit
// then delete it.
(void) visitorPost(node.treeNode, *node.dataPointer);
dataList.erase(node.dataPointer);
stack.pop_front();
} else {
// If not already visited, visit the node and add its children (use reverse iterators so
// children are processed in the order they appear)
node.dataPointer = dataList.insert(dataList.end(),
visitorPre(node.treeNode, node.parentData));
typename Stack::iterator insertLocation = stack.begin();
BOOST_FOREACH(const sharedNode& child, node.treeNode->children)
stack.insert(insertLocation, TraversalNode(child, *node.dataPointer));
node.expanded = true;
}
}
assert(dataList.empty());
}
/** Traverse a forest depth-first, with a pre-order visit but no post-order visit.
* @param forest The forest of trees to traverse. The method \c forest.roots() should exist
* and return a collection of (shared) pointers to \c FOREST::Node.
* @param visitorPre \c visitorPre(node, parentData) will be called at every node, before
* visiting its children, and will be passed, by reference, the \c DATA object returned
* by the visit to its parent. Likewise, \c visitorPre should return the \c DATA object
* to pass to the children. The returned \c DATA object will be copy-constructed only
* upon returning to store internally, thus may be modified by visiting the children.
* Regarding efficiency, this copy-on-return is usually optimized out by the compiler.
* @param rootData The data to pass by reference to \c visitorPre when it is called on each
* root node. */
template<class FOREST, typename DATA, typename VISITOR_PRE>
void DepthFirstForest(FOREST& forest, DATA& rootData, VISITOR_PRE& visitorPre) {
no_op visitorPost;
DepthFirstForest(forest, rootData, visitorPre, visitorPost);
}
/** Traverse a forest depth-first with pre-order and post-order visits.
* @param forest The forest of trees to traverse. The method \c forest.roots() should exist
* and return a collection of (shared) pointers to \c FOREST::Node.
* @param visitorPre \c visitorPre(node, parentData) will be called at every node, before
* visiting its children, and will be passed, by reference, the \c DATA object returned
* by the visit to its parent. Likewise, \c visitorPre should return the \c DATA object
* to pass to the children. The returned \c DATA object will be copy-constructed only
* upon returning to store internally, thus may be modified by visiting the children.
* Regarding efficiency, this copy-on-return is usually optimized out by the compiler.
* @param visitorPost \c visitorPost(node, data) will be called at every node, after visiting
* its children, and will be passed, by reference, the \c DATA object returned by the
* call to \c visitorPre (the \c DATA object may be modified by visiting the children).
* @param rootData The data to pass by reference to \c visitorPre when it is called on each
* root node. */
template<class FOREST, typename DATA, typename VISITOR_PRE,
typename VISITOR_POST>
void DepthFirstForestParallel(FOREST& forest, DATA& rootData,
VISITOR_PRE& visitorPre, VISITOR_POST& visitorPost,
int problemSizeThreshold = 10) {
#ifdef GTSAM_USE_TBB
// Typedefs
typedef typename FOREST::Node Node;
typedef boost::shared_ptr<Node> sharedNode;
tbb::task::spawn_root_and_wait(
internal::CreateRootTask<Node>(forest.roots(), rootData, visitorPre,
visitorPost, problemSizeThreshold));
#else
DepthFirstForest(forest, rootData, visitorPre, visitorPost);
#endif
}
/* ************************************************************************* */
/** Traversal function for CloneForest */
namespace {
template<typename NODE>
boost::shared_ptr<NODE> CloneForestVisitorPre(
const boost::shared_ptr<NODE>& node,
const boost::shared_ptr<NODE>& parentPointer) {
// Clone the current node and add it to its cloned parent
boost::shared_ptr<NODE> clone = boost::make_shared<NODE>(*node);
clone->children.clear();
parentPointer->children.push_back(clone);
return clone;
}
}
/** Clone a tree, copy-constructing new nodes (calling boost::make_shared) and setting up child
* pointers for a clone of the original tree.
* @param forest The forest of trees to clone. The method \c forest.roots() should exist and
* return a collection of shared pointers to \c FOREST::Node.
* @return The new collection of roots. */
template<class FOREST>
FastVector<boost::shared_ptr<typename FOREST::Node> > CloneForest(
const FOREST& forest) {
typedef typename FOREST::Node Node;
boost::shared_ptr<Node> rootContainer = boost::make_shared<Node>();
DepthFirstForest(forest, rootContainer, CloneForestVisitorPre<Node>);
return FastVector<boost::shared_ptr<Node> >(rootContainer->children.begin(),
rootContainer->children.end());
}
/* ************************************************************************* */
/** Traversal function for PrintForest */
namespace {
struct PrintForestVisitorPre {
const KeyFormatter& formatter;
PrintForestVisitorPre(const KeyFormatter& formatter) :
formatter(formatter) {
}
template<typename NODE> std::string operator()(
const boost::shared_ptr<NODE>& node, const std::string& parentString) {
// Print the current node
node->print(parentString + "-", formatter);
// Increment the indentation
return parentString + "| ";
}
};
}
/** Print a tree, prefixing each line with \c str, and formatting keys using \c keyFormatter.
* To print each node, this function calls the \c print function of the tree nodes. */
template<class FOREST>
void PrintForest(const FOREST& forest, std::string str,
const KeyFormatter& keyFormatter) {
PrintForestVisitorPre visitor(keyFormatter);
DepthFirstForest(forest, str, visitor);
}
}
}

View File

@ -7,178 +7,227 @@
* @brief Collects factorgraph fragments defined on variable clusters, arranged in a tree
*/
#include <gtsam/base/timing.h>
#include <gtsam/base/treeTraversal-inst.h>
#include <gtsam/inference/ClusterTree.h>
#include <gtsam/inference/BayesTree.h>
#include <gtsam/inference/Ordering.h>
#include <gtsam/base/timing.h>
#include <gtsam/base/treeTraversal-inst.h>
#include <boost/foreach.hpp>
#include <boost/bind.hpp>
namespace gtsam
{
namespace
{
/* ************************************************************************* */
// Elimination traversal data - stores a pointer to the parent data and collects the factors
// resulting from elimination of the children. Also sets up BayesTree cliques with parent and
// child pointers.
template<class CLUSTERTREE>
struct EliminationData {
EliminationData* const parentData;
size_t myIndexInParent;
FastVector<typename CLUSTERTREE::sharedFactor> childFactors;
boost::shared_ptr<typename CLUSTERTREE::BayesTreeType::Node> bayesTreeNode;
EliminationData(EliminationData* _parentData, size_t nChildren) :
parentData(_parentData),
bayesTreeNode(boost::make_shared<typename CLUSTERTREE::BayesTreeType::Node>())
{
if(parentData) {
myIndexInParent = parentData->childFactors.size();
parentData->childFactors.push_back(typename CLUSTERTREE::sharedFactor());
} else {
myIndexInParent = 0;
}
// Set up BayesTree parent and child pointers
if(parentData) {
if(parentData->parentData) // If our parent is not the dummy node
bayesTreeNode->parent_ = parentData->bayesTreeNode;
parentData->bayesTreeNode->children.push_back(bayesTreeNode);
namespace gtsam {
/* ************************************************************************* */
// Elimination traversal data - stores a pointer to the parent data and collects the factors
// resulting from elimination of the children. Also sets up BayesTree cliques with parent and
// child pointers.
template<class CLUSTERTREE>
struct EliminationData {
// Typedefs
typedef typename CLUSTERTREE::sharedFactor sharedFactor;
typedef typename CLUSTERTREE::FactorType FactorType;
typedef typename CLUSTERTREE::FactorGraphType FactorGraphType;
typedef typename CLUSTERTREE::ConditionalType ConditionalType;
typedef typename CLUSTERTREE::BayesTreeType::Node BTNode;
EliminationData* const parentData;
size_t myIndexInParent;
FastVector<sharedFactor> childFactors;
boost::shared_ptr<BTNode> bayesTreeNode;
EliminationData(EliminationData* _parentData, size_t nChildren) :
parentData(_parentData), bayesTreeNode(boost::make_shared<BTNode>()) {
if (parentData) {
myIndexInParent = parentData->childFactors.size();
parentData->childFactors.push_back(sharedFactor());
} else {
myIndexInParent = 0;
}
// Set up BayesTree parent and child pointers
if (parentData) {
if (parentData->parentData) // If our parent is not the dummy node
bayesTreeNode->parent_ = parentData->bayesTreeNode;
parentData->bayesTreeNode->children.push_back(bayesTreeNode);
}
}
// Elimination pre-order visitor - creates the EliminationData structure for the visited node.
static EliminationData EliminationPreOrderVisitor(
const typename CLUSTERTREE::sharedNode& node,
EliminationData& parentData) {
assert(node);
EliminationData myData(&parentData, node->children.size());
myData.bayesTreeNode->problemSize_ = node->problemSize();
return myData;
}
// Elimination post-order visitor - combine the child factors with our own factors, add the
// resulting conditional to the BayesTree, and add the remaining factor to the parent.
struct EliminationPostOrderVisitor {
const typename CLUSTERTREE::Eliminate& eliminationFunction;
typename CLUSTERTREE::BayesTreeType::Nodes& nodesIndex;
EliminationPostOrderVisitor(
const typename CLUSTERTREE::Eliminate& eliminationFunction,
typename CLUSTERTREE::BayesTreeType::Nodes& nodesIndex) :
eliminationFunction(eliminationFunction), nodesIndex(nodesIndex) {
}
void operator()(const typename CLUSTERTREE::sharedNode& node,
EliminationData& myData) {
assert(node);
// Gather factors
FactorGraphType gatheredFactors;
gatheredFactors.reserve(node->factors.size() + node->children.size());
gatheredFactors += node->factors;
gatheredFactors += myData.childFactors;
// Check for Bayes tree orphan subtrees, and add them to our children
BOOST_FOREACH(const sharedFactor& f, node->factors) {
if (const BayesTreeOrphanWrapper<BTNode>* asSubtree =
dynamic_cast<const BayesTreeOrphanWrapper<BTNode>*>(f.get())) {
myData.bayesTreeNode->children.push_back(asSubtree->clique);
asSubtree->clique->parent_ = myData.bayesTreeNode;
}
}
};
/* ************************************************************************* */
// Elimination pre-order visitor - just creates the EliminationData structure for the visited
// node.
template<class CLUSTERTREE>
EliminationData<CLUSTERTREE> eliminationPreOrderVisitor(
const typename CLUSTERTREE::sharedNode& node, EliminationData<CLUSTERTREE>& parentData)
{
EliminationData<CLUSTERTREE> myData(&parentData, node->children.size());
myData.bayesTreeNode->problemSize_ = node->problemSize();
return myData;
}
/* ************************************************************************* */
// Elimination post-order visitor - combine the child factors with our own factors, add the
// resulting conditional to the BayesTree, and add the remaining factor to the parent.
template<class CLUSTERTREE>
struct EliminationPostOrderVisitor
{
const typename CLUSTERTREE::Eliminate& eliminationFunction;
typename CLUSTERTREE::BayesTreeType::Nodes& nodesIndex;
EliminationPostOrderVisitor(const typename CLUSTERTREE::Eliminate& eliminationFunction,
typename CLUSTERTREE::BayesTreeType::Nodes& nodesIndex) :
eliminationFunction(eliminationFunction), nodesIndex(nodesIndex) {}
void operator()(const typename CLUSTERTREE::sharedNode& node, EliminationData<CLUSTERTREE>& myData)
{
// Typedefs
typedef typename CLUSTERTREE::sharedFactor sharedFactor;
typedef typename CLUSTERTREE::FactorType FactorType;
typedef typename CLUSTERTREE::FactorGraphType FactorGraphType;
typedef typename CLUSTERTREE::ConditionalType ConditionalType;
typedef typename CLUSTERTREE::BayesTreeType::Node BTNode;
// Gather factors
FactorGraphType gatheredFactors;
gatheredFactors.reserve(node->factors.size() + node->children.size());
gatheredFactors += node->factors;
gatheredFactors += myData.childFactors;
// Check for Bayes tree orphan subtrees, and add them to our children
BOOST_FOREACH(const sharedFactor& f, node->factors)
{
if(const BayesTreeOrphanWrapper<BTNode>* asSubtree = dynamic_cast<const BayesTreeOrphanWrapper<BTNode>*>(f.get()))
{
myData.bayesTreeNode->children.push_back(asSubtree->clique);
asSubtree->clique->parent_ = myData.bayesTreeNode;
}
}
// Do dense elimination step
std::pair<boost::shared_ptr<ConditionalType>, boost::shared_ptr<FactorType> > eliminationResult =
// Do dense elimination step
std::pair<boost::shared_ptr<ConditionalType>,
boost::shared_ptr<FactorType> > eliminationResult =
eliminationFunction(gatheredFactors, node->orderedFrontalKeys);
// Store conditional in BayesTree clique, and in the case of ISAM2Clique also store the remaining factor
myData.bayesTreeNode->setEliminationResult(eliminationResult);
// Store conditional in BayesTree clique, and in the case of ISAM2Clique also store the remaining factor
myData.bayesTreeNode->setEliminationResult(eliminationResult);
// Fill nodes index - we do this here instead of calling insertRoot at the end to avoid
// putting orphan subtrees in the index - they'll already be in the index of the ISAM2
// object they're added to.
BOOST_FOREACH(const Key& j, myData.bayesTreeNode->conditional()->frontals())
nodesIndex.insert(std::make_pair(j, myData.bayesTreeNode));
// Fill nodes index - we do this here instead of calling insertRoot at the end to avoid
// putting orphan subtrees in the index - they'll already be in the index of the ISAM2
// object they're added to.
BOOST_FOREACH(const Key& j, myData.bayesTreeNode->conditional()->frontals())
nodesIndex.insert(std::make_pair(j, myData.bayesTreeNode));
// Store remaining factor in parent's gathered factors
if(!eliminationResult.second->empty())
myData.parentData->childFactors[myData.myIndexInParent] = eliminationResult.second;
}
};
}
/* ************************************************************************* */
template<class BAYESTREE, class GRAPH>
void ClusterTree<BAYESTREE,GRAPH>::Cluster::print(
const std::string& s, const KeyFormatter& keyFormatter) const
{
std::cout << s << " (" << problemSize_ << ")" ;
PrintKeyVector(orderedFrontalKeys);
}
/* ************************************************************************* */
template<class BAYESTREE, class GRAPH>
void ClusterTree<BAYESTREE,GRAPH>::print(
const std::string& s, const KeyFormatter& keyFormatter) const
{
treeTraversal::PrintForest(*this, s, keyFormatter);
}
/* ************************************************************************* */
template<class BAYESTREE, class GRAPH>
ClusterTree<BAYESTREE,GRAPH>& ClusterTree<BAYESTREE,GRAPH>::operator=(const This& other)
{
// Start by duplicating the tree.
roots_ = treeTraversal::CloneForest(other);
// Assign the remaining factors - these are pointers to factors in the original factor graph and
// we do not clone them.
remainingFactors_ = other.remainingFactors_;
return *this;
}
/* ************************************************************************* */
template<class BAYESTREE, class GRAPH>
std::pair<boost::shared_ptr<BAYESTREE>, boost::shared_ptr<GRAPH> >
ClusterTree<BAYESTREE,GRAPH>::eliminate(const Eliminate& function) const
{
gttic(ClusterTree_eliminate);
// Do elimination (depth-first traversal). The rootsContainer stores a 'dummy' BayesTree node
// that contains all of the roots as its children. rootsContainer also stores the remaining
// uneliminated factors passed up from the roots.
boost::shared_ptr<BayesTreeType> result = boost::make_shared<BayesTreeType>();
EliminationData<This> rootsContainer(0, roots_.size());
EliminationPostOrderVisitor<This> visitorPost(function, result->nodes_);
{
TbbOpenMPMixedScope threadLimiter; // Limits OpenMP threads since we're mixing TBB and OpenMP
treeTraversal::DepthFirstForestParallel(*this, rootsContainer,
eliminationPreOrderVisitor<This>, visitorPost, 10);
// Store remaining factor in parent's gathered factors
if (!eliminationResult.second->empty())
myData.parentData->childFactors[myData.myIndexInParent] =
eliminationResult.second;
}
};
};
// Create BayesTree from roots stored in the dummy BayesTree node.
result->roots_.insert(result->roots_.end(), rootsContainer.bayesTreeNode->children.begin(), rootsContainer.bayesTreeNode->children.end());
/* ************************************************************************* */
template<class BAYESTREE, class GRAPH>
void ClusterTree<BAYESTREE, GRAPH>::Cluster::print(const std::string& s,
const KeyFormatter& keyFormatter) const {
std::cout << s << " (" << problemSize_ << ")";
PrintKeyVector(orderedFrontalKeys);
}
// Add remaining factors that were not involved with eliminated variables
boost::shared_ptr<FactorGraphType> allRemainingFactors = boost::make_shared<FactorGraphType>();
allRemainingFactors->reserve(remainingFactors_.size() + rootsContainer.childFactors.size());
allRemainingFactors->push_back(remainingFactors_.begin(), remainingFactors_.end());
BOOST_FOREACH(const sharedFactor& factor, rootsContainer.childFactors)
if(factor)
allRemainingFactors->push_back(factor);
/* ************************************************************************* */
template<class BAYESTREE, class GRAPH>
void ClusterTree<BAYESTREE, GRAPH>::Cluster::mergeChildren(
const std::vector<bool>& merge) {
gttic(Cluster::mergeChildren);
// Return result
return std::make_pair(result, allRemainingFactors);
// Count how many keys, factors and children we'll end up with
size_t nrKeys = orderedFrontalKeys.size();
size_t nrFactors = factors.size();
size_t nrNewChildren = 0;
// Loop over children
size_t i = 0;
BOOST_FOREACH(const sharedNode& child, children) {
if (merge[i]) {
nrKeys += child->orderedFrontalKeys.size();
nrFactors += child->factors.size();
nrNewChildren += child->children.size();
} else {
nrNewChildren += 1; // we keep the child
}
++i;
}
// now reserve space, and really merge
orderedFrontalKeys.reserve(nrKeys);
factors.reserve(nrFactors);
typename Node::Children newChildren;
newChildren.reserve(nrNewChildren);
i = 0;
BOOST_FOREACH(const sharedNode& child, children) {
if (merge[i]) {
// Merge keys. For efficiency, we add keys in reverse order at end, calling reverse after..
orderedFrontalKeys.insert(orderedFrontalKeys.end(),
child->orderedFrontalKeys.rbegin(), child->orderedFrontalKeys.rend());
// Merge keys, factors, and children.
factors.insert(factors.end(), child->factors.begin(),
child->factors.end());
newChildren.insert(newChildren.end(), child->children.begin(),
child->children.end());
// Increment problem size
problemSize_ = std::max(problemSize_, child->problemSize_);
// Increment number of frontal variables
} else {
newChildren.push_back(child); // we keep the child
}
++i;
}
children = newChildren;
std::reverse(orderedFrontalKeys.begin(), orderedFrontalKeys.end());
}
/* ************************************************************************* */
template<class BAYESTREE, class GRAPH>
void ClusterTree<BAYESTREE, GRAPH>::print(const std::string& s,
const KeyFormatter& keyFormatter) const {
treeTraversal::PrintForest(*this, s, keyFormatter);
}
/* ************************************************************************* */
template<class BAYESTREE, class GRAPH>
ClusterTree<BAYESTREE, GRAPH>& ClusterTree<BAYESTREE, GRAPH>::operator=(
const This& other) {
// Start by duplicating the tree.
roots_ = treeTraversal::CloneForest(other);
// Assign the remaining factors - these are pointers to factors in the original factor graph and
// we do not clone them.
remainingFactors_ = other.remainingFactors_;
return *this;
}
/* ************************************************************************* */
template<class BAYESTREE, class GRAPH>
std::pair<boost::shared_ptr<BAYESTREE>, boost::shared_ptr<GRAPH> > ClusterTree<
BAYESTREE, GRAPH>::eliminate(const Eliminate& function) const {
gttic(ClusterTree_eliminate);
// Do elimination (depth-first traversal). The rootsContainer stores a 'dummy' BayesTree node
// that contains all of the roots as its children. rootsContainer also stores the remaining
// uneliminated factors passed up from the roots.
boost::shared_ptr<BayesTreeType> result = boost::make_shared<BayesTreeType>();
typedef EliminationData<This> Data;
Data rootsContainer(0, roots_.size());
typename Data::EliminationPostOrderVisitor visitorPost(function,
result->nodes_);
{
TbbOpenMPMixedScope threadLimiter; // Limits OpenMP threads since we're mixing TBB and OpenMP
treeTraversal::DepthFirstForestParallel(*this, rootsContainer,
Data::EliminationPreOrderVisitor, visitorPost, 10);
}
// Create BayesTree from roots stored in the dummy BayesTree node.
result->roots_.insert(result->roots_.end(),
rootsContainer.bayesTreeNode->children.begin(),
rootsContainer.bayesTreeNode->children.end());
// Add remaining factors that were not involved with eliminated variables
boost::shared_ptr<FactorGraphType> remaining = boost::make_shared<
FactorGraphType>();
remaining->reserve(
remainingFactors_.size() + rootsContainer.childFactors.size());
remaining->push_back(remainingFactors_.begin(), remainingFactors_.end());
BOOST_FOREACH(const sharedFactor& factor, rootsContainer.childFactors) {
if (factor)
remaining->push_back(factor);
}
// Return result
return std::make_pair(result, remaining);
}
}

View File

@ -13,118 +13,122 @@
#include <gtsam/base/FastVector.h>
#include <gtsam/inference/Ordering.h>
namespace gtsam
{
namespace gtsam {
/**
* A cluster-tree is associated with a factor graph and is defined as in Koller-Friedman:
* each node k represents a subset \f$ C_k \sub X \f$, and the tree is family preserving, in that
* each factor \f$ f_i \f$ is associated with a single cluster and \f$ scope(f_i) \sub C_k \f$.
* \nosubgrouping
*/
template<class BAYESTREE, class GRAPH>
class ClusterTree
{
public:
typedef GRAPH FactorGraphType; ///< The factor graph type
typedef typename GRAPH::FactorType FactorType; ///< The type of factors
typedef ClusterTree<BAYESTREE, GRAPH> This; ///< This class
typedef boost::shared_ptr<This> shared_ptr; ///< Shared pointer to this class
typedef boost::shared_ptr<FactorType> sharedFactor; ///< Shared pointer to a factor
typedef BAYESTREE BayesTreeType; ///< The BayesTree type produced by elimination
typedef typename BayesTreeType::ConditionalType ConditionalType; ///< The type of conditionals
typedef boost::shared_ptr<ConditionalType> sharedConditional; ///< Shared pointer to a conditional
typedef typename FactorGraphType::Eliminate Eliminate; ///< Typedef for an eliminate subroutine
/**
* A cluster-tree is associated with a factor graph and is defined as in Koller-Friedman:
* each node k represents a subset \f$ C_k \sub X \f$, and the tree is family preserving, in that
* each factor \f$ f_i \f$ is associated with a single cluster and \f$ scope(f_i) \sub C_k \f$.
* \nosubgrouping
*/
template<class BAYESTREE, class GRAPH>
class ClusterTree {
public:
typedef GRAPH FactorGraphType; ///< The factor graph type
typedef typename GRAPH::FactorType FactorType; ///< The type of factors
typedef ClusterTree<BAYESTREE, GRAPH> This; ///< This class
typedef boost::shared_ptr<This> shared_ptr; ///< Shared pointer to this class
typedef boost::shared_ptr<FactorType> sharedFactor; ///< Shared pointer to a factor
typedef BAYESTREE BayesTreeType; ///< The BayesTree type produced by elimination
typedef typename BayesTreeType::ConditionalType ConditionalType; ///< The type of conditionals
typedef boost::shared_ptr<ConditionalType> sharedConditional; ///< Shared pointer to a conditional
typedef typename FactorGraphType::Eliminate Eliminate; ///< Typedef for an eliminate subroutine
struct Cluster {
typedef Ordering Keys;
typedef FastVector<sharedFactor> Factors;
typedef FastVector<boost::shared_ptr<Cluster> > Children;
struct Cluster {
typedef Ordering Keys;
typedef FastVector<sharedFactor> Factors;
typedef FastVector<boost::shared_ptr<Cluster> > Children;
Cluster() {}
Cluster(Key key, const Factors& factors) : factors(factors) {
orderedFrontalKeys.push_back(key);
}
Cluster() {
}
Cluster(Key key, const Factors& factors) :
factors(factors) {
orderedFrontalKeys.push_back(key);
}
Keys orderedFrontalKeys; ///< Frontal keys of this node
Factors factors; ///< Factors associated with this node
Children children; ///< sub-trees
int problemSize_;
Keys orderedFrontalKeys; ///< Frontal keys of this node
Factors factors; ///< Factors associated with this node
Children children; ///< sub-trees
int problemSize_;
int problemSize() const { return problemSize_; }
int problemSize() const {
return problemSize_;
}
/** print this node */
void print(const std::string& s = "", const KeyFormatter& keyFormatter = DefaultKeyFormatter) const;
};
typedef boost::shared_ptr<Cluster> sharedCluster; ///< Shared pointer to Cluster
typedef Cluster Node; ///< Define Node=Cluster for compatibility with tree traversal functions
typedef sharedCluster sharedNode; ///< Define Node=Cluster for compatibility with tree traversal functions
/** concept check */
GTSAM_CONCEPT_TESTABLE_TYPE(FactorType);
protected:
FastVector<sharedNode> roots_;
FastVector<sharedFactor> remainingFactors_;
/// @name Standard Constructors
/// @{
/** Copy constructor - makes a deep copy of the tree structure, but only pointers to factors are
* copied, factors are not cloned. */
ClusterTree(const This& other) { *this = other; }
/// @}
public:
/// @name Testable
/// @{
/** Print the cluster tree */
void print(const std::string& s = "", const KeyFormatter& keyFormatter = DefaultKeyFormatter) const;
/// @}
/// @name Standard Interface
/// @{
/** Eliminate the factors to a Bayes tree and remaining factor graph
* @param function The function to use to eliminate, see the namespace functions
* in GaussianFactorGraph.h
* @return The Bayes tree and factor graph resulting from elimination
*/
std::pair<boost::shared_ptr<BayesTreeType>, boost::shared_ptr<FactorGraphType> >
eliminate(const Eliminate& function) const;
/// @}
/// @name Advanced Interface
/// @{
/** Return the set of roots (one for a tree, multiple for a forest) */
const FastVector<sharedNode>& roots() const { return roots_; }
/** Return the remaining factors that are not pulled into elimination */
const FastVector<sharedFactor>& remainingFactors() const { return remainingFactors_; }
/// @}
protected:
/// @name Details
/// Assignment operator - makes a deep copy of the tree structure, but only pointers to factors
/// are copied, factors are not cloned.
This& operator=(const This& other);
/// Default constructor to be used in derived classes
ClusterTree() {}
/// @}
/// print this node
void print(const std::string& s = "", const KeyFormatter& keyFormatter =
DefaultKeyFormatter) const;
/// Merge all children for which bit is set into this node
void mergeChildren(const std::vector<bool>& merge);
};
typedef boost::shared_ptr<Cluster> sharedCluster; ///< Shared pointer to Cluster
typedef Cluster Node; ///< Define Node=Cluster for compatibility with tree traversal functions
typedef sharedCluster sharedNode; ///< Define Node=Cluster for compatibility with tree traversal functions
/** concept check */
GTSAM_CONCEPT_TESTABLE_TYPE(FactorType);
protected:
FastVector<sharedNode> roots_;
FastVector<sharedFactor> remainingFactors_;
/// @name Standard Constructors
/// @{
/** Copy constructor - makes a deep copy of the tree structure, but only pointers to factors are
* copied, factors are not cloned. */
ClusterTree(const This& other) {*this = other;}
/// @}
public:
/// @name Testable
/// @{
/** Print the cluster tree */
void print(const std::string& s = "", const KeyFormatter& keyFormatter = DefaultKeyFormatter) const;
/// @}
/// @name Standard Interface
/// @{
/** Eliminate the factors to a Bayes tree and remaining factor graph
* @param function The function to use to eliminate, see the namespace functions
* in GaussianFactorGraph.h
* @return The Bayes tree and factor graph resulting from elimination
*/
std::pair<boost::shared_ptr<BayesTreeType>, boost::shared_ptr<FactorGraphType> >
eliminate(const Eliminate& function) const;
/// @}
/// @name Advanced Interface
/// @{
/** Return the set of roots (one for a tree, multiple for a forest) */
const FastVector<sharedNode>& roots() const {return roots_;}
/** Return the remaining factors that are not pulled into elimination */
const FastVector<sharedFactor>& remainingFactors() const {return remainingFactors_;}
/// @}
protected:
/// @name Details
/// Assignment operator - makes a deep copy of the tree structure, but only pointers to factors
/// are copied, factors are not cloned.
This& operator=(const This& other);
/// Default constructor to be used in derived classes
ClusterTree() {}
/// @}
};
}

View File

@ -27,7 +27,7 @@
namespace gtsam {
template <class BAYESTREE, class GRAPH, class ETREE_NODE>
template<class BAYESTREE, class GRAPH, class ETREE_NODE>
struct ConstructorTraversalData {
typedef typename JunctionTree<BAYESTREE, GRAPH>::Node Node;
typedef typename JunctionTree<BAYESTREE, GRAPH>::sharedNode sharedNode;
@ -37,8 +37,13 @@ struct ConstructorTraversalData {
FastVector<SymbolicConditional::shared_ptr> childSymbolicConditionals;
FastVector<SymbolicFactor::shared_ptr> childSymbolicFactors;
ConstructorTraversalData(ConstructorTraversalData* _parentData)
: parentData(_parentData) {}
// Small inner class to store symbolic factors
class SymbolicFactors: public FactorGraph<Factor> {
};
ConstructorTraversalData(ConstructorTraversalData* _parentData) :
parentData(_parentData) {
}
// Pre-order visitor function
static ConstructorTraversalData ConstructorTraversalVisitorPre(
@ -64,13 +69,12 @@ struct ConstructorTraversalData {
// our number of symbolic elimination parents is exactly 1 less than
// our child's symbolic elimination parents - this condition indicates that
// eliminating the current node did not introduce any parents beyond those
// already in the child.
// already in the child->
// Do symbolic elimination for this node
class : public FactorGraph<Factor> {}
symbolicFactors;
symbolicFactors.reserve(ETreeNode->factors.size() +
myData.childSymbolicFactors.size());
SymbolicFactors symbolicFactors;
symbolicFactors.reserve(
ETreeNode->factors.size() + myData.childSymbolicFactors.size());
// Add ETree node factors
symbolicFactors += ETreeNode->factors;
// Add symbolic factors passed up from children
@ -78,60 +82,47 @@ struct ConstructorTraversalData {
Ordering keyAsOrdering;
keyAsOrdering.push_back(ETreeNode->key);
std::pair<SymbolicConditional::shared_ptr, SymbolicFactor::shared_ptr>
symbolicElimResult =
internal::EliminateSymbolic(symbolicFactors, keyAsOrdering);
SymbolicConditional::shared_ptr myConditional;
SymbolicFactor::shared_ptr mySeparatorFactor;
boost::tie(myConditional, mySeparatorFactor) = internal::EliminateSymbolic(
symbolicFactors, keyAsOrdering);
// Store symbolic elimination results in the parent
myData.parentData->childSymbolicConditionals.push_back(
symbolicElimResult.first);
myData.parentData->childSymbolicFactors.push_back(
symbolicElimResult.second);
myData.parentData->childSymbolicConditionals.push_back(myConditional);
myData.parentData->childSymbolicFactors.push_back(mySeparatorFactor);
sharedNode node = myData.myJTNode;
const FastVector<SymbolicConditional::shared_ptr>& childConditionals =
myData.childSymbolicConditionals;
node->problemSize_ = (int) (myConditional->size() * symbolicFactors.size());
// Merge our children if they are in our clique - if our conditional has
// exactly one fewer parent than our child's conditional.
size_t myNrFrontals = 1;
const size_t myNrParents = symbolicElimResult.first->nrParents();
size_t nrMergedChildren = 0;
assert(node->children.size() == myData.childSymbolicConditionals.size());
// Loop over children
int combinedProblemSize =
(int)(symbolicElimResult.first->size() * symbolicFactors.size());
gttic(merge_children);
for (size_t i = 0; i < myData.childSymbolicConditionals.size(); ++i) {
const size_t myNrParents = myConditional->nrParents();
const size_t nrChildren = node->children.size();
assert(childConditionals.size() == nrChildren);
// decide which children to merge, as index into children
std::vector<bool> merge(nrChildren, false);
size_t myNrFrontals = 1, i = 0;
BOOST_FOREACH(const sharedNode& child, node->children) {
// Check if we should merge the i^th child
if (myNrParents + myNrFrontals ==
myData.childSymbolicConditionals[i]->nrParents()) {
// Get a reference to the i, adjusting the index to account for children
// previously merged and removed from the i list.
const Node& child = *node->children[i - nrMergedChildren];
// Merge keys. For efficiency, we add keys in reverse order at end, calling reverse after..
node->orderedFrontalKeys.insert(node->orderedFrontalKeys.end(),
child.orderedFrontalKeys.rbegin(),
child.orderedFrontalKeys.rend());
// Merge keys, factors, and children.
node->factors.insert(node->factors.end(), child.factors.begin(), child.factors.end());
node->children.insert(node->children.end(), child.children.begin(), child.children.end());
// Increment problem size
combinedProblemSize = std::max(combinedProblemSize, child.problemSize_);
if (myNrParents + myNrFrontals == childConditionals[i]->nrParents()) {
// Increment number of frontal variables
myNrFrontals += child.orderedFrontalKeys.size();
// Remove i from list.
node->children.erase(node->children.begin() + (i - nrMergedChildren));
// Increment number of merged children
++nrMergedChildren;
myNrFrontals += child->orderedFrontalKeys.size();
merge[i] = true;
}
++i;
}
std::reverse(node->orderedFrontalKeys.begin(), node->orderedFrontalKeys.end());
gttoc(merge_children);
node->problemSize_ = combinedProblemSize;
// now really merge
node->mergeChildren(merge);
}
};
/* ************************************************************************* */
template <class BAYESTREE, class GRAPH>
template <class ETREE_BAYESNET, class ETREE_GRAPH>
template<class BAYESTREE, class GRAPH>
template<class ETREE_BAYESNET, class ETREE_GRAPH>
JunctionTree<BAYESTREE, GRAPH>::JunctionTree(
const EliminationTree<ETREE_BAYESNET, ETREE_GRAPH>& eliminationTree) {
gttic(JunctionTree_FromEliminationTree);
@ -147,18 +138,20 @@ JunctionTree<BAYESTREE, GRAPH>::JunctionTree(
typedef typename EliminationTree<ETREE_BAYESNET, ETREE_GRAPH>::Node ETreeNode;
typedef ConstructorTraversalData<BAYESTREE, GRAPH, ETreeNode> Data;
Data rootData(0);
rootData.myJTNode =
boost::make_shared<typename Base::Node>(); // Make a dummy node to gather
// the junction tree roots
rootData.myJTNode = boost::make_shared<typename Base::Node>(); // Make a dummy node to gather
// the junction tree roots
treeTraversal::DepthFirstForest(eliminationTree, rootData,
Data::ConstructorTraversalVisitorPre,
Data::ConstructorTraversalVisitorPostAlg2);
Data::ConstructorTraversalVisitorPre,
Data::ConstructorTraversalVisitorPostAlg2);
// Assign roots from the dummy node
Base::roots_ = rootData.myJTNode->children;
typedef typename JunctionTree<BAYESTREE, GRAPH>::Node Node;
const typename Node::Children& children = rootData.myJTNode->children;
Base::roots_.reserve(children.size());
Base::roots_.insert(Base::roots_.begin(), children.begin(), children.end());
// Transfer remaining factors from elimination tree
Base::remainingFactors_ = eliminationTree.remainingFactors();
}
} // namespace gtsam
} // namespace gtsam