fix tests due to change to EliminateDiscrete
parent
ca1c517f8a
commit
7825ffd6d2
|
|
@ -177,19 +177,19 @@ TEST(HybridGaussianElimination, IncrementalInference) {
|
||||||
|
|
||||||
// Test the probability values with regression tests.
|
// Test the probability values with regression tests.
|
||||||
DiscreteValues assignment;
|
DiscreteValues assignment;
|
||||||
EXPECT(assert_equal(0.000956191, m00_prob, 1e-5));
|
EXPECT(assert_equal(0.0952922, m00_prob, 1e-5));
|
||||||
assignment[M(0)] = 0;
|
assignment[M(0)] = 0;
|
||||||
assignment[M(1)] = 0;
|
assignment[M(1)] = 0;
|
||||||
EXPECT(assert_equal(0.000956191, (*discreteConditional)(assignment), 1e-5));
|
EXPECT(assert_equal(0.0952922, (*discreteConditional)(assignment), 1e-5));
|
||||||
assignment[M(0)] = 1;
|
assignment[M(0)] = 1;
|
||||||
assignment[M(1)] = 0;
|
assignment[M(1)] = 0;
|
||||||
EXPECT(assert_equal(0.00283728, (*discreteConditional)(assignment), 1e-5));
|
EXPECT(assert_equal(0.282758, (*discreteConditional)(assignment), 1e-5));
|
||||||
assignment[M(0)] = 0;
|
assignment[M(0)] = 0;
|
||||||
assignment[M(1)] = 1;
|
assignment[M(1)] = 1;
|
||||||
EXPECT(assert_equal(0.00315253, (*discreteConditional)(assignment), 1e-5));
|
EXPECT(assert_equal(0.314175, (*discreteConditional)(assignment), 1e-5));
|
||||||
assignment[M(0)] = 1;
|
assignment[M(0)] = 1;
|
||||||
assignment[M(1)] = 1;
|
assignment[M(1)] = 1;
|
||||||
EXPECT(assert_equal(0.00308831, (*discreteConditional)(assignment), 1e-5));
|
EXPECT(assert_equal(0.307775, (*discreteConditional)(assignment), 1e-5));
|
||||||
|
|
||||||
// Check if the clique conditional generated from incremental elimination
|
// Check if the clique conditional generated from incremental elimination
|
||||||
// matches that of batch elimination.
|
// matches that of batch elimination.
|
||||||
|
|
@ -199,7 +199,7 @@ TEST(HybridGaussianElimination, IncrementalInference) {
|
||||||
isam[M(1)]->conditional()->inner());
|
isam[M(1)]->conditional()->inner());
|
||||||
// Account for the probability terms from evaluating continuous FGs
|
// Account for the probability terms from evaluating continuous FGs
|
||||||
DiscreteKeys discrete_keys = {{M(0), 2}, {M(1), 2}};
|
DiscreteKeys discrete_keys = {{M(0), 2}, {M(1), 2}};
|
||||||
vector<double> probs = {0.00095619114, 0.0031525308, 0.0028372777, 0.0030883072};
|
vector<double> probs = {0.095292197, 0.31417524, 0.28275772, 0.30777485};
|
||||||
auto expectedConditional =
|
auto expectedConditional =
|
||||||
boost::make_shared<DecisionTreeFactor>(discrete_keys, probs);
|
boost::make_shared<DecisionTreeFactor>(discrete_keys, probs);
|
||||||
EXPECT(assert_equal(*expectedConditional, *actualConditional, 1e-6));
|
EXPECT(assert_equal(*expectedConditional, *actualConditional, 1e-6));
|
||||||
|
|
|
||||||
|
|
@ -443,7 +443,7 @@ TEST(HybridFactorGraph, Full_Elimination) {
|
||||||
ordering.clear();
|
ordering.clear();
|
||||||
for (size_t k = 0; k < self.K - 1; k++) ordering += M(k);
|
for (size_t k = 0; k < self.K - 1; k++) ordering += M(k);
|
||||||
discreteBayesNet =
|
discreteBayesNet =
|
||||||
*discrete_fg.eliminateSequential(ordering, EliminateForMPE);
|
*discrete_fg.eliminateSequential(ordering, EliminateDiscrete);
|
||||||
}
|
}
|
||||||
|
|
||||||
// Create ordering.
|
// Create ordering.
|
||||||
|
|
|
||||||
|
|
@ -195,19 +195,19 @@ TEST(HybridNonlinearISAM, IncrementalInference) {
|
||||||
|
|
||||||
// Test the probability values with regression tests.
|
// Test the probability values with regression tests.
|
||||||
DiscreteValues assignment;
|
DiscreteValues assignment;
|
||||||
EXPECT(assert_equal(0.000956191, m00_prob, 1e-5));
|
EXPECT(assert_equal(0.0952922, m00_prob, 1e-5));
|
||||||
assignment[M(0)] = 0;
|
assignment[M(0)] = 0;
|
||||||
assignment[M(1)] = 0;
|
assignment[M(1)] = 0;
|
||||||
EXPECT(assert_equal(0.000956191, (*discreteConditional)(assignment), 1e-5));
|
EXPECT(assert_equal(0.0952922, (*discreteConditional)(assignment), 1e-5));
|
||||||
assignment[M(0)] = 1;
|
assignment[M(0)] = 1;
|
||||||
assignment[M(1)] = 0;
|
assignment[M(1)] = 0;
|
||||||
EXPECT(assert_equal(0.00283728, (*discreteConditional)(assignment), 1e-5));
|
EXPECT(assert_equal(0.282758, (*discreteConditional)(assignment), 1e-5));
|
||||||
assignment[M(0)] = 0;
|
assignment[M(0)] = 0;
|
||||||
assignment[M(1)] = 1;
|
assignment[M(1)] = 1;
|
||||||
EXPECT(assert_equal(0.00315253, (*discreteConditional)(assignment), 1e-5));
|
EXPECT(assert_equal(0.314175, (*discreteConditional)(assignment), 1e-5));
|
||||||
assignment[M(0)] = 1;
|
assignment[M(0)] = 1;
|
||||||
assignment[M(1)] = 1;
|
assignment[M(1)] = 1;
|
||||||
EXPECT(assert_equal(0.00308831, (*discreteConditional)(assignment), 1e-5));
|
EXPECT(assert_equal(0.307775, (*discreteConditional)(assignment), 1e-5));
|
||||||
|
|
||||||
// Check if the clique conditional generated from incremental elimination
|
// Check if the clique conditional generated from incremental elimination
|
||||||
// matches that of batch elimination.
|
// matches that of batch elimination.
|
||||||
|
|
@ -216,7 +216,7 @@ TEST(HybridNonlinearISAM, IncrementalInference) {
|
||||||
bayesTree[M(1)]->conditional()->inner());
|
bayesTree[M(1)]->conditional()->inner());
|
||||||
// Account for the probability terms from evaluating continuous FGs
|
// Account for the probability terms from evaluating continuous FGs
|
||||||
DiscreteKeys discrete_keys = {{M(0), 2}, {M(1), 2}};
|
DiscreteKeys discrete_keys = {{M(0), 2}, {M(1), 2}};
|
||||||
vector<double> probs = {0.00095619114, 0.0031525308, 0.0028372777, 0.0030883072};
|
vector<double> probs = {0.095292197, 0.31417524, 0.28275772, 0.30777485};
|
||||||
auto expectedConditional =
|
auto expectedConditional =
|
||||||
boost::make_shared<DecisionTreeFactor>(discrete_keys, probs);
|
boost::make_shared<DecisionTreeFactor>(discrete_keys, probs);
|
||||||
EXPECT(assert_equal(*expectedConditional, *actualConditional, 1e-6));
|
EXPECT(assert_equal(*expectedConditional, *actualConditional, 1e-6));
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue