Detailed explanation of recursive class composition pattern.

Jacobian type now defined in argument.
release/4.3a0
dellaert 2014-10-13 08:49:12 +02:00
parent 7f621af54a
commit 7848d74928
1 changed files with 61 additions and 18 deletions

View File

@ -441,9 +441,6 @@ struct JacobianTrace {
/**
* Recursive Record Class for Functional Expressions
* Abrahams, David; Gurtovoy, Aleksey (2004-12-10).
* C++ Template Metaprogramming: Concepts, Tools, and Techniques from Boost
* and Beyond. Pearson Education.
*/
template<class T, class A, class Base>
struct GenerateRecord: JacobianTrace<T, A, Base::N + 1>, Base {
@ -501,23 +498,64 @@ struct Record: public boost::mpl::fold<TYPES, CallRecord<T::dimension>,
};
//-----------------------------------------------------------------------------
// Below we use the "Class Composition" technique described in the book
// C++ Template Metaprogramming: Concepts, Tools, and Techniques from Boost
// and Beyond. Abrahams, David; Gurtovoy, Aleksey. Pearson Education.
// to recursively generate a class, that will be the base for function nodes.
// The class generated, for two arguments A1, A2, and A3 will be
//
// struct Base1 : Argument<T,A1,1>, ExpressionNode<T> {
// ... storage related to A1 ...
// ... methods that work on A1 ...
// };
//
// struct Base2 : Argument<T,A2,2>, Base1 {
// ... storage related to A2 ...
// ... methods that work on A2 and (recursively) on A2 ...
// };
//
// struct Base2 : Argument<T,A3,3>, Base2 {
// ... storage related to A3 ...
// ... methods that work on A3 and (recursively) on A2 and A3 ...
// };
//
// struct FunctionalNode : Base3 {
// Provides convenience access to storage in hierarchy by using
// static_cast<Argument<T, A, N> &>(*this)
// }
//
// All this magic happens when we generate the Base3 base class of FunctionalNode
// by invoking boost::mpl::fold over the meta-function GenerateFunctionalNode
//-----------------------------------------------------------------------------
/**
* Building block for Recursive FunctionalNode Class
* The integer argument N is to guarantee a unique type signature,
* so we are guaranteed to be able to extract their values by static cast.
*/
template<class T, class A, size_t N>
struct Argument {
/// Fixed size Jacobian type for the argument A
typedef Eigen::Matrix<double, T::dimension, A::dimension> JacobianTA;
/// Expression that will generate value/derivatives for argument
boost::shared_ptr<ExpressionNode<A> > expression;
};
/// meta-function to access JacobianTA type
template<class T, class A, size_t N>
struct Jacobian {
typedef typename Argument<T, A, N>::JacobianTA type;
};
/**
* Recursive Definition of Functional ExpressionNode
*/
template<class T, class A, class Base>
struct GenerateFunctionalNode: Argument<T, A, Base::N + 1>, Base {
typedef T return_type;
static size_t const N = Base::N + 1;
typedef Argument<T, A, N> This;
static size_t const N = Base::N + 1; ///< Number of arguments in hierarchy
typedef Argument<T, A, N> This; ///< The storage we have direct access to
/// Return keys that play in this expression
virtual std::set<Key> keys() const {
@ -529,18 +567,20 @@ struct GenerateFunctionalNode: Argument<T, A, Base::N + 1>, Base {
};
/// Recursive GenerateFunctionalNode class Generator
/**
* Recursive GenerateFunctionalNode class Generator
*/
template<class T, class TYPES>
struct FunctionalNode: public boost::mpl::fold<TYPES, ExpressionNode<T>,
GenerateFunctionalNode<T, MPL::_2, MPL::_1> >::type {
/// Access Expression
/// Reset expression shared pointer
template<class A, size_t N>
void reset(const boost::shared_ptr<ExpressionNode<A> >& ptr) {
static_cast<Argument<T, A, N> &>(*this).expression = ptr;
}
/// Access Expression, const version
/// Access Expression shared pointer
template<class A, size_t N>
boost::shared_ptr<ExpressionNode<A> > expression() const {
return static_cast<Argument<T, A, N> const &>(*this).expression;
@ -554,10 +594,13 @@ struct FunctionalNode: public boost::mpl::fold<TYPES, ExpressionNode<T>,
template<class T, class A1>
class UnaryExpression: public FunctionalNode<T, boost::mpl::vector<A1> > {
/// The automatically generated Base class
typedef FunctionalNode<T, boost::mpl::vector<A1> > Base;
public:
typedef Eigen::Matrix<double, T::dimension, A1::dimension> JacobianTA;
typedef boost::function<T(const A1&, boost::optional<JacobianTA&>)> Function;
typedef typename Jacobian<T,A1,1>::type JacobianTA1;
typedef boost::function<T(const A1&, boost::optional<JacobianTA1&>)> Function;
private:
@ -583,9 +626,9 @@ public:
virtual Augmented<T> forward(const Values& values) const {
using boost::none;
Augmented<A1> argument = this->template expression<A1, 1>()->forward(values);
JacobianTA dTdA;
JacobianTA1 dTdA;
T t = function_(argument.value(),
argument.constant() ? none : boost::optional<JacobianTA&>(dTdA));
argument.constant() ? none : boost::optional<JacobianTA1&>(dTdA));
return Augmented<T>(t, dTdA, argument.jacobians());
}
@ -615,8 +658,8 @@ class BinaryExpression: public FunctionalNode<T, boost::mpl::vector<A1, A2> > {
public:
typedef Eigen::Matrix<double, T::dimension, A1::dimension> JacobianTA1;
typedef Eigen::Matrix<double, T::dimension, A2::dimension> JacobianTA2;
typedef typename Jacobian<T,A1,1>::type JacobianTA1;
typedef typename Jacobian<T,A2,2>::type JacobianTA2;
typedef boost::function<
T(const A1&, const A2&, boost::optional<JacobianTA1&>,
boost::optional<JacobianTA2&>)> Function;
@ -691,9 +734,9 @@ class TernaryExpression: public FunctionalNode<T, boost::mpl::vector<A1, A2, A3>
public:
typedef Eigen::Matrix<double, T::dimension, A1::dimension> JacobianTA1;
typedef Eigen::Matrix<double, T::dimension, A2::dimension> JacobianTA2;
typedef Eigen::Matrix<double, T::dimension, A3::dimension> JacobianTA3;
typedef typename Jacobian<T,A1,1>::type JacobianTA1;
typedef typename Jacobian<T,A2,2>::type JacobianTA2;
typedef typename Jacobian<T,A3,3>::type JacobianTA3;
typedef boost::function<
T(const A1&, const A2&, const A3&, boost::optional<JacobianTA1&>,
boost::optional<JacobianTA2&>, boost::optional<JacobianTA3&>)> Function;