inverse Jacobians
parent
5125844d19
commit
76c9537847
|
@ -87,19 +87,29 @@ SO3 ExpmapFunctor::expmap() const { return SO3(I_3x3 + A * W + B * WW); }
|
|||
|
||||
DexpFunctor::DexpFunctor(const Vector3& omega, bool nearZeroApprox)
|
||||
: ExpmapFunctor(omega, nearZeroApprox), omega(omega) {
|
||||
C = nearZero ? one_sixth : (1 - A) / theta2;
|
||||
D = nearZero ? _one_twelfth : (A - 2.0 * B) / theta2;
|
||||
E = nearZero ? _one_sixtieth : (B - 3.0 * C) / theta2;
|
||||
if (!nearZero) {
|
||||
C = (1 - A) / theta2;
|
||||
D = (1.0 - A / (2.0 * B)) / theta2;
|
||||
E = (2.0 * B - A) / theta2;
|
||||
F = (3.0 * C - B) / theta2;
|
||||
} else {
|
||||
// Limit as theta -> 0
|
||||
// TODO(Frank): flipping signs here does not trigger any tests: harden!
|
||||
C = one_sixth;
|
||||
D = one_twelfth;
|
||||
E = one_twelfth;
|
||||
F = one_sixtieth;
|
||||
}
|
||||
}
|
||||
|
||||
Vector3 DexpFunctor::crossB(const Vector3& v, OptionalJacobian<3, 3> H) const {
|
||||
// Wv = omega x v
|
||||
const Vector3 Wv = gtsam::cross(omega, v);
|
||||
if (H) {
|
||||
// Apply product rule:
|
||||
// D * omega.transpose() is 1x3 Jacobian of B with respect to omega
|
||||
// - skewSymmetric(v) is 3x3 Jacobian of B gtsam::cross(omega, v)
|
||||
*H = Wv * D * omega.transpose() - B * skewSymmetric(v);
|
||||
// Apply product rule to (B Wv)
|
||||
// - E * omega.transpose() is 1x3 Jacobian of B with respect to omega
|
||||
// - skewSymmetric(v) is 3x3 Jacobian of Wv = gtsam::cross(omega, v)
|
||||
*H = - Wv * E * omega.transpose() - B * skewSymmetric(v);
|
||||
}
|
||||
return B * Wv;
|
||||
}
|
||||
|
@ -111,10 +121,10 @@ Vector3 DexpFunctor::doubleCrossC(const Vector3& v,
|
|||
const Vector3 WWv =
|
||||
gtsam::doubleCross(omega, v, H ? &doubleCrossJacobian : nullptr);
|
||||
if (H) {
|
||||
// Apply product rule:
|
||||
// E * omega.transpose() is 1x3 Jacobian of C with respect to omega
|
||||
// doubleCrossJacobian is 3x3 Jacobian of C gtsam::doubleCross(omega, v)
|
||||
*H = WWv * E * omega.transpose() + C * doubleCrossJacobian;
|
||||
// Apply product rule to (C WWv)
|
||||
// - F * omega.transpose() is 1x3 Jacobian of C with respect to omega
|
||||
// doubleCrossJacobian is 3x3 Jacobian of WWv = gtsam::doubleCross(omega, v)
|
||||
*H = - WWv * F * omega.transpose() + C * doubleCrossJacobian;
|
||||
}
|
||||
return C * WWv;
|
||||
}
|
||||
|
|
|
@ -157,10 +157,16 @@ struct GTSAM_EXPORT ExpmapFunctor {
|
|||
/// Functor that implements Exponential map *and* its derivatives
|
||||
struct GTSAM_EXPORT DexpFunctor : public ExpmapFunctor {
|
||||
const Vector3 omega;
|
||||
double C; // Ethan's C constant: (1 - A) / theta^2 or 1/6 for theta->0
|
||||
|
||||
// Ethan's C constant used in Jacobians
|
||||
double C; // (1 - A) / theta^2 or 1/6 for theta->0
|
||||
|
||||
// Constant used in inverse Jacobians
|
||||
double D; // 1.0 - A / (2.0 * B)) / theta2 or 1/12 for theta->0
|
||||
|
||||
// Constants used in cross and doubleCross
|
||||
double D; // (A - 2.0 * B) / theta2 or -1/12 for theta->0
|
||||
double E; // (B - 3.0 * C) / theta2 or -1/60 for theta->0
|
||||
double E; // (A - 2.0 * B) / theta2 or -1/12 for theta->0
|
||||
double F; // (B - 3.0 * C) / theta2 or -1/60 for theta->0
|
||||
|
||||
/// Constructor with element of Lie algebra so(3)
|
||||
explicit DexpFunctor(const Vector3& omega, bool nearZeroApprox = false);
|
||||
|
@ -179,6 +185,15 @@ struct GTSAM_EXPORT DexpFunctor : public ExpmapFunctor {
|
|||
/// Differential of expmap == right Jacobian
|
||||
inline Matrix3 dexp() const { return rightJacobian(); }
|
||||
|
||||
/// Inverse of right Jacobian
|
||||
Matrix3 rightJacobianInverse() const { return I_3x3 + 0.5 * W + D * WW; }
|
||||
|
||||
// Inverse of left Jacobian
|
||||
Matrix3 leftJacobianInverse() const { return I_3x3 - 0.5 * W + D * WW; }
|
||||
|
||||
/// Synonym for rightJacobianInverse
|
||||
inline Matrix3 invDexp() const { return rightJacobianInverse(); }
|
||||
|
||||
/// Computes B * (omega x v).
|
||||
Vector3 crossB(const Vector3& v, OptionalJacobian<3, 3> H = {}) const;
|
||||
|
||||
|
@ -198,8 +213,8 @@ struct GTSAM_EXPORT DexpFunctor : public ExpmapFunctor {
|
|||
OptionalJacobian<3, 3> H2 = {}) const;
|
||||
|
||||
static constexpr double one_sixth = 1.0 / 6.0;
|
||||
static constexpr double _one_twelfth = -1.0 / 12.0;
|
||||
static constexpr double _one_sixtieth = -1.0 / 60.0;
|
||||
static constexpr double one_twelfth = 1.0 / 12.0;
|
||||
static constexpr double one_sixtieth = 1.0 / 60.0;
|
||||
};
|
||||
} // namespace so3
|
||||
|
||||
|
|
|
@ -19,6 +19,7 @@
|
|||
#include <gtsam/base/Testable.h>
|
||||
#include <gtsam/base/testLie.h>
|
||||
#include <gtsam/geometry/SO3.h>
|
||||
#include <iostream>
|
||||
|
||||
using namespace std::placeholders;
|
||||
using namespace std;
|
||||
|
@ -304,13 +305,29 @@ TEST(SO3, JacobianLogmap) {
|
|||
}
|
||||
|
||||
namespace test_cases {
|
||||
std::vector<Vector3> small{{0, 0, 0}, {1e-5, 0, 0}, {0, 1e-5, 0}, {0, 0, 1e-5}};
|
||||
std::vector<Vector3> small{{0, 0, 0}, //
|
||||
{1e-5, 0, 0}, {0, 1e-5, 0}, {0, 0, 1e-5}, //,
|
||||
{1e-4, 0, 0}, {0, 1e-4, 0}, {0, 0, 1e-4}};
|
||||
std::vector<Vector3> large{
|
||||
{0, 0, 0}, {1, 0, 0}, {0, 1, 0}, {0, 0, 1}, {0.1, 0.2, 0.3}};
|
||||
auto omegas = [](bool nearZero) { return nearZero ? small : large; };
|
||||
std::vector<Vector3> vs{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}, {0.4, 0.3, 0.2}};
|
||||
} // namespace test_cases
|
||||
|
||||
//******************************************************************************
|
||||
TEST(SO3, JacobianInverses) {
|
||||
Matrix HR, HL;
|
||||
for (bool nearZero : {true, false}) {
|
||||
for (const Vector3& omega : test_cases::omegas(nearZero)) {
|
||||
so3::DexpFunctor local(omega, nearZero);
|
||||
EXPECT(assert_equal<Matrix3>(local.rightJacobian().inverse(),
|
||||
local.rightJacobianInverse()));
|
||||
EXPECT(assert_equal<Matrix3>(local.leftJacobian().inverse(),
|
||||
local.leftJacobianInverse()));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
TEST(SO3, CrossB) {
|
||||
Matrix aH1;
|
||||
|
|
Loading…
Reference in New Issue