Got rid of spurious argument
parent
14a87c4ecc
commit
77d4e4c33e
|
|
@ -67,31 +67,28 @@ void PreintegratedCombinedMeasurements::resetIntegration() {
|
|||
//------------------------------------------------------------------------------
|
||||
void PreintegratedCombinedMeasurements::integrateMeasurement(
|
||||
const Vector3& measuredAcc, const Vector3& measuredOmega, double dt) {
|
||||
const Matrix3 dRij = deltaRij().matrix(); // expensive when quaternion
|
||||
|
||||
// Update preintegrated measurements.
|
||||
Matrix3 D_incrR_integratedOmega; // Right jacobian computed at theta_incr
|
||||
Matrix9 A; // overall Jacobian wrt preintegrated measurements (df/dx)
|
||||
Matrix93 B, C;
|
||||
PreintegrationBase::update(measuredAcc, measuredOmega, dt,
|
||||
&D_incrR_integratedOmega, &A, &B, &C);
|
||||
PreintegrationBase::update(measuredAcc, measuredOmega, dt, &A, &B, &C);
|
||||
|
||||
// Update preintegrated measurements covariance: as in [2] we consider a first
|
||||
// order propagation that can be seen as a prediction phase in an EKF
|
||||
// framework. In this implementation, contrarily to [2] we consider the
|
||||
// framework. In this implementation, in contrast to [2], we consider the
|
||||
// uncertainty of the bias selection and we keep correlation between biases
|
||||
// and preintegrated measurements
|
||||
|
||||
// Single Jacobians to propagate covariance
|
||||
Matrix3 H_vel_biasacc = -dRij * dt;
|
||||
Matrix3 H_angles_biasomega = -D_incrR_integratedOmega * dt;
|
||||
// TODO(frank): should we not also accout for bias on position?
|
||||
Matrix3 theta_H_biasOmega = - C.topRows<3>();
|
||||
Matrix3 vel_H_biasAcc = -B.bottomRows<3>();
|
||||
|
||||
// overall Jacobian wrt preintegrated measurements (df/dx)
|
||||
Eigen::Matrix<double, 15, 15> F;
|
||||
F.setZero();
|
||||
F.block<9, 9>(0, 0) = A;
|
||||
F.block<3, 3>(0, 12) = H_angles_biasomega;
|
||||
F.block<3, 3>(6, 9) = H_vel_biasacc;
|
||||
F.block<3, 3>(0, 12) = theta_H_biasOmega;
|
||||
F.block<3, 3>(6, 9) = vel_H_biasAcc;
|
||||
F.block<6, 6>(9, 9) = I_6x6;
|
||||
|
||||
// propagate uncertainty
|
||||
|
|
@ -101,24 +98,25 @@ void PreintegratedCombinedMeasurements::integrateMeasurement(
|
|||
const Matrix3& iCov = p().integrationCovariance;
|
||||
|
||||
// first order uncertainty propagation
|
||||
// Optimized matrix multiplication (1/dt) * G * measurementCovariance * G.transpose()
|
||||
// Optimized matrix multiplication (1/dt) * G * measurementCovariance *
|
||||
// G.transpose()
|
||||
Eigen::Matrix<double, 15, 15> G_measCov_Gt;
|
||||
G_measCov_Gt.setZero(15, 15);
|
||||
|
||||
// BLOCK DIAGONAL TERMS
|
||||
D_t_t(&G_measCov_Gt) = dt * iCov;
|
||||
D_v_v(&G_measCov_Gt) = (1 / dt) * H_vel_biasacc *
|
||||
D_v_v(&G_measCov_Gt) = (1 / dt) * vel_H_biasAcc *
|
||||
(aCov + p().biasAccOmegaInt.block<3, 3>(0, 0)) *
|
||||
(H_vel_biasacc.transpose());
|
||||
D_R_R(&G_measCov_Gt) = (1 / dt) * H_angles_biasomega *
|
||||
(vel_H_biasAcc.transpose());
|
||||
D_R_R(&G_measCov_Gt) = (1 / dt) * theta_H_biasOmega *
|
||||
(wCov + p().biasAccOmegaInt.block<3, 3>(3, 3)) *
|
||||
(H_angles_biasomega.transpose());
|
||||
(theta_H_biasOmega.transpose());
|
||||
D_a_a(&G_measCov_Gt) = dt * p().biasAccCovariance;
|
||||
D_g_g(&G_measCov_Gt) = dt * p().biasOmegaCovariance;
|
||||
|
||||
// OFF BLOCK DIAGONAL TERMS
|
||||
Matrix3 temp = H_vel_biasacc * p().biasAccOmegaInt.block<3, 3>(3, 0) *
|
||||
H_angles_biasomega.transpose();
|
||||
Matrix3 temp = vel_H_biasAcc * p().biasAccOmegaInt.block<3, 3>(3, 0) *
|
||||
theta_H_biasOmega.transpose();
|
||||
D_v_R(&G_measCov_Gt) = temp;
|
||||
D_R_v(&G_measCov_Gt) = temp.transpose();
|
||||
preintMeasCov_ = F * preintMeasCov_ * F.transpose() + G_measCov_Gt;
|
||||
|
|
|
|||
|
|
@ -55,9 +55,7 @@ void PreintegratedImuMeasurements::integrateMeasurement(
|
|||
// Update preintegrated measurements (also get Jacobian)
|
||||
Matrix9 A; // overall Jacobian wrt preintegrated measurements (df/dx)
|
||||
Matrix93 B, C;
|
||||
Matrix3 D_incrR_integratedOmega;
|
||||
PreintegrationBase::update(measuredAcc, measuredOmega, dt,
|
||||
&D_incrR_integratedOmega, &A, &B, &C);
|
||||
PreintegrationBase::update(measuredAcc, measuredOmega, dt, &A, &B, &C);
|
||||
|
||||
// first order covariance propagation:
|
||||
// as in [2] we consider a first order propagation that can be seen as a
|
||||
|
|
|
|||
|
|
@ -211,8 +211,7 @@ Vector9 PreintegrationBase::updatedPreintegrated(const Vector3& measuredAcc,
|
|||
//------------------------------------------------------------------------------
|
||||
void PreintegrationBase::update(const Vector3& measuredAcc,
|
||||
const Vector3& measuredOmega, double dt,
|
||||
Matrix3* D_incrR_integratedOmega, Matrix9* A,
|
||||
Matrix93* B, Matrix93* C) {
|
||||
Matrix9* A, Matrix93* B, Matrix93* C) {
|
||||
// Do update
|
||||
deltaTij_ += dt;
|
||||
preintegrated_ = updatedPreintegrated(measuredAcc, measuredOmega, dt, A, B, C);
|
||||
|
|
|
|||
|
|
@ -188,8 +188,7 @@ public:
|
|||
/// Update preintegrated measurements and get derivatives
|
||||
/// It takes measured quantities in the j frame
|
||||
void update(const Vector3& measuredAcc, const Vector3& measuredOmega,
|
||||
const double deltaT, Matrix3* D_incrR_integratedOmega, Matrix9* A,
|
||||
Matrix93* B, Matrix93* C);
|
||||
const double deltaT, Matrix9* A, Matrix93* B, Matrix93* C);
|
||||
|
||||
/// Given the estimate of the bias, return a NavState tangent vector
|
||||
/// summarizing the preintegrated IMU measurements so far
|
||||
|
|
|
|||
Loading…
Reference in New Issue