Example with SimpleF

release/4.3a0
Frank Dellaert 2024-10-24 16:40:53 -07:00
parent 6f2b49d80d
commit 77754fd69b
2 changed files with 134 additions and 6 deletions

View File

@ -78,12 +78,27 @@ std::vector<Pose3> createPoses(
/**
* Create regularly spaced poses with specified radius and number of cameras
*/
std::vector<Pose3> posesOnCircle(int num_cameras = 8, double radius = 30) {
const Pose3 init(Rot3::Ypr(M_PI_2, 0, -M_PI_2), {radius, 0, 0});
const double theta = M_PI / num_cameras;
const Pose3 delta(
Rot3::Ypr(0, -2 * theta, 0),
{sin(2 * theta) * radius, 0, radius * (1 - sin(2 * theta))});
std::vector<Pose3> posesOnCircle(int num_cameras = 8, double R = 30) {
const double theta = 2 * M_PI / num_cameras;
// Initial pose at angle 0, position (R, 0, 0), facing the center with Y-axis
// pointing down
const Pose3 init(Rot3::Ypr(M_PI_2, 0, -M_PI_2), {R, 0, 0});
// Delta rotation: rotate by -theta around Z-axis (counterclockwise movement)
Rot3 delta_rotation = Rot3::Ypr(0, -theta, 0);
// Delta translation in world frame
Vector3 delta_translation_world(R * (cos(theta) - 1), R * sin(theta), 0);
// Transform delta translation to local frame of the camera
Vector3 delta_translation_local =
init.rotation().inverse() * delta_translation_world;
// Define delta pose
const Pose3 delta(delta_rotation, delta_translation_local);
// Generate poses using createPoses
return createPoses(init, delta, num_cameras);
}
} // namespace gtsam

View File

@ -0,0 +1,113 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file ViewGraphExample.cpp
* @brief View-graph calibration on a simulated dataset, a la Sweeney 2015
* @author Frank Dellaert
* @author October 2024
*/
#include <gtsam/geometry/Cal3_S2.h>
#include <gtsam/geometry/PinholeCamera.h>
#include <gtsam/geometry/Point2.h>
#include <gtsam/geometry/Point3.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/inference/EdgeKey.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/sfm/TransferFactor.h>
#include <vector>
#include "SFMdata.h"
#include "gtsam/geometry/EssentialMatrix.h"
#include "gtsam/inference/Key.h"
using namespace std;
using namespace gtsam;
/* ************************************************************************* */
int main(int argc, char* argv[]) {
// Define the camera calibration parameters
Cal3_S2::shared_ptr K(new Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0));
// Create the set of 8 ground-truth landmarks
vector<Point3> points = createPoints();
// Create the set of 4 ground-truth poses
vector<Pose3> poses = posesOnCircle(4, 30);
// Simulate measurements from each camera pose
std::array<std::array<Point2, 8>, 4> p;
for (size_t i = 0; i < 4; ++i) {
GTSAM_PRINT(poses[i]);
PinholeCamera<Cal3_S2> camera(poses[i], *K);
for (size_t j = 0; j < 8; ++j) {
cout << "Camera index: " << i << ", Landmark index: " << j << endl;
p[i][j] = camera.project(points[j]);
}
}
// Create a factor graph
NonlinearFactorGraph graph;
using Factor = TransferFactor<SimpleFundamentalMatrix>;
for (size_t a = 0; a < 4; ++a) {
size_t b = (a + 1) % 4; // Next camera
size_t c = (a + 2) % 4; // Camera after next
for (size_t j = 0; j < 4; ++j) {
graph.emplace_shared<Factor>(EdgeKey(a, c), EdgeKey(b, c), p[a][j],
p[b][j], p[c][j]);
graph.emplace_shared<Factor>(EdgeKey(a, b), EdgeKey(b, c), p[a][j],
p[c][j], p[b][j]);
graph.emplace_shared<Factor>(EdgeKey(a, c), EdgeKey(a, b), p[c][j],
p[b][j], p[a][j]);
}
}
auto formatter = [](Key key) {
EdgeKey edge(key);
return (std::string)edge;
};
graph.print("Factor Graph:\n", formatter);
// Create the data structure to hold the initial estimate to the solution
Values initialEstimate;
const Point2 center(50, 50);
auto E1 = EssentialMatrix::FromPose3(poses[0].between(poses[1]));
auto E2 = EssentialMatrix::FromPose3(poses[0].between(poses[2]));
for (size_t a = 0; a < 4; ++a) {
size_t b = (a + 1) % 4; // Next camera
size_t c = (a + 2) % 4; // Camera after next
initialEstimate.insert(EdgeKey(a, b),
SimpleFundamentalMatrix(E1, 50, 50, center, center));
initialEstimate.insert(EdgeKey(a, c),
SimpleFundamentalMatrix(E2, 50, 50, center, center));
}
initialEstimate.print("Initial Estimates:\n", formatter);
// graph.printErrors(initialEstimate, "errors: ", formatter);
/* Optimize the graph and print results */
LevenbergMarquardtParams params;
params.setlambdaInitial(1000.0); // Initialize lambda to a high value
params.setVerbosityLM("SUMMARY");
Values result =
LevenbergMarquardtOptimizer(graph, initialEstimate, params).optimize();
result.print("Final results:\n", formatter);
cout << "initial error = " << graph.error(initialEstimate) << endl;
cout << "final error = " << graph.error(result) << endl;
return 0;
}
/* ************************************************************************* */