Merge pull request #1220 from borglab/hybrid/tests

release/4.3a0
Varun Agrawal 2022-06-10 07:19:38 -04:00 committed by GitHub
commit 784f16fe75
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
11 changed files with 346 additions and 21 deletions

View File

@ -39,10 +39,10 @@
#include <string>
#include <vector>
using boost::assign::operator+=;
namespace gtsam {
using boost::assign::operator+=;
/****************************************************************************/
// Node
/****************************************************************************/

View File

@ -19,7 +19,7 @@
*/
#include <gtsam/base/utilities.h>
#include <gtsam/discrete/DecisionTree-inl.h>
#include <gtsam/discrete/DiscreteValues.h>
#include <gtsam/hybrid/GaussianMixture.h>
#include <gtsam/inference/Conditional-inst.h>
#include <gtsam/linear/GaussianFactorGraph.h>
@ -36,8 +36,7 @@ GaussianMixture::GaussianMixture(
conditionals_(conditionals) {}
/* *******************************************************************************/
const GaussianMixture::Conditionals &
GaussianMixture::conditionals() {
const GaussianMixture::Conditionals &GaussianMixture::conditionals() {
return conditionals_;
}
@ -48,8 +47,8 @@ GaussianMixture GaussianMixture::FromConditionals(
const std::vector<GaussianConditional::shared_ptr> &conditionalsList) {
Conditionals dt(discreteParents, conditionalsList);
return GaussianMixture(continuousFrontals, continuousParents,
discreteParents, dt);
return GaussianMixture(continuousFrontals, continuousParents, discreteParents,
dt);
}
/* *******************************************************************************/
@ -66,8 +65,7 @@ GaussianMixture::Sum GaussianMixture::add(
}
/* *******************************************************************************/
GaussianMixture::Sum
GaussianMixture::asGaussianFactorGraphTree() const {
GaussianMixture::Sum GaussianMixture::asGaussianFactorGraphTree() const {
auto lambda = [](const GaussianFactor::shared_ptr &factor) {
GaussianFactorGraph result;
result.push_back(factor);
@ -77,8 +75,29 @@ GaussianMixture::asGaussianFactorGraphTree() const {
}
/* *******************************************************************************/
bool GaussianMixture::equals(const HybridFactor &lf,
double tol) const {
size_t GaussianMixture::nrComponents() const {
size_t total = 0;
conditionals_.visit([&total](const GaussianFactor::shared_ptr &node) {
if (node) total += 1;
});
return total;
}
/* *******************************************************************************/
GaussianConditional::shared_ptr GaussianMixture::operator()(
const DiscreteValues &discreteVals) const {
auto &ptr = conditionals_(discreteVals);
if (!ptr) return nullptr;
auto conditional = boost::dynamic_pointer_cast<GaussianConditional>(ptr);
if (conditional)
return conditional;
else
throw std::logic_error(
"A GaussianMixture unexpectedly contained a non-conditional");
}
/* *******************************************************************************/
bool GaussianMixture::equals(const HybridFactor &lf, double tol) const {
const This *e = dynamic_cast<const This *>(&lf);
return e != nullptr && BaseFactor::equals(*e, tol);
}
@ -91,7 +110,7 @@ void GaussianMixture::print(const std::string &s,
if (isDiscrete()) std::cout << "Discrete ";
if (isHybrid()) std::cout << "Hybrid ";
BaseConditional::print("", formatter);
std::cout << "\nDiscrete Keys = ";
std::cout << " Discrete Keys = ";
for (auto &dk : discreteKeys()) {
std::cout << "(" << formatter(dk.first) << ", " << dk.second << "), ";
}

View File

@ -19,7 +19,9 @@
#pragma once
#include <gtsam/discrete/DecisionTree-inl.h>
#include <gtsam/discrete/DecisionTree.h>
#include <gtsam/discrete/DiscreteKey.h>
#include <gtsam/hybrid/HybridFactor.h>
#include <gtsam/inference/Conditional.h>
#include <gtsam/linear/GaussianConditional.h>
@ -99,6 +101,16 @@ class GTSAM_EXPORT GaussianMixture
const DiscreteKeys &discreteParents,
const std::vector<GaussianConditional::shared_ptr> &conditionals);
/// @}
/// @name Standard API
/// @{
GaussianConditional::shared_ptr operator()(
const DiscreteValues &discreteVals) const;
/// Returns the total number of continuous components
size_t nrComponents() const;
/// @}
/// @name Testable
/// @{

View File

@ -51,16 +51,19 @@ GaussianMixtureFactor GaussianMixtureFactor::FromFactors(
void GaussianMixtureFactor::print(const std::string &s,
const KeyFormatter &formatter) const {
HybridFactor::print(s, formatter);
std::cout << "]{\n";
factors_.print(
"mixture = ", [&](Key k) { return formatter(k); },
"", [&](Key k) { return formatter(k); },
[&](const GaussianFactor::shared_ptr &gf) -> std::string {
RedirectCout rd;
if (!gf->empty())
std::cout << ":\n";
if (gf)
gf->print("", formatter);
else
return {"nullptr"};
return rd.str();
});
std::cout << "}" << std::endl;
}
/* *******************************************************************************/

View File

@ -84,6 +84,19 @@ class GTSAM_EXPORT GaussianMixtureFactor : public HybridFactor {
const DiscreteKeys &discreteKeys,
const Factors &factors);
/**
* @brief Construct a new GaussianMixtureFactor object using a vector of
* GaussianFactor shared pointers.
*
* @param keys Vector of keys for continuous factors.
* @param discreteKeys Vector of discrete keys.
* @param factors Vector of gaussian factor shared pointers.
*/
GaussianMixtureFactor(const KeyVector &keys, const DiscreteKeys &discreteKeys,
const std::vector<GaussianFactor::shared_ptr> &factors)
: GaussianMixtureFactor(keys, discreteKeys,
Factors(discreteKeys, factors)) {}
static This FromFactors(
const KeyVector &continuousKeys, const DiscreteKeys &discreteKeys,
const std::vector<GaussianFactor::shared_ptr> &factors);
@ -111,6 +124,12 @@ class GTSAM_EXPORT GaussianMixtureFactor : public HybridFactor {
* @return Sum
*/
Sum add(const Sum &sum) const;
/// Add MixtureFactor to a Sum, syntactic sugar.
friend Sum &operator+=(Sum &sum, const GaussianMixtureFactor &factor) {
sum = factor.add(sum);
return sum;
}
};
// traits

View File

@ -47,7 +47,7 @@ bool HybridDiscreteFactor::equals(const HybridFactor &lf, double tol) const {
void HybridDiscreteFactor::print(const std::string &s,
const KeyFormatter &formatter) const {
HybridFactor::print(s, formatter);
inner_->print("inner: ", formatter);
inner_->print("\n", formatter);
};
} // namespace gtsam

View File

@ -50,7 +50,10 @@ DiscreteKeys CollectDiscreteKeys(const DiscreteKeys &key1,
/* ************************************************************************ */
HybridFactor::HybridFactor(const KeyVector &keys)
: Base(keys), isContinuous_(true), nrContinuous_(keys.size()) {}
: Base(keys),
isContinuous_(true),
nrContinuous_(keys.size()),
continuousKeys_(keys) {}
/* ************************************************************************ */
HybridFactor::HybridFactor(const KeyVector &continuousKeys,
@ -60,13 +63,15 @@ HybridFactor::HybridFactor(const KeyVector &continuousKeys,
isContinuous_((continuousKeys.size() != 0) && (discreteKeys.size() == 0)),
isHybrid_((continuousKeys.size() != 0) && (discreteKeys.size() != 0)),
nrContinuous_(continuousKeys.size()),
discreteKeys_(discreteKeys) {}
discreteKeys_(discreteKeys),
continuousKeys_(continuousKeys) {}
/* ************************************************************************ */
HybridFactor::HybridFactor(const DiscreteKeys &discreteKeys)
: Base(CollectKeys({}, discreteKeys)),
isDiscrete_(true),
discreteKeys_(discreteKeys) {}
discreteKeys_(discreteKeys),
continuousKeys_({}) {}
/* ************************************************************************ */
bool HybridFactor::equals(const HybridFactor &lf, double tol) const {
@ -83,7 +88,17 @@ void HybridFactor::print(const std::string &s,
if (isContinuous_) std::cout << "Continuous ";
if (isDiscrete_) std::cout << "Discrete ";
if (isHybrid_) std::cout << "Hybrid ";
this->printKeys("", formatter);
for (size_t c=0; c<continuousKeys_.size(); c++) {
std::cout << formatter(continuousKeys_.at(c));
if (c < continuousKeys_.size() - 1) {
std::cout << " ";
} else {
std::cout << "; ";
}
}
for(auto && discreteKey: discreteKeys_) {
std::cout << formatter(discreteKey.first) << " ";
}
}
} // namespace gtsam

View File

@ -52,6 +52,9 @@ class GTSAM_EXPORT HybridFactor : public Factor {
protected:
DiscreteKeys discreteKeys_;
/// Record continuous keys for book-keeping
KeyVector continuousKeys_;
public:
// typedefs needed to play nice with gtsam
typedef HybridFactor This; ///< This class

View File

@ -41,7 +41,7 @@ bool HybridGaussianFactor::equals(const HybridFactor &other, double tol) const {
void HybridGaussianFactor::print(const std::string &s,
const KeyFormatter &formatter) const {
HybridFactor::print(s, formatter);
inner_->print("inner: ", formatter);
inner_->print("\n", formatter);
};
} // namespace gtsam

View File

@ -0,0 +1,95 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testGaussianMixture.cpp
* @brief Unit tests for GaussianMixture class
* @author Varun Agrawal
* @author Fan Jiang
* @author Frank Dellaert
* @date December 2021
*/
#include <gtsam/discrete/DiscreteValues.h>
#include <gtsam/hybrid/GaussianMixture.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/linear/GaussianConditional.h>
#include <vector>
// Include for test suite
#include <CppUnitLite/TestHarness.h>
using namespace std;
using namespace gtsam;
using noiseModel::Isotropic;
using symbol_shorthand::M;
using symbol_shorthand::X;
/* ************************************************************************* */
/* Check construction of GaussianMixture P(x1 | x2, m1) as well as accessing a
* specific mode i.e. P(x1 | x2, m1=1).
*/
TEST(GaussianMixture, Equals) {
// create a conditional gaussian node
Matrix S1(2, 2);
S1(0, 0) = 1;
S1(1, 0) = 2;
S1(0, 1) = 3;
S1(1, 1) = 4;
Matrix S2(2, 2);
S2(0, 0) = 6;
S2(1, 0) = 0.2;
S2(0, 1) = 8;
S2(1, 1) = 0.4;
Matrix R1(2, 2);
R1(0, 0) = 0.1;
R1(1, 0) = 0.3;
R1(0, 1) = 0.0;
R1(1, 1) = 0.34;
Matrix R2(2, 2);
R2(0, 0) = 0.1;
R2(1, 0) = 0.3;
R2(0, 1) = 0.0;
R2(1, 1) = 0.34;
SharedDiagonal model = noiseModel::Diagonal::Sigmas(Vector2(1.0, 0.34));
Vector2 d1(0.2, 0.5), d2(0.5, 0.2);
auto conditional0 = boost::make_shared<GaussianConditional>(X(1), d1, R1,
X(2), S1, model),
conditional1 = boost::make_shared<GaussianConditional>(X(1), d2, R2,
X(2), S2, model);
// Create decision tree
DiscreteKey m1(1, 2);
GaussianMixture::Conditionals conditionals(
{m1},
vector<GaussianConditional::shared_ptr>{conditional0, conditional1});
GaussianMixture mixtureFactor({X(1)}, {X(2)}, {m1}, conditionals);
// Let's check that this worked:
DiscreteValues mode;
mode[m1.first] = 1;
auto actual = mixtureFactor(mode);
EXPECT(actual == conditional1);
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */

View File

@ -0,0 +1,159 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file GaussianMixtureFactor.cpp
* @brief Unit tests for GaussianMixtureFactor
* @author Varun Agrawal
* @author Fan Jiang
* @author Frank Dellaert
* @date December 2021
*/
#include <gtsam/base/TestableAssertions.h>
#include <gtsam/discrete/DiscreteValues.h>
#include <gtsam/hybrid/GaussianMixture.h>
#include <gtsam/hybrid/GaussianMixtureFactor.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/linear/GaussianFactorGraph.h>
// Include for test suite
#include <CppUnitLite/TestHarness.h>
using namespace std;
using namespace gtsam;
using noiseModel::Isotropic;
using symbol_shorthand::M;
using symbol_shorthand::X;
/* ************************************************************************* */
// Check iterators of empty mixture.
TEST(GaussianMixtureFactor, Constructor) {
GaussianMixtureFactor factor;
GaussianMixtureFactor::const_iterator const_it = factor.begin();
CHECK(const_it == factor.end());
GaussianMixtureFactor::iterator it = factor.begin();
CHECK(it == factor.end());
}
/* ************************************************************************* */
// "Add" two mixture factors together.
TEST(GaussianMixtureFactor, Sum) {
DiscreteKey m1(1, 2), m2(2, 3);
auto A1 = Matrix::Zero(2, 1);
auto A2 = Matrix::Zero(2, 2);
auto A3 = Matrix::Zero(2, 3);
auto b = Matrix::Zero(2, 1);
Vector2 sigmas;
sigmas << 1, 2;
auto model = noiseModel::Diagonal::Sigmas(sigmas, true);
auto f10 = boost::make_shared<JacobianFactor>(X(1), A1, X(2), A2, b);
auto f11 = boost::make_shared<JacobianFactor>(X(1), A1, X(2), A2, b);
auto f20 = boost::make_shared<JacobianFactor>(X(1), A1, X(3), A3, b);
auto f21 = boost::make_shared<JacobianFactor>(X(1), A1, X(3), A3, b);
auto f22 = boost::make_shared<JacobianFactor>(X(1), A1, X(3), A3, b);
std::vector<GaussianFactor::shared_ptr> factorsA{f10, f11};
std::vector<GaussianFactor::shared_ptr> factorsB{f20, f21, f22};
// TODO(Frank): why specify keys at all? And: keys in factor should be *all*
// keys, deviating from Kevin's scheme. Should we index DT on DiscreteKey?
// Design review!
GaussianMixtureFactor mixtureFactorA({X(1), X(2)}, {m1}, factorsA);
GaussianMixtureFactor mixtureFactorB({X(1), X(3)}, {m2}, factorsB);
// Check that number of keys is 3
EXPECT_LONGS_EQUAL(3, mixtureFactorA.keys().size());
// Check that number of discrete keys is 1 // TODO(Frank): should not exist?
EXPECT_LONGS_EQUAL(1, mixtureFactorA.discreteKeys().size());
// Create sum of two mixture factors: it will be a decision tree now on both
// discrete variables m1 and m2:
GaussianMixtureFactor::Sum sum;
sum += mixtureFactorA;
sum += mixtureFactorB;
// Let's check that this worked:
Assignment<Key> mode;
mode[m1.first] = 1;
mode[m2.first] = 2;
auto actual = sum(mode);
EXPECT(actual.at(0) == f11);
EXPECT(actual.at(1) == f22);
}
TEST(GaussianMixtureFactor, Printing) {
DiscreteKey m1(1, 2);
auto A1 = Matrix::Zero(2, 1);
auto A2 = Matrix::Zero(2, 2);
auto b = Matrix::Zero(2, 1);
auto f10 = boost::make_shared<JacobianFactor>(X(1), A1, X(2), A2, b);
auto f11 = boost::make_shared<JacobianFactor>(X(1), A1, X(2), A2, b);
std::vector<GaussianFactor::shared_ptr> factors{f10, f11};
GaussianMixtureFactor mixtureFactor({X(1), X(2)}, {m1}, factors);
std::string expected =
R"(Hybrid x1 x2; 1 ]{
Choice(1)
0 Leaf :
A[x1] = [
0;
0
]
A[x2] = [
0, 0;
0, 0
]
b = [ 0 0 ]
No noise model
1 Leaf :
A[x1] = [
0;
0
]
A[x2] = [
0, 0;
0, 0
]
b = [ 0 0 ]
No noise model
}
)";
EXPECT(assert_print_equal(expected, mixtureFactor));
}
TEST_UNSAFE(GaussianMixtureFactor, GaussianMixture) {
KeyVector keys;
keys.push_back(X(0));
keys.push_back(X(1));
DiscreteKeys dKeys;
dKeys.emplace_back(M(0), 2);
dKeys.emplace_back(M(1), 2);
auto gaussians = boost::make_shared<GaussianConditional>();
GaussianMixture::Conditionals conditionals(gaussians);
GaussianMixture gm({}, keys, dKeys, conditionals);
EXPECT_LONGS_EQUAL(2, gm.discreteKeys().size());
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */