fix tests due to change to EliminateDiscrete
							parent
							
								
									ca1c517f8a
								
							
						
					
					
						commit
						7825ffd6d2
					
				| 
						 | 
				
			
			@ -177,19 +177,19 @@ TEST(HybridGaussianElimination, IncrementalInference) {
 | 
			
		|||
 | 
			
		||||
  // Test the probability values with regression tests.
 | 
			
		||||
  DiscreteValues assignment;
 | 
			
		||||
  EXPECT(assert_equal(0.000956191, m00_prob, 1e-5));
 | 
			
		||||
  EXPECT(assert_equal(0.0952922, m00_prob, 1e-5));
 | 
			
		||||
  assignment[M(0)] = 0;
 | 
			
		||||
  assignment[M(1)] = 0;
 | 
			
		||||
  EXPECT(assert_equal(0.000956191, (*discreteConditional)(assignment), 1e-5));
 | 
			
		||||
  EXPECT(assert_equal(0.0952922, (*discreteConditional)(assignment), 1e-5));
 | 
			
		||||
  assignment[M(0)] = 1;
 | 
			
		||||
  assignment[M(1)] = 0;
 | 
			
		||||
  EXPECT(assert_equal(0.00283728, (*discreteConditional)(assignment), 1e-5));
 | 
			
		||||
  EXPECT(assert_equal(0.282758, (*discreteConditional)(assignment), 1e-5));
 | 
			
		||||
  assignment[M(0)] = 0;
 | 
			
		||||
  assignment[M(1)] = 1;
 | 
			
		||||
  EXPECT(assert_equal(0.00315253, (*discreteConditional)(assignment), 1e-5));
 | 
			
		||||
  EXPECT(assert_equal(0.314175, (*discreteConditional)(assignment), 1e-5));
 | 
			
		||||
  assignment[M(0)] = 1;
 | 
			
		||||
  assignment[M(1)] = 1;
 | 
			
		||||
  EXPECT(assert_equal(0.00308831, (*discreteConditional)(assignment), 1e-5));
 | 
			
		||||
  EXPECT(assert_equal(0.307775, (*discreteConditional)(assignment), 1e-5));
 | 
			
		||||
 | 
			
		||||
  // Check if the clique conditional generated from incremental elimination
 | 
			
		||||
  // matches that of batch elimination.
 | 
			
		||||
| 
						 | 
				
			
			@ -199,7 +199,7 @@ TEST(HybridGaussianElimination, IncrementalInference) {
 | 
			
		|||
      isam[M(1)]->conditional()->inner());
 | 
			
		||||
  // Account for the probability terms from evaluating continuous FGs
 | 
			
		||||
  DiscreteKeys discrete_keys = {{M(0), 2}, {M(1), 2}};
 | 
			
		||||
  vector<double> probs = {0.00095619114, 0.0031525308, 0.0028372777, 0.0030883072};
 | 
			
		||||
  vector<double> probs = {0.095292197, 0.31417524, 0.28275772, 0.30777485};
 | 
			
		||||
  auto expectedConditional =
 | 
			
		||||
      boost::make_shared<DecisionTreeFactor>(discrete_keys, probs);
 | 
			
		||||
  EXPECT(assert_equal(*expectedConditional, *actualConditional, 1e-6));
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -443,7 +443,7 @@ TEST(HybridFactorGraph, Full_Elimination) {
 | 
			
		|||
    ordering.clear();
 | 
			
		||||
    for (size_t k = 0; k < self.K - 1; k++) ordering += M(k);
 | 
			
		||||
    discreteBayesNet =
 | 
			
		||||
        *discrete_fg.eliminateSequential(ordering, EliminateForMPE);
 | 
			
		||||
        *discrete_fg.eliminateSequential(ordering, EliminateDiscrete);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Create ordering.
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -195,19 +195,19 @@ TEST(HybridNonlinearISAM, IncrementalInference) {
 | 
			
		|||
 | 
			
		||||
  // Test the probability values with regression tests.
 | 
			
		||||
  DiscreteValues assignment;
 | 
			
		||||
  EXPECT(assert_equal(0.000956191, m00_prob, 1e-5));
 | 
			
		||||
  EXPECT(assert_equal(0.0952922, m00_prob, 1e-5));
 | 
			
		||||
  assignment[M(0)] = 0;
 | 
			
		||||
  assignment[M(1)] = 0;
 | 
			
		||||
  EXPECT(assert_equal(0.000956191, (*discreteConditional)(assignment), 1e-5));
 | 
			
		||||
  EXPECT(assert_equal(0.0952922, (*discreteConditional)(assignment), 1e-5));
 | 
			
		||||
  assignment[M(0)] = 1;
 | 
			
		||||
  assignment[M(1)] = 0;
 | 
			
		||||
  EXPECT(assert_equal(0.00283728, (*discreteConditional)(assignment), 1e-5));
 | 
			
		||||
  EXPECT(assert_equal(0.282758, (*discreteConditional)(assignment), 1e-5));
 | 
			
		||||
  assignment[M(0)] = 0;
 | 
			
		||||
  assignment[M(1)] = 1;
 | 
			
		||||
  EXPECT(assert_equal(0.00315253, (*discreteConditional)(assignment), 1e-5));
 | 
			
		||||
  EXPECT(assert_equal(0.314175, (*discreteConditional)(assignment), 1e-5));
 | 
			
		||||
  assignment[M(0)] = 1;
 | 
			
		||||
  assignment[M(1)] = 1;
 | 
			
		||||
  EXPECT(assert_equal(0.00308831, (*discreteConditional)(assignment), 1e-5));
 | 
			
		||||
  EXPECT(assert_equal(0.307775, (*discreteConditional)(assignment), 1e-5));
 | 
			
		||||
 | 
			
		||||
  // Check if the clique conditional generated from incremental elimination
 | 
			
		||||
  // matches that of batch elimination.
 | 
			
		||||
| 
						 | 
				
			
			@ -216,7 +216,7 @@ TEST(HybridNonlinearISAM, IncrementalInference) {
 | 
			
		|||
      bayesTree[M(1)]->conditional()->inner());
 | 
			
		||||
  // Account for the probability terms from evaluating continuous FGs
 | 
			
		||||
  DiscreteKeys discrete_keys = {{M(0), 2}, {M(1), 2}};
 | 
			
		||||
  vector<double> probs = {0.00095619114, 0.0031525308, 0.0028372777, 0.0030883072};
 | 
			
		||||
  vector<double> probs = {0.095292197, 0.31417524, 0.28275772, 0.30777485};
 | 
			
		||||
  auto expectedConditional =
 | 
			
		||||
      boost::make_shared<DecisionTreeFactor>(discrete_keys, probs);
 | 
			
		||||
  EXPECT(assert_equal(*expectedConditional, *actualConditional, 1e-6));
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in New Issue