inverse Jacobians

release/4.3a0
Frank Dellaert 2024-12-16 12:48:34 -05:00
parent 5125844d19
commit 76c9537847
3 changed files with 59 additions and 17 deletions

View File

@ -87,19 +87,29 @@ SO3 ExpmapFunctor::expmap() const { return SO3(I_3x3 + A * W + B * WW); }
DexpFunctor::DexpFunctor(const Vector3& omega, bool nearZeroApprox) DexpFunctor::DexpFunctor(const Vector3& omega, bool nearZeroApprox)
: ExpmapFunctor(omega, nearZeroApprox), omega(omega) { : ExpmapFunctor(omega, nearZeroApprox), omega(omega) {
C = nearZero ? one_sixth : (1 - A) / theta2; if (!nearZero) {
D = nearZero ? _one_twelfth : (A - 2.0 * B) / theta2; C = (1 - A) / theta2;
E = nearZero ? _one_sixtieth : (B - 3.0 * C) / theta2; D = (1.0 - A / (2.0 * B)) / theta2;
E = (2.0 * B - A) / theta2;
F = (3.0 * C - B) / theta2;
} else {
// Limit as theta -> 0
// TODO(Frank): flipping signs here does not trigger any tests: harden!
C = one_sixth;
D = one_twelfth;
E = one_twelfth;
F = one_sixtieth;
}
} }
Vector3 DexpFunctor::crossB(const Vector3& v, OptionalJacobian<3, 3> H) const { Vector3 DexpFunctor::crossB(const Vector3& v, OptionalJacobian<3, 3> H) const {
// Wv = omega x v // Wv = omega x v
const Vector3 Wv = gtsam::cross(omega, v); const Vector3 Wv = gtsam::cross(omega, v);
if (H) { if (H) {
// Apply product rule: // Apply product rule to (B Wv)
// D * omega.transpose() is 1x3 Jacobian of B with respect to omega // - E * omega.transpose() is 1x3 Jacobian of B with respect to omega
// - skewSymmetric(v) is 3x3 Jacobian of B gtsam::cross(omega, v) // - skewSymmetric(v) is 3x3 Jacobian of Wv = gtsam::cross(omega, v)
*H = Wv * D * omega.transpose() - B * skewSymmetric(v); *H = - Wv * E * omega.transpose() - B * skewSymmetric(v);
} }
return B * Wv; return B * Wv;
} }
@ -111,10 +121,10 @@ Vector3 DexpFunctor::doubleCrossC(const Vector3& v,
const Vector3 WWv = const Vector3 WWv =
gtsam::doubleCross(omega, v, H ? &doubleCrossJacobian : nullptr); gtsam::doubleCross(omega, v, H ? &doubleCrossJacobian : nullptr);
if (H) { if (H) {
// Apply product rule: // Apply product rule to (C WWv)
// E * omega.transpose() is 1x3 Jacobian of C with respect to omega // - F * omega.transpose() is 1x3 Jacobian of C with respect to omega
// doubleCrossJacobian is 3x3 Jacobian of C gtsam::doubleCross(omega, v) // doubleCrossJacobian is 3x3 Jacobian of WWv = gtsam::doubleCross(omega, v)
*H = WWv * E * omega.transpose() + C * doubleCrossJacobian; *H = - WWv * F * omega.transpose() + C * doubleCrossJacobian;
} }
return C * WWv; return C * WWv;
} }

View File

@ -157,10 +157,16 @@ struct GTSAM_EXPORT ExpmapFunctor {
/// Functor that implements Exponential map *and* its derivatives /// Functor that implements Exponential map *and* its derivatives
struct GTSAM_EXPORT DexpFunctor : public ExpmapFunctor { struct GTSAM_EXPORT DexpFunctor : public ExpmapFunctor {
const Vector3 omega; const Vector3 omega;
double C; // Ethan's C constant: (1 - A) / theta^2 or 1/6 for theta->0
// Ethan's C constant used in Jacobians
double C; // (1 - A) / theta^2 or 1/6 for theta->0
// Constant used in inverse Jacobians
double D; // 1.0 - A / (2.0 * B)) / theta2 or 1/12 for theta->0
// Constants used in cross and doubleCross // Constants used in cross and doubleCross
double D; // (A - 2.0 * B) / theta2 or -1/12 for theta->0 double E; // (A - 2.0 * B) / theta2 or -1/12 for theta->0
double E; // (B - 3.0 * C) / theta2 or -1/60 for theta->0 double F; // (B - 3.0 * C) / theta2 or -1/60 for theta->0
/// Constructor with element of Lie algebra so(3) /// Constructor with element of Lie algebra so(3)
explicit DexpFunctor(const Vector3& omega, bool nearZeroApprox = false); explicit DexpFunctor(const Vector3& omega, bool nearZeroApprox = false);
@ -179,6 +185,15 @@ struct GTSAM_EXPORT DexpFunctor : public ExpmapFunctor {
/// Differential of expmap == right Jacobian /// Differential of expmap == right Jacobian
inline Matrix3 dexp() const { return rightJacobian(); } inline Matrix3 dexp() const { return rightJacobian(); }
/// Inverse of right Jacobian
Matrix3 rightJacobianInverse() const { return I_3x3 + 0.5 * W + D * WW; }
// Inverse of left Jacobian
Matrix3 leftJacobianInverse() const { return I_3x3 - 0.5 * W + D * WW; }
/// Synonym for rightJacobianInverse
inline Matrix3 invDexp() const { return rightJacobianInverse(); }
/// Computes B * (omega x v). /// Computes B * (omega x v).
Vector3 crossB(const Vector3& v, OptionalJacobian<3, 3> H = {}) const; Vector3 crossB(const Vector3& v, OptionalJacobian<3, 3> H = {}) const;
@ -198,8 +213,8 @@ struct GTSAM_EXPORT DexpFunctor : public ExpmapFunctor {
OptionalJacobian<3, 3> H2 = {}) const; OptionalJacobian<3, 3> H2 = {}) const;
static constexpr double one_sixth = 1.0 / 6.0; static constexpr double one_sixth = 1.0 / 6.0;
static constexpr double _one_twelfth = -1.0 / 12.0; static constexpr double one_twelfth = 1.0 / 12.0;
static constexpr double _one_sixtieth = -1.0 / 60.0; static constexpr double one_sixtieth = 1.0 / 60.0;
}; };
} // namespace so3 } // namespace so3

View File

@ -19,6 +19,7 @@
#include <gtsam/base/Testable.h> #include <gtsam/base/Testable.h>
#include <gtsam/base/testLie.h> #include <gtsam/base/testLie.h>
#include <gtsam/geometry/SO3.h> #include <gtsam/geometry/SO3.h>
#include <iostream>
using namespace std::placeholders; using namespace std::placeholders;
using namespace std; using namespace std;
@ -304,13 +305,29 @@ TEST(SO3, JacobianLogmap) {
} }
namespace test_cases { namespace test_cases {
std::vector<Vector3> small{{0, 0, 0}, {1e-5, 0, 0}, {0, 1e-5, 0}, {0, 0, 1e-5}}; std::vector<Vector3> small{{0, 0, 0}, //
{1e-5, 0, 0}, {0, 1e-5, 0}, {0, 0, 1e-5}, //,
{1e-4, 0, 0}, {0, 1e-4, 0}, {0, 0, 1e-4}};
std::vector<Vector3> large{ std::vector<Vector3> large{
{0, 0, 0}, {1, 0, 0}, {0, 1, 0}, {0, 0, 1}, {0.1, 0.2, 0.3}}; {0, 0, 0}, {1, 0, 0}, {0, 1, 0}, {0, 0, 1}, {0.1, 0.2, 0.3}};
auto omegas = [](bool nearZero) { return nearZero ? small : large; }; auto omegas = [](bool nearZero) { return nearZero ? small : large; };
std::vector<Vector3> vs{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}, {0.4, 0.3, 0.2}}; std::vector<Vector3> vs{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}, {0.4, 0.3, 0.2}};
} // namespace test_cases } // namespace test_cases
//******************************************************************************
TEST(SO3, JacobianInverses) {
Matrix HR, HL;
for (bool nearZero : {true, false}) {
for (const Vector3& omega : test_cases::omegas(nearZero)) {
so3::DexpFunctor local(omega, nearZero);
EXPECT(assert_equal<Matrix3>(local.rightJacobian().inverse(),
local.rightJacobianInverse()));
EXPECT(assert_equal<Matrix3>(local.leftJacobian().inverse(),
local.leftJacobianInverse()));
}
}
}
//****************************************************************************** //******************************************************************************
TEST(SO3, CrossB) { TEST(SO3, CrossB) {
Matrix aH1; Matrix aH1;