Merge pull request #1041 from borglab/release/4.2a3

release/4.3a0
Frank Dellaert 2022-01-17 14:50:28 -05:00 committed by GitHub
commit 76c74195de
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
22 changed files with 528 additions and 176 deletions

View File

@ -15,7 +15,7 @@ jobs:
BOOST_VERSION: 1.67.0 BOOST_VERSION: 1.67.0
strategy: strategy:
fail-fast: false fail-fast: true
matrix: matrix:
# Github Actions requires a single row to be added to the build matrix. # Github Actions requires a single row to be added to the build matrix.
# See https://help.github.com/en/articles/workflow-syntax-for-github-actions. # See https://help.github.com/en/articles/workflow-syntax-for-github-actions.

View File

@ -11,7 +11,7 @@ endif()
set (GTSAM_VERSION_MAJOR 4) set (GTSAM_VERSION_MAJOR 4)
set (GTSAM_VERSION_MINOR 2) set (GTSAM_VERSION_MINOR 2)
set (GTSAM_VERSION_PATCH 0) set (GTSAM_VERSION_PATCH 0)
set (GTSAM_PRERELEASE_VERSION "a2") set (GTSAM_PRERELEASE_VERSION "a3")
math (EXPR GTSAM_VERSION_NUMERIC "10000 * ${GTSAM_VERSION_MAJOR} + 100 * ${GTSAM_VERSION_MINOR} + ${GTSAM_VERSION_PATCH}") math (EXPR GTSAM_VERSION_NUMERIC "10000 * ${GTSAM_VERSION_MAJOR} + 100 * ${GTSAM_VERSION_MINOR} + ${GTSAM_VERSION_PATCH}")
if (${GTSAM_VERSION_PATCH} EQUAL 0) if (${GTSAM_VERSION_PATCH} EQUAL 0)

View File

@ -57,7 +57,7 @@ namespace gtsam {
/** Default constructor for I/O */ /** Default constructor for I/O */
DecisionTreeFactor(); DecisionTreeFactor();
/** Constructor from Indices, Ordering, and AlgebraicDecisionDiagram */ /** Constructor from DiscreteKeys and AlgebraicDecisionTree */
DecisionTreeFactor(const DiscreteKeys& keys, const ADT& potentials); DecisionTreeFactor(const DiscreteKeys& keys, const ADT& potentials);
/** Constructor from doubles */ /** Constructor from doubles */
@ -139,14 +139,14 @@ namespace gtsam {
/** /**
* Apply binary operator (*this) "op" f * Apply binary operator (*this) "op" f
* @param f the second argument for op * @param f the second argument for op
* @param op a binary operator that operates on AlgebraicDecisionDiagram potentials * @param op a binary operator that operates on AlgebraicDecisionTree
*/ */
DecisionTreeFactor apply(const DecisionTreeFactor& f, ADT::Binary op) const; DecisionTreeFactor apply(const DecisionTreeFactor& f, ADT::Binary op) const;
/** /**
* Combine frontal variables using binary operator "op" * Combine frontal variables using binary operator "op"
* @param nrFrontals nr. of frontal to combine variables in this factor * @param nrFrontals nr. of frontal to combine variables in this factor
* @param op a binary operator that operates on AlgebraicDecisionDiagram potentials * @param op a binary operator that operates on AlgebraicDecisionTree
* @return shared pointer to newly created DecisionTreeFactor * @return shared pointer to newly created DecisionTreeFactor
*/ */
shared_ptr combine(size_t nrFrontals, ADT::Binary op) const; shared_ptr combine(size_t nrFrontals, ADT::Binary op) const;
@ -154,7 +154,7 @@ namespace gtsam {
/** /**
* Combine frontal variables in an Ordering using binary operator "op" * Combine frontal variables in an Ordering using binary operator "op"
* @param nrFrontals nr. of frontal to combine variables in this factor * @param nrFrontals nr. of frontal to combine variables in this factor
* @param op a binary operator that operates on AlgebraicDecisionDiagram potentials * @param op a binary operator that operates on AlgebraicDecisionTree
* @return shared pointer to newly created DecisionTreeFactor * @return shared pointer to newly created DecisionTreeFactor
*/ */
shared_ptr combine(const Ordering& keys, ADT::Binary op) const; shared_ptr combine(const Ordering& keys, ADT::Binary op) const;

View File

@ -19,7 +19,7 @@
#pragma once #pragma once
#include <gtsam/discrete/DiscreteConditional.h> #include <gtsam/discrete/DiscreteConditional.h>
#include <gtsam/discrete/DiscretePrior.h> #include <gtsam/discrete/DiscreteDistribution.h>
#include <gtsam/inference/BayesNet.h> #include <gtsam/inference/BayesNet.h>
#include <gtsam/inference/FactorGraph.h> #include <gtsam/inference/FactorGraph.h>
@ -79,9 +79,9 @@ namespace gtsam {
// Add inherited versions of add. // Add inherited versions of add.
using Base::add; using Base::add;
/** Add a DiscretePrior using a table or a string */ /** Add a DiscreteDistribution using a table or a string */
void add(const DiscreteKey& key, const std::string& spec) { void add(const DiscreteKey& key, const std::string& spec) {
emplace_shared<DiscretePrior>(key, spec); emplace_shared<DiscreteDistribution>(key, spec);
} }
/** Add a DiscreteCondtional */ /** Add a DiscreteCondtional */

View File

@ -30,6 +30,7 @@
#include <string> #include <string>
#include <vector> #include <vector>
#include <utility> #include <utility>
#include <set>
using namespace std; using namespace std;
using std::stringstream; using std::stringstream;
@ -38,38 +39,97 @@ using std::pair;
namespace gtsam { namespace gtsam {
// Instantiate base class // Instantiate base class
template class GTSAM_EXPORT Conditional<DecisionTreeFactor, DiscreteConditional> ; template class GTSAM_EXPORT
Conditional<DecisionTreeFactor, DiscreteConditional>;
/* ******************************************************************************** */ /* ************************************************************************** */
DiscreteConditional::DiscreteConditional(const size_t nrFrontals, DiscreteConditional::DiscreteConditional(const size_t nrFrontals,
const DecisionTreeFactor& f) : const DecisionTreeFactor& f)
BaseFactor(f / (*f.sum(nrFrontals))), BaseConditional(nrFrontals) { : BaseFactor(f / (*f.sum(nrFrontals))), BaseConditional(nrFrontals) {}
}
/* ******************************************************************************** */ /* ************************************************************************** */
DiscreteConditional::DiscreteConditional(const DecisionTreeFactor& joint, DiscreteConditional::DiscreteConditional(size_t nrFrontals,
const DecisionTreeFactor& marginal) : const DiscreteKeys& keys,
BaseFactor( const ADT& potentials)
ISDEBUG("DiscreteConditional::COUNT") ? joint : joint / marginal), BaseConditional( : BaseFactor(keys, potentials), BaseConditional(nrFrontals) {}
joint.size()-marginal.size()) {
if (ISDEBUG("DiscreteConditional::DiscreteConditional"))
cout << (firstFrontalKey()) << endl; //TODO Print all keys
}
/* ******************************************************************************** */ /* ************************************************************************** */
DiscreteConditional::DiscreteConditional(const DecisionTreeFactor& joint, DiscreteConditional::DiscreteConditional(const DecisionTreeFactor& joint,
const DecisionTreeFactor& marginal, const Ordering& orderedKeys) : const DecisionTreeFactor& marginal)
DiscreteConditional(joint, marginal) { : BaseFactor(joint / marginal),
BaseConditional(joint.size() - marginal.size()) {}
/* ************************************************************************** */
DiscreteConditional::DiscreteConditional(const DecisionTreeFactor& joint,
const DecisionTreeFactor& marginal,
const Ordering& orderedKeys)
: DiscreteConditional(joint, marginal) {
keys_.clear(); keys_.clear();
keys_.insert(keys_.end(), orderedKeys.begin(), orderedKeys.end()); keys_.insert(keys_.end(), orderedKeys.begin(), orderedKeys.end());
} }
/* ******************************************************************************** */ /* ************************************************************************** */
DiscreteConditional::DiscreteConditional(const Signature& signature) DiscreteConditional::DiscreteConditional(const Signature& signature)
: BaseFactor(signature.discreteKeys(), signature.cpt()), : BaseFactor(signature.discreteKeys(), signature.cpt()),
BaseConditional(1) {} BaseConditional(1) {}
/* ******************************************************************************** */ /* ************************************************************************** */
DiscreteConditional DiscreteConditional::operator*(
const DiscreteConditional& other) const {
// Take union of frontal keys
std::set<Key> newFrontals;
for (auto&& key : this->frontals()) newFrontals.insert(key);
for (auto&& key : other.frontals()) newFrontals.insert(key);
// Check if frontals overlapped
if (nrFrontals() + other.nrFrontals() > newFrontals.size())
throw std::invalid_argument(
"DiscreteConditional::operator* called with overlapping frontal keys.");
// Now, add cardinalities.
DiscreteKeys discreteKeys;
for (auto&& key : frontals())
discreteKeys.emplace_back(key, cardinality(key));
for (auto&& key : other.frontals())
discreteKeys.emplace_back(key, other.cardinality(key));
// Sort
std::sort(discreteKeys.begin(), discreteKeys.end());
// Add parents to set, to make them unique
std::set<DiscreteKey> parents;
for (auto&& key : this->parents())
if (!newFrontals.count(key)) parents.emplace(key, cardinality(key));
for (auto&& key : other.parents())
if (!newFrontals.count(key)) parents.emplace(key, other.cardinality(key));
// Finally, add parents to keys, in order
for (auto&& dk : parents) discreteKeys.push_back(dk);
ADT product = ADT::apply(other, ADT::Ring::mul);
return DiscreteConditional(newFrontals.size(), discreteKeys, product);
}
/* ************************************************************************** */
DiscreteConditional DiscreteConditional::marginal(Key key) const {
if (nrParents() > 0)
throw std::invalid_argument(
"DiscreteConditional::marginal: single argument version only valid for "
"fully specified joint distributions (i.e., no parents).");
// Calculate the keys as the frontal keys without the given key.
DiscreteKeys discreteKeys{{key, cardinality(key)}};
// Calculate sum
ADT adt(*this);
for (auto&& k : frontals())
if (k != key) adt = adt.sum(k, cardinality(k));
// Return new factor
return DiscreteConditional(1, discreteKeys, adt);
}
/* ************************************************************************** */
void DiscreteConditional::print(const string& s, void DiscreteConditional::print(const string& s,
const KeyFormatter& formatter) const { const KeyFormatter& formatter) const {
cout << s << " P( "; cout << s << " P( ";
@ -82,7 +142,7 @@ void DiscreteConditional::print(const string& s,
cout << formatter(*it) << " "; cout << formatter(*it) << " ";
} }
} }
cout << ")"; cout << "):\n";
ADT::print(""); ADT::print("");
cout << endl; cout << endl;
} }

View File

@ -49,14 +49,21 @@ class GTSAM_EXPORT DiscreteConditional
/// @name Standard Constructors /// @name Standard Constructors
/// @{ /// @{
/** default constructor needed for serialization */ /// Default constructor needed for serialization.
DiscreteConditional() {} DiscreteConditional() {}
/** constructor from factor */ /// Construct from factor, taking the first `nFrontals` keys as frontals.
DiscreteConditional(size_t nFrontals, const DecisionTreeFactor& f); DiscreteConditional(size_t nFrontals, const DecisionTreeFactor& f);
/**
* Construct from DiscreteKeys and AlgebraicDecisionTree, taking the first
* `nFrontals` keys as frontals, in the order given.
*/
DiscreteConditional(size_t nFrontals, const DiscreteKeys& keys,
const ADT& potentials);
/** Construct from signature */ /** Construct from signature */
DiscreteConditional(const Signature& signature); explicit DiscreteConditional(const Signature& signature);
/** /**
* Construct from key, parents, and a Signature::Table specifying the * Construct from key, parents, and a Signature::Table specifying the
@ -82,31 +89,45 @@ class GTSAM_EXPORT DiscreteConditional
const std::string& spec) const std::string& spec)
: DiscreteConditional(Signature(key, parents, spec)) {} : DiscreteConditional(Signature(key, parents, spec)) {}
/// No-parent specialization; can also use DiscretePrior. /// No-parent specialization; can also use DiscreteDistribution.
DiscreteConditional(const DiscreteKey& key, const std::string& spec) DiscreteConditional(const DiscreteKey& key, const std::string& spec)
: DiscreteConditional(Signature(key, {}, spec)) {} : DiscreteConditional(Signature(key, {}, spec)) {}
/** construct P(X|Y)=P(X,Y)/P(Y) from P(X,Y) and P(Y) */ /**
* @brief construct P(X|Y) = f(X,Y)/f(Y) from f(X,Y) and f(Y)
* Assumes but *does not check* that f(Y)=sum_X f(X,Y).
*/
DiscreteConditional(const DecisionTreeFactor& joint, DiscreteConditional(const DecisionTreeFactor& joint,
const DecisionTreeFactor& marginal); const DecisionTreeFactor& marginal);
/** construct P(X|Y)=P(X,Y)/P(Y) from P(X,Y) and P(Y) */ /**
* @brief construct P(X|Y) = f(X,Y)/f(Y) from f(X,Y) and f(Y)
* Assumes but *does not check* that f(Y)=sum_X f(X,Y).
* Makes sure the keys are ordered as given. Does not check orderedKeys.
*/
DiscreteConditional(const DecisionTreeFactor& joint, DiscreteConditional(const DecisionTreeFactor& joint,
const DecisionTreeFactor& marginal, const DecisionTreeFactor& marginal,
const Ordering& orderedKeys); const Ordering& orderedKeys);
/** /**
* Combine several conditional into a single one. * @brief Combine two conditionals, yielding a new conditional with the union
* The conditionals must be given in increasing order, meaning that the * of the frontal keys, ordered by gtsam::Key.
* parents of any conditional may not include a conditional coming before it. *
* @param firstConditional Iterator to the first conditional to combine, must * The two conditionals must make a valid Bayes net fragment, i.e.,
* dereference to a shared_ptr<DiscreteConditional>. * the frontal variables cannot overlap, and must be acyclic:
* @param lastConditional Iterator to after the last conditional to combine, * Example of correct use:
* must dereference to a shared_ptr<DiscreteConditional>. * P(A,B) = P(A|B) * P(B)
* */ * P(A,B|C) = P(A|B) * P(B|C)
template <typename ITERATOR> * P(A,B,C) = P(A,B|C) * P(C)
static shared_ptr Combine(ITERATOR firstConditional, * Example of incorrect use:
ITERATOR lastConditional); * P(A|B) * P(A|C) = ?
* P(A|B) * P(B|A) = ?
* We check for overlapping frontals, but do *not* check for cyclic.
*/
DiscreteConditional operator*(const DiscreteConditional& other) const;
/** Calculate marginal on given key, no parent case. */
DiscreteConditional marginal(Key key) const;
/// @} /// @}
/// @name Testable /// @name Testable
@ -136,11 +157,6 @@ class GTSAM_EXPORT DiscreteConditional
return ADT::operator()(values); return ADT::operator()(values);
} }
/** Convert to a factor */
DecisionTreeFactor::shared_ptr toFactor() const {
return DecisionTreeFactor::shared_ptr(new DecisionTreeFactor(*this));
}
/** Restrict to given parent values, returns DecisionTreeFactor */ /** Restrict to given parent values, returns DecisionTreeFactor */
DecisionTreeFactor::shared_ptr choose( DecisionTreeFactor::shared_ptr choose(
const DiscreteValues& parentsValues) const; const DiscreteValues& parentsValues) const;
@ -208,23 +224,4 @@ class GTSAM_EXPORT DiscreteConditional
template <> template <>
struct traits<DiscreteConditional> : public Testable<DiscreteConditional> {}; struct traits<DiscreteConditional> : public Testable<DiscreteConditional> {};
/* ************************************************************************* */
template <typename ITERATOR>
DiscreteConditional::shared_ptr DiscreteConditional::Combine(
ITERATOR firstConditional, ITERATOR lastConditional) {
// TODO: check for being a clique
// multiply all the potentials of the given conditionals
size_t nrFrontals = 0;
DecisionTreeFactor product;
for (ITERATOR it = firstConditional; it != lastConditional;
++it, ++nrFrontals) {
DiscreteConditional::shared_ptr c = *it;
DecisionTreeFactor::shared_ptr factor = c->toFactor();
product = (*factor) * product;
}
// and then create a new multi-frontal conditional
return boost::make_shared<DiscreteConditional>(nrFrontals, product);
}
} // namespace gtsam } // namespace gtsam

View File

@ -10,21 +10,23 @@
* -------------------------------------------------------------------------- */ * -------------------------------------------------------------------------- */
/** /**
* @file DiscretePrior.cpp * @file DiscreteDistribution.cpp
* @date December 2021 * @date December 2021
* @author Frank Dellaert * @author Frank Dellaert
*/ */
#include <gtsam/discrete/DiscretePrior.h> #include <gtsam/discrete/DiscreteDistribution.h>
#include <vector>
namespace gtsam { namespace gtsam {
void DiscretePrior::print(const std::string& s, void DiscreteDistribution::print(const std::string& s,
const KeyFormatter& formatter) const { const KeyFormatter& formatter) const {
Base::print(s, formatter); Base::print(s, formatter);
} }
double DiscretePrior::operator()(size_t value) const { double DiscreteDistribution::operator()(size_t value) const {
if (nrFrontals() != 1) if (nrFrontals() != 1)
throw std::invalid_argument( throw std::invalid_argument(
"Single value operator can only be invoked on single-variable " "Single value operator can only be invoked on single-variable "
@ -34,10 +36,10 @@ double DiscretePrior::operator()(size_t value) const {
return Base::operator()(values); return Base::operator()(values);
} }
std::vector<double> DiscretePrior::pmf() const { std::vector<double> DiscreteDistribution::pmf() const {
if (nrFrontals() != 1) if (nrFrontals() != 1)
throw std::invalid_argument( throw std::invalid_argument(
"DiscretePrior::pmf only defined for single-variable priors"); "DiscreteDistribution::pmf only defined for single-variable priors");
const size_t nrValues = cardinalities_.at(keys_[0]); const size_t nrValues = cardinalities_.at(keys_[0]);
std::vector<double> array; std::vector<double> array;
array.reserve(nrValues); array.reserve(nrValues);

View File

@ -10,7 +10,7 @@
* -------------------------------------------------------------------------- */ * -------------------------------------------------------------------------- */
/** /**
* @file DiscretePrior.h * @file DiscreteDistribution.h
* @date December 2021 * @date December 2021
* @author Frank Dellaert * @author Frank Dellaert
*/ */
@ -20,6 +20,7 @@
#include <gtsam/discrete/DiscreteConditional.h> #include <gtsam/discrete/DiscreteConditional.h>
#include <string> #include <string>
#include <vector>
namespace gtsam { namespace gtsam {
@ -27,7 +28,7 @@ namespace gtsam {
* A prior probability on a set of discrete variables. * A prior probability on a set of discrete variables.
* Derives from DiscreteConditional * Derives from DiscreteConditional
*/ */
class GTSAM_EXPORT DiscretePrior : public DiscreteConditional { class GTSAM_EXPORT DiscreteDistribution : public DiscreteConditional {
public: public:
using Base = DiscreteConditional; using Base = DiscreteConditional;
@ -35,35 +36,36 @@ class GTSAM_EXPORT DiscretePrior : public DiscreteConditional {
/// @{ /// @{
/// Default constructor needed for serialization. /// Default constructor needed for serialization.
DiscretePrior() {} DiscreteDistribution() {}
/// Constructor from factor. /// Constructor from factor.
DiscretePrior(const DecisionTreeFactor& f) : Base(f.size(), f) {} explicit DiscreteDistribution(const DecisionTreeFactor& f)
: Base(f.size(), f) {}
/** /**
* Construct from a Signature. * Construct from a Signature.
* *
* Example: DiscretePrior P(D % "3/2"); * Example: DiscreteDistribution P(D % "3/2");
*/ */
DiscretePrior(const Signature& s) : Base(s) {} explicit DiscreteDistribution(const Signature& s) : Base(s) {}
/** /**
* Construct from key and a Signature::Table specifying the * Construct from key and a vector of floats specifying the probability mass
* conditional probability table (CPT). * function (PMF).
* *
* Example: DiscretePrior P(D, table); * Example: DiscreteDistribution P(D, {0.4, 0.6});
*/ */
DiscretePrior(const DiscreteKey& key, const Signature::Table& table) DiscreteDistribution(const DiscreteKey& key, const std::vector<double>& spec)
: Base(Signature(key, {}, table)) {} : DiscreteDistribution(Signature(key, {}, Signature::Table{spec})) {}
/** /**
* Construct from key and a string specifying the conditional * Construct from key and a string specifying the probability mass function
* probability table (CPT). * (PMF).
* *
* Example: DiscretePrior P(D, "9/1 2/8 3/7 1/9"); * Example: DiscreteDistribution P(D, "9/1 2/8 3/7 1/9");
*/ */
DiscretePrior(const DiscreteKey& key, const std::string& spec) DiscreteDistribution(const DiscreteKey& key, const std::string& spec)
: DiscretePrior(Signature(key, {}, spec)) {} : DiscreteDistribution(Signature(key, {}, spec)) {}
/// @} /// @}
/// @name Testable /// @name Testable
@ -102,10 +104,10 @@ class GTSAM_EXPORT DiscretePrior : public DiscreteConditional {
/// @} /// @}
}; };
// DiscretePrior // DiscreteDistribution
// traits // traits
template <> template <>
struct traits<DiscretePrior> : public Testable<DiscretePrior> {}; struct traits<DiscreteDistribution> : public Testable<DiscreteDistribution> {};
} // namespace gtsam } // namespace gtsam

View File

@ -58,6 +58,15 @@ virtual class DecisionTreeFactor : gtsam::DiscreteFactor {
const gtsam::KeyFormatter& keyFormatter = const gtsam::KeyFormatter& keyFormatter =
gtsam::DefaultKeyFormatter) const; gtsam::DefaultKeyFormatter) const;
bool equals(const gtsam::DecisionTreeFactor& other, double tol = 1e-9) const; bool equals(const gtsam::DecisionTreeFactor& other, double tol = 1e-9) const;
double operator()(const gtsam::DiscreteValues& values) const;
gtsam::DecisionTreeFactor operator*(const gtsam::DecisionTreeFactor& f) const;
size_t cardinality(gtsam::Key j) const;
gtsam::DecisionTreeFactor operator/(const gtsam::DecisionTreeFactor& f) const;
gtsam::DecisionTreeFactor* sum(size_t nrFrontals) const;
gtsam::DecisionTreeFactor* sum(const gtsam::Ordering& keys) const;
gtsam::DecisionTreeFactor* max(size_t nrFrontals) const;
string dot( string dot(
const gtsam::KeyFormatter& keyFormatter = gtsam::DefaultKeyFormatter, const gtsam::KeyFormatter& keyFormatter = gtsam::DefaultKeyFormatter,
bool showZero = true) const; bool showZero = true) const;
@ -86,14 +95,18 @@ virtual class DiscreteConditional : gtsam::DecisionTreeFactor {
DiscreteConditional(const gtsam::DecisionTreeFactor& joint, DiscreteConditional(const gtsam::DecisionTreeFactor& joint,
const gtsam::DecisionTreeFactor& marginal, const gtsam::DecisionTreeFactor& marginal,
const gtsam::Ordering& orderedKeys); const gtsam::Ordering& orderedKeys);
gtsam::DiscreteConditional operator*(
const gtsam::DiscreteConditional& other) const;
DiscreteConditional marginal(gtsam::Key key) const;
void print(string s = "Discrete Conditional\n", void print(string s = "Discrete Conditional\n",
const gtsam::KeyFormatter& keyFormatter = const gtsam::KeyFormatter& keyFormatter =
gtsam::DefaultKeyFormatter) const; gtsam::DefaultKeyFormatter) const;
bool equals(const gtsam::DiscreteConditional& other, double tol = 1e-9) const; bool equals(const gtsam::DiscreteConditional& other, double tol = 1e-9) const;
size_t nrFrontals() const;
size_t nrParents() const;
void printSignature( void printSignature(
string s = "Discrete Conditional: ", string s = "Discrete Conditional: ",
const gtsam::KeyFormatter& formatter = gtsam::DefaultKeyFormatter) const; const gtsam::KeyFormatter& formatter = gtsam::DefaultKeyFormatter) const;
gtsam::DecisionTreeFactor* toFactor() const;
gtsam::DecisionTreeFactor* choose( gtsam::DecisionTreeFactor* choose(
const gtsam::DiscreteValues& parentsValues) const; const gtsam::DiscreteValues& parentsValues) const;
gtsam::DecisionTreeFactor* likelihood( gtsam::DecisionTreeFactor* likelihood(
@ -115,11 +128,12 @@ virtual class DiscreteConditional : gtsam::DecisionTreeFactor {
std::map<gtsam::Key, std::vector<std::string>> names) const; std::map<gtsam::Key, std::vector<std::string>> names) const;
}; };
#include <gtsam/discrete/DiscretePrior.h> #include <gtsam/discrete/DiscreteDistribution.h>
virtual class DiscretePrior : gtsam::DiscreteConditional { virtual class DiscreteDistribution : gtsam::DiscreteConditional {
DiscretePrior(); DiscreteDistribution();
DiscretePrior(const gtsam::DecisionTreeFactor& f); DiscreteDistribution(const gtsam::DecisionTreeFactor& f);
DiscretePrior(const gtsam::DiscreteKey& key, string spec); DiscreteDistribution(const gtsam::DiscreteKey& key, string spec);
DiscreteDistribution(const gtsam::DiscreteKey& key, std::vector<double> spec);
void print(string s = "Discrete Prior\n", void print(string s = "Discrete Prior\n",
const gtsam::KeyFormatter& keyFormatter = const gtsam::KeyFormatter& keyFormatter =
gtsam::DefaultKeyFormatter) const; gtsam::DefaultKeyFormatter) const;

View File

@ -17,10 +17,12 @@
* @author Duy-Nguyen Ta * @author Duy-Nguyen Ta
*/ */
#include <gtsam/discrete/Signature.h>
#include <gtsam/discrete/DecisionTreeFactor.h>
#include <gtsam/base/Testable.h>
#include <CppUnitLite/TestHarness.h> #include <CppUnitLite/TestHarness.h>
#include <gtsam/base/Testable.h>
#include <gtsam/discrete/DecisionTreeFactor.h>
#include <gtsam/discrete/DiscreteDistribution.h>
#include <gtsam/discrete/Signature.h>
#include <boost/assign/std/map.hpp> #include <boost/assign/std/map.hpp>
using namespace boost::assign; using namespace boost::assign;
@ -51,17 +53,21 @@ TEST( DecisionTreeFactor, constructors)
} }
/* ************************************************************************* */ /* ************************************************************************* */
TEST_UNSAFE( DecisionTreeFactor, multiplication) TEST(DecisionTreeFactor, multiplication) {
{ DiscreteKey v0(0, 2), v1(1, 2), v2(2, 2);
DiscreteKey v0(0,2), v1(1,2), v2(2,2);
// Multiply with a DiscreteDistribution, i.e., Bayes Law!
DiscreteDistribution prior(v1 % "1/3");
DecisionTreeFactor f1(v0 & v1, "1 2 3 4"); DecisionTreeFactor f1(v0 & v1, "1 2 3 4");
DecisionTreeFactor expected(v0 & v1, "0.25 1.5 0.75 3");
CHECK(assert_equal(expected, static_cast<DecisionTreeFactor>(prior) * f1));
CHECK(assert_equal(expected, f1 * prior));
// Multiply two factors
DecisionTreeFactor f2(v1 & v2, "5 6 7 8"); DecisionTreeFactor f2(v1 & v2, "5 6 7 8");
DecisionTreeFactor expected(v0 & v1 & v2, "5 6 14 16 15 18 28 32");
DecisionTreeFactor actual = f1 * f2; DecisionTreeFactor actual = f1 * f2;
CHECK(assert_equal(expected, actual)); DecisionTreeFactor expected2(v0 & v1 & v2, "5 6 14 16 15 18 28 32");
CHECK(assert_equal(expected2, actual));
} }
/* ************************************************************************* */ /* ************************************************************************* */

View File

@ -34,20 +34,21 @@ using namespace gtsam;
TEST(DiscreteConditional, constructors) { TEST(DiscreteConditional, constructors) {
DiscreteKey X(0, 2), Y(2, 3), Z(1, 2); // watch ordering ! DiscreteKey X(0, 2), Y(2, 3), Z(1, 2); // watch ordering !
DiscreteConditional expected(X | Y = "1/1 2/3 1/4"); DiscreteConditional actual(X | Y = "1/1 2/3 1/4");
EXPECT_LONGS_EQUAL(0, *(expected.beginFrontals())); EXPECT_LONGS_EQUAL(0, *(actual.beginFrontals()));
EXPECT_LONGS_EQUAL(2, *(expected.beginParents())); EXPECT_LONGS_EQUAL(2, *(actual.beginParents()));
EXPECT(expected.endParents() == expected.end()); EXPECT(actual.endParents() == actual.end());
EXPECT(expected.endFrontals() == expected.beginParents()); EXPECT(actual.endFrontals() == actual.beginParents());
DecisionTreeFactor f1(X & Y, "0.5 0.4 0.2 0.5 0.6 0.8"); DecisionTreeFactor f1(X & Y, "0.5 0.4 0.2 0.5 0.6 0.8");
DiscreteConditional actual1(1, f1); DiscreteConditional expected1(1, f1);
EXPECT(assert_equal(expected, actual1, 1e-9)); EXPECT(assert_equal(expected1, actual, 1e-9));
DecisionTreeFactor f2( DecisionTreeFactor f2(
X & Y & Z, "0.2 0.5 0.3 0.6 0.4 0.7 0.25 0.55 0.35 0.65 0.45 0.75"); X & Y & Z, "0.2 0.5 0.3 0.6 0.4 0.7 0.25 0.55 0.35 0.65 0.45 0.75");
DiscreteConditional actual2(1, f2); DiscreteConditional actual2(1, f2);
EXPECT(assert_equal(f2 / *f2.sum(1), *actual2.toFactor(), 1e-9)); DecisionTreeFactor expected2 = f2 / *f2.sum(1);
EXPECT(assert_equal(expected2, static_cast<DecisionTreeFactor>(actual2)));
} }
/* ************************************************************************* */ /* ************************************************************************* */
@ -61,6 +62,7 @@ TEST(DiscreteConditional, constructors_alt_interface) {
r3 += 1.0, 4.0; r3 += 1.0, 4.0;
table += r1, r2, r3; table += r1, r2, r3;
DiscreteConditional actual1(X, {Y}, table); DiscreteConditional actual1(X, {Y}, table);
DecisionTreeFactor f1(X & Y, "0.5 0.4 0.2 0.5 0.6 0.8"); DecisionTreeFactor f1(X & Y, "0.5 0.4 0.2 0.5 0.6 0.8");
DiscreteConditional expected1(1, f1); DiscreteConditional expected1(1, f1);
EXPECT(assert_equal(expected1, actual1, 1e-9)); EXPECT(assert_equal(expected1, actual1, 1e-9));
@ -68,41 +70,141 @@ TEST(DiscreteConditional, constructors_alt_interface) {
DecisionTreeFactor f2( DecisionTreeFactor f2(
X & Y & Z, "0.2 0.5 0.3 0.6 0.4 0.7 0.25 0.55 0.35 0.65 0.45 0.75"); X & Y & Z, "0.2 0.5 0.3 0.6 0.4 0.7 0.25 0.55 0.35 0.65 0.45 0.75");
DiscreteConditional actual2(1, f2); DiscreteConditional actual2(1, f2);
EXPECT(assert_equal(f2 / *f2.sum(1), *actual2.toFactor(), 1e-9)); DecisionTreeFactor expected2 = f2 / *f2.sum(1);
EXPECT(assert_equal(expected2, static_cast<DecisionTreeFactor>(actual2)));
} }
/* ************************************************************************* */ /* ************************************************************************* */
TEST(DiscreteConditional, constructors2) { TEST(DiscreteConditional, constructors2) {
// Declare keys and ordering
DiscreteKey C(0, 2), B(1, 2); DiscreteKey C(0, 2), B(1, 2);
DecisionTreeFactor actual(C & B, "0.8 0.75 0.2 0.25");
Signature signature((C | B) = "4/1 3/1"); Signature signature((C | B) = "4/1 3/1");
DiscreteConditional expected(signature); DiscreteConditional actual(signature);
DecisionTreeFactor::shared_ptr expectedFactor = expected.toFactor();
EXPECT(assert_equal(*expectedFactor, actual)); DecisionTreeFactor expected(C & B, "0.8 0.75 0.2 0.25");
EXPECT(assert_equal(expected, static_cast<DecisionTreeFactor>(actual)));
} }
/* ************************************************************************* */ /* ************************************************************************* */
TEST(DiscreteConditional, constructors3) { TEST(DiscreteConditional, constructors3) {
// Declare keys and ordering
DiscreteKey C(0, 2), B(1, 2), A(2, 2); DiscreteKey C(0, 2), B(1, 2), A(2, 2);
DecisionTreeFactor actual(C & B & A, "0.8 0.5 0.5 0.2 0.2 0.5 0.5 0.8");
Signature signature((C | B, A) = "4/1 1/1 1/1 1/4"); Signature signature((C | B, A) = "4/1 1/1 1/1 1/4");
DiscreteConditional expected(signature); DiscreteConditional actual(signature);
DecisionTreeFactor::shared_ptr expectedFactor = expected.toFactor();
EXPECT(assert_equal(*expectedFactor, actual)); DecisionTreeFactor expected(C & B & A, "0.8 0.5 0.5 0.2 0.2 0.5 0.5 0.8");
EXPECT(assert_equal(expected, static_cast<DecisionTreeFactor>(actual)));
} }
/* ************************************************************************* */ /* ************************************************************************* */
TEST(DiscreteConditional, Combine) { // Check calculation of joint P(A,B)
DiscreteKey A(0, 2), B(1, 2); TEST(DiscreteConditional, Multiply) {
vector<DiscreteConditional::shared_ptr> c; DiscreteKey A(1, 2), B(0, 2);
c.push_back(boost::make_shared<DiscreteConditional>(A | B = "1/2 2/1")); DiscreteConditional conditional(A | B = "1/2 2/1");
c.push_back(boost::make_shared<DiscreteConditional>(B % "1/2")); DiscreteConditional prior(B % "1/2");
DecisionTreeFactor factor(A & B, "0.111111 0.444444 0.222222 0.222222");
DiscreteConditional expected(2, factor); // The expected factor
auto actual = DiscreteConditional::Combine(c.begin(), c.end()); DecisionTreeFactor f(A & B, "1 4 2 2");
EXPECT(assert_equal(expected, *actual, 1e-5)); DiscreteConditional expected(2, f);
// P(A,B) = P(A|B) * P(B) = P(B) * P(A|B)
for (auto&& actual : {prior * conditional, conditional * prior}) {
EXPECT_LONGS_EQUAL(2, actual.nrFrontals());
KeyVector frontals(actual.beginFrontals(), actual.endFrontals());
EXPECT((frontals == KeyVector{0, 1}));
for (auto&& it : actual.enumerate()) {
const DiscreteValues& v = it.first;
EXPECT_DOUBLES_EQUAL(actual(v), conditional(v) * prior(v), 1e-9);
}
// And for good measure:
EXPECT(assert_equal(expected, actual));
}
}
/* ************************************************************************* */
// Check calculation of conditional joint P(A,B|C)
TEST(DiscreteConditional, Multiply2) {
DiscreteKey A(0, 2), B(1, 2), C(2, 2);
DiscreteConditional A_given_B(A | B = "1/3 3/1");
DiscreteConditional B_given_C(B | C = "1/3 3/1");
// P(A,B|C) = P(A|B)P(B|C) = P(B|C)P(A|B)
for (auto&& actual : {A_given_B * B_given_C, B_given_C * A_given_B}) {
EXPECT_LONGS_EQUAL(2, actual.nrFrontals());
EXPECT_LONGS_EQUAL(1, actual.nrParents());
KeyVector frontals(actual.beginFrontals(), actual.endFrontals());
EXPECT((frontals == KeyVector{0, 1}));
for (auto&& it : actual.enumerate()) {
const DiscreteValues& v = it.first;
EXPECT_DOUBLES_EQUAL(actual(v), A_given_B(v) * B_given_C(v), 1e-9);
}
}
}
/* ************************************************************************* */
// Check calculation of conditional joint P(A,B|C), double check keys
TEST(DiscreteConditional, Multiply3) {
DiscreteKey A(1, 2), B(2, 2), C(0, 2); // different keys!!!
DiscreteConditional A_given_B(A | B = "1/3 3/1");
DiscreteConditional B_given_C(B | C = "1/3 3/1");
// P(A,B|C) = P(A|B)P(B|C) = P(B|C)P(A|B)
for (auto&& actual : {A_given_B * B_given_C, B_given_C * A_given_B}) {
EXPECT_LONGS_EQUAL(2, actual.nrFrontals());
EXPECT_LONGS_EQUAL(1, actual.nrParents());
KeyVector frontals(actual.beginFrontals(), actual.endFrontals());
EXPECT((frontals == KeyVector{1, 2}));
for (auto&& it : actual.enumerate()) {
const DiscreteValues& v = it.first;
EXPECT_DOUBLES_EQUAL(actual(v), A_given_B(v) * B_given_C(v), 1e-9);
}
}
}
/* ************************************************************************* */
// Check calculation of conditional joint P(A,B,C|D,E) = P(A,B|D) P(C|D,E)
TEST(DiscreteConditional, Multiply4) {
DiscreteKey A(0, 2), B(1, 2), C(2, 2), D(4, 2), E(3, 2);
DiscreteConditional A_given_B(A | B = "1/3 3/1");
DiscreteConditional B_given_D(B | D = "1/3 3/1");
DiscreteConditional AB_given_D = A_given_B * B_given_D;
DiscreteConditional C_given_DE((C | D, E) = "4/1 1/1 1/1 1/4");
// P(A,B,C|D,E) = P(A,B|D) P(C|D,E) = P(C|D,E) P(A,B|D)
for (auto&& actual : {AB_given_D * C_given_DE, C_given_DE * AB_given_D}) {
EXPECT_LONGS_EQUAL(3, actual.nrFrontals());
EXPECT_LONGS_EQUAL(2, actual.nrParents());
KeyVector frontals(actual.beginFrontals(), actual.endFrontals());
EXPECT((frontals == KeyVector{0, 1, 2}));
KeyVector parents(actual.beginParents(), actual.endParents());
EXPECT((parents == KeyVector{3, 4}));
for (auto&& it : actual.enumerate()) {
const DiscreteValues& v = it.first;
EXPECT_DOUBLES_EQUAL(actual(v), AB_given_D(v) * C_given_DE(v), 1e-9);
}
}
}
/* ************************************************************************* */
// Check calculation of marginals for joint P(A,B)
TEST(DiscreteConditional, marginals) {
DiscreteKey A(1, 2), B(0, 2);
DiscreteConditional conditional(A | B = "1/2 2/1");
DiscreteConditional prior(B % "1/2");
DiscreteConditional pAB = prior * conditional;
DiscreteConditional actualA = pAB.marginal(A.first);
DiscreteConditional pA(A % "5/4");
EXPECT(assert_equal(pA, actualA));
EXPECT_LONGS_EQUAL(1, actualA.nrFrontals());
EXPECT_LONGS_EQUAL(0, actualA.nrParents());
KeyVector frontalsA(actualA.beginFrontals(), actualA.endFrontals());
EXPECT((frontalsA == KeyVector{1}));
DiscreteConditional actualB = pAB.marginal(B.first);
EXPECT(assert_equal(prior, actualB));
EXPECT_LONGS_EQUAL(1, actualB.nrFrontals());
EXPECT_LONGS_EQUAL(0, actualB.nrParents());
KeyVector frontalsB(actualB.beginFrontals(), actualB.endFrontals());
EXPECT((frontalsB == KeyVector{0}));
} }
/* ************************************************************************* */ /* ************************************************************************* */

View File

@ -11,47 +11,66 @@
/* /*
* @file testDiscretePrior.cpp * @file testDiscretePrior.cpp
* @brief unit tests for DiscretePrior * @brief unit tests for DiscreteDistribution
* @author Frank dellaert * @author Frank dellaert
* @date December 2021 * @date December 2021
*/ */
#include <CppUnitLite/TestHarness.h> #include <CppUnitLite/TestHarness.h>
#include <gtsam/discrete/DiscretePrior.h> #include <gtsam/discrete/DiscreteDistribution.h>
#include <gtsam/discrete/Signature.h> #include <gtsam/discrete/Signature.h>
using namespace std;
using namespace gtsam; using namespace gtsam;
static const DiscreteKey X(0, 2); static const DiscreteKey X(0, 2);
/* ************************************************************************* */ /* ************************************************************************* */
TEST(DiscretePrior, constructors) { TEST(DiscreteDistribution, constructors) {
DiscretePrior actual(X % "2/3"); DecisionTreeFactor f(X, "0.4 0.6");
DiscreteDistribution expected(f);
DiscreteDistribution actual(X % "2/3");
EXPECT_LONGS_EQUAL(1, actual.nrFrontals()); EXPECT_LONGS_EQUAL(1, actual.nrFrontals());
EXPECT_LONGS_EQUAL(0, actual.nrParents()); EXPECT_LONGS_EQUAL(0, actual.nrParents());
DecisionTreeFactor f(X, "0.4 0.6");
DiscretePrior expected(f);
EXPECT(assert_equal(expected, actual, 1e-9)); EXPECT(assert_equal(expected, actual, 1e-9));
const std::vector<double> pmf{0.4, 0.6};
DiscreteDistribution actual2(X, pmf);
EXPECT_LONGS_EQUAL(1, actual2.nrFrontals());
EXPECT_LONGS_EQUAL(0, actual2.nrParents());
EXPECT(assert_equal(expected, actual2, 1e-9));
} }
/* ************************************************************************* */ /* ************************************************************************* */
TEST(DiscretePrior, operator) { TEST(DiscreteDistribution, Multiply) {
DiscretePrior prior(X % "2/3"); DiscreteKey A(0, 2), B(1, 2);
DiscreteConditional conditional(A | B = "1/2 2/1");
DiscreteDistribution prior(B, "1/2");
DiscreteConditional actual = prior * conditional; // P(A|B) * P(B)
EXPECT_LONGS_EQUAL(2, actual.nrFrontals()); // = P(A,B)
DecisionTreeFactor factor(A & B, "1 4 2 2");
DiscreteConditional expected(2, factor);
EXPECT(assert_equal(expected, actual, 1e-5));
}
/* ************************************************************************* */
TEST(DiscreteDistribution, operator) {
DiscreteDistribution prior(X % "2/3");
EXPECT_DOUBLES_EQUAL(prior(0), 0.4, 1e-9); EXPECT_DOUBLES_EQUAL(prior(0), 0.4, 1e-9);
EXPECT_DOUBLES_EQUAL(prior(1), 0.6, 1e-9); EXPECT_DOUBLES_EQUAL(prior(1), 0.6, 1e-9);
} }
/* ************************************************************************* */ /* ************************************************************************* */
TEST(DiscretePrior, pmf) { TEST(DiscreteDistribution, pmf) {
DiscretePrior prior(X % "2/3"); DiscreteDistribution prior(X % "2/3");
vector<double> expected {0.4, 0.6}; std::vector<double> expected{0.4, 0.6};
EXPECT(prior.pmf() == expected); EXPECT(prior.pmf() == expected);
} }
/* ************************************************************************* */ /* ************************************************************************* */
TEST(DiscretePrior, sample) { TEST(DiscreteDistribution, sample) {
DiscretePrior prior(X % "2/3"); DiscreteDistribution prior(X % "2/3");
prior.sample(); prior.sample();
} }

View File

@ -154,7 +154,8 @@ namespace gtsam {
/** Unnormalized probability. O(n) */ /** Unnormalized probability. O(n) */
double probPrime(const VectorValues& c) const { double probPrime(const VectorValues& c) const {
return exp(-0.5 * error(c)); // NOTE the 0.5 constant is handled by the factor error.
return exp(-error(c));
} }
/** /**

View File

@ -426,6 +426,7 @@ TEST(GaussianFactorGraph, hessianDiagonal) {
EXPECT(assert_equal(expected, actual)); EXPECT(assert_equal(expected, actual));
} }
/* ************************************************************************* */
TEST(GaussianFactorGraph, DenseSolve) { TEST(GaussianFactorGraph, DenseSolve) {
GaussianFactorGraph fg = createSimpleGaussianFactorGraph(); GaussianFactorGraph fg = createSimpleGaussianFactorGraph();
VectorValues expected = fg.optimize(); VectorValues expected = fg.optimize();
@ -433,6 +434,28 @@ TEST(GaussianFactorGraph, DenseSolve) {
EXPECT(assert_equal(expected, actual)); EXPECT(assert_equal(expected, actual));
} }
/* ************************************************************************* */
TEST(GaussianFactorGraph, ProbPrime) {
GaussianFactorGraph gfg;
gfg.emplace_shared<JacobianFactor>(1, I_1x1, Z_1x1,
noiseModel::Isotropic::Sigma(1, 1.0));
VectorValues values;
values.insert(1, I_1x1);
// We are testing the normal distribution PDF where info matrix Σ = 1,
// mean mu = 0 and x = 1.
// Therefore factor squared error: y = 0.5 * (Σ*x - mu)^2 =
// 0.5 * (1.0 - 0)^2 = 0.5
// NOTE the 0.5 constant is a part of the factor error.
EXPECT_DOUBLES_EQUAL(0.5, gfg.error(values), 1e-12);
// The gaussian PDF value is: exp^(-0.5 * (Σ*x - mu)^2) / sqrt(2 * PI)
// Ignore the denominator and we get: exp^(-0.5 * (1.0)^2) = exp^(-0.5)
double expected = exp(-0.5);
EXPECT_DOUBLES_EQUAL(expected, gfg.probPrime(values), 1e-12);
}
/* ************************************************************************* */ /* ************************************************************************* */
int main() { int main() {
TestResult tr; TestResult tr;

View File

@ -45,7 +45,8 @@ template class FactorGraph<NonlinearFactor>;
/* ************************************************************************* */ /* ************************************************************************* */
double NonlinearFactorGraph::probPrime(const Values& values) const { double NonlinearFactorGraph::probPrime(const Values& values) const {
return exp(-0.5 * error(values)); // NOTE the 0.5 constant is handled by the factor error.
return exp(-error(values));
} }
/* ************************************************************************* */ /* ************************************************************************* */
@ -54,9 +55,14 @@ void NonlinearFactorGraph::print(const std::string& str, const KeyFormatter& key
for (size_t i = 0; i < factors_.size(); i++) { for (size_t i = 0; i < factors_.size(); i++) {
stringstream ss; stringstream ss;
ss << "Factor " << i << ": "; ss << "Factor " << i << ": ";
if (factors_[i] != nullptr) factors_[i]->print(ss.str(), keyFormatter); if (factors_[i] != nullptr) {
cout << endl; factors_[i]->print(ss.str(), keyFormatter);
cout << "\n";
} else {
cout << ss.str() << "nullptr\n";
}
} }
std::cout.flush();
} }
/* ************************************************************************* */ /* ************************************************************************* */
@ -80,8 +86,9 @@ void NonlinearFactorGraph::printErrors(const Values& values, const std::string&
factor->print(ss.str(), keyFormatter); factor->print(ss.str(), keyFormatter);
cout << "error = " << errorValue << "\n"; cout << "error = " << errorValue << "\n";
} }
cout << endl; // only one "endl" at end might be faster, \n for each factor cout << "\n";
} }
std::cout.flush();
} }
/* ************************************************************************* */ /* ************************************************************************* */

View File

@ -90,7 +90,7 @@ namespace gtsam {
/** Test equality */ /** Test equality */
bool equals(const NonlinearFactorGraph& other, double tol = 1e-9) const; bool equals(const NonlinearFactorGraph& other, double tol = 1e-9) const;
/** unnormalized error, \f$ 0.5 \sum_i (h_i(X_i)-z)^2/\sigma^2 \f$ in the most common case */ /** unnormalized error, \f$ \sum_i 0.5 (h_i(X_i)-z)^2 / \sigma^2 \f$ in the most common case */
double error(const Values& values) const; double error(const Values& values) const;
/** Unnormalized probability. O(n) */ /** Unnormalized probability. O(n) */

View File

@ -11,7 +11,7 @@ namespace gtsam {
// ###### // ######
#include <gtsam/slam/BetweenFactor.h> #include <gtsam/slam/BetweenFactor.h>
template <T = {Vector, gtsam::Point2, gtsam::Point3, gtsam::Rot2, gtsam::SO3, template <T = {double, Vector, gtsam::Point2, gtsam::Point3, gtsam::Rot2, gtsam::SO3,
gtsam::SO4, gtsam::Rot3, gtsam::Pose2, gtsam::Pose3, gtsam::SO4, gtsam::Rot3, gtsam::Pose2, gtsam::Pose3,
gtsam::imuBias::ConstantBias}> gtsam::imuBias::ConstantBias}>
virtual class BetweenFactor : gtsam::NoiseModelFactor { virtual class BetweenFactor : gtsam::NoiseModelFactor {

View File

@ -13,7 +13,7 @@ Author: Frank Dellaert
import unittest import unittest
from gtsam import DecisionTreeFactor, DecisionTreeFactor, DiscreteKeys from gtsam import DecisionTreeFactor, DiscreteValues, DiscreteDistribution, Ordering
from gtsam.utils.test_case import GtsamTestCase from gtsam.utils.test_case import GtsamTestCase
@ -21,15 +21,59 @@ class TestDecisionTreeFactor(GtsamTestCase):
"""Tests for DecisionTreeFactors.""" """Tests for DecisionTreeFactors."""
def setUp(self): def setUp(self):
A = (12, 3) self.A = (12, 3)
B = (5, 2) self.B = (5, 2)
self.factor = DecisionTreeFactor([A, B], "1 2 3 4 5 6") self.factor = DecisionTreeFactor([self.A, self.B], "1 2 3 4 5 6")
def test_enumerate(self): def test_enumerate(self):
actual = self.factor.enumerate() actual = self.factor.enumerate()
_, values = zip(*actual) _, values = zip(*actual)
self.assertEqual(list(values), [1.0, 2.0, 3.0, 4.0, 5.0, 6.0]) self.assertEqual(list(values), [1.0, 2.0, 3.0, 4.0, 5.0, 6.0])
def test_multiplication(self):
"""Test whether multiplication works with overloading."""
v0 = (0, 2)
v1 = (1, 2)
v2 = (2, 2)
# Multiply with a DiscreteDistribution, i.e., Bayes Law!
prior = DiscreteDistribution(v1, [1, 3])
f1 = DecisionTreeFactor([v0, v1], "1 2 3 4")
expected = DecisionTreeFactor([v0, v1], "0.25 1.5 0.75 3")
self.gtsamAssertEquals(DecisionTreeFactor(prior) * f1, expected)
self.gtsamAssertEquals(f1 * prior, expected)
# Multiply two factors
f2 = DecisionTreeFactor([v1, v2], "5 6 7 8")
actual = f1 * f2
expected2 = DecisionTreeFactor([v0, v1, v2], "5 6 14 16 15 18 28 32")
self.gtsamAssertEquals(actual, expected2)
def test_methods(self):
"""Test whether we can call methods in python."""
# double operator()(const DiscreteValues& values) const;
values = DiscreteValues()
values[self.A[0]] = 0
values[self.B[0]] = 0
self.assertIsInstance(self.factor(values), float)
# size_t cardinality(Key j) const;
self.assertIsInstance(self.factor.cardinality(self.A[0]), int)
# DecisionTreeFactor operator/(const DecisionTreeFactor& f) const;
self.assertIsInstance(self.factor / self.factor, DecisionTreeFactor)
# DecisionTreeFactor* sum(size_t nrFrontals) const;
self.assertIsInstance(self.factor.sum(1), DecisionTreeFactor)
# DecisionTreeFactor* sum(const Ordering& keys) const;
ordering = Ordering()
ordering.push_back(self.A[0])
self.assertIsInstance(self.factor.sum(ordering), DecisionTreeFactor)
# DecisionTreeFactor* max(size_t nrFrontals) const;
self.assertIsInstance(self.factor.max(1), DecisionTreeFactor)
def test_markdown(self): def test_markdown(self):
"""Test whether the _repr_markdown_ method.""" """Test whether the _repr_markdown_ method."""

View File

@ -14,7 +14,7 @@ Author: Frank Dellaert
import unittest import unittest
from gtsam import (DiscreteBayesNet, DiscreteConditional, DiscreteFactorGraph, from gtsam import (DiscreteBayesNet, DiscreteConditional, DiscreteFactorGraph,
DiscreteKeys, DiscretePrior, DiscreteValues, Ordering) DiscreteKeys, DiscreteDistribution, DiscreteValues, Ordering)
from gtsam.utils.test_case import GtsamTestCase from gtsam.utils.test_case import GtsamTestCase
@ -74,7 +74,7 @@ class TestDiscreteBayesNet(GtsamTestCase):
for j in range(8): for j in range(8):
ordering.push_back(j) ordering.push_back(j)
chordal = fg.eliminateSequential(ordering) chordal = fg.eliminateSequential(ordering)
expected2 = DiscretePrior(Bronchitis, "11/9") expected2 = DiscreteDistribution(Bronchitis, "11/9")
self.gtsamAssertEquals(chordal.at(7), expected2) self.gtsamAssertEquals(chordal.at(7), expected2)
# solve # solve

View File

@ -16,6 +16,13 @@ import unittest
from gtsam import DecisionTreeFactor, DiscreteConditional, DiscreteKeys from gtsam import DecisionTreeFactor, DiscreteConditional, DiscreteKeys
from gtsam.utils.test_case import GtsamTestCase from gtsam.utils.test_case import GtsamTestCase
# Some DiscreteKeys for binary variables:
A = 0, 2
B = 1, 2
C = 2, 2
D = 4, 2
E = 3, 2
class TestDiscreteConditional(GtsamTestCase): class TestDiscreteConditional(GtsamTestCase):
"""Tests for Discrete Conditionals.""" """Tests for Discrete Conditionals."""
@ -36,6 +43,53 @@ class TestDiscreteConditional(GtsamTestCase):
actual = conditional.sample(2) actual = conditional.sample(2)
self.assertIsInstance(actual, int) self.assertIsInstance(actual, int)
def test_multiply(self):
"""Check calculation of joint P(A,B)"""
conditional = DiscreteConditional(A, [B], "1/2 2/1")
prior = DiscreteConditional(B, "1/2")
# P(A,B) = P(A|B) * P(B) = P(B) * P(A|B)
for actual in [prior * conditional, conditional * prior]:
self.assertEqual(2, actual.nrFrontals())
for v, value in actual.enumerate():
self.assertAlmostEqual(actual(v), conditional(v) * prior(v))
def test_multiply2(self):
"""Check calculation of conditional joint P(A,B|C)"""
A_given_B = DiscreteConditional(A, [B], "1/3 3/1")
B_given_C = DiscreteConditional(B, [C], "1/3 3/1")
# P(A,B|C) = P(A|B)P(B|C) = P(B|C)P(A|B)
for actual in [A_given_B * B_given_C, B_given_C * A_given_B]:
self.assertEqual(2, actual.nrFrontals())
self.assertEqual(1, actual.nrParents())
for v, value in actual.enumerate():
self.assertAlmostEqual(actual(v), A_given_B(v) * B_given_C(v))
def test_multiply4(self):
"""Check calculation of joint P(A,B,C|D,E) = P(A,B|D) P(C|D,E)"""
A_given_B = DiscreteConditional(A, [B], "1/3 3/1")
B_given_D = DiscreteConditional(B, [D], "1/3 3/1")
AB_given_D = A_given_B * B_given_D
C_given_DE = DiscreteConditional(C, [D, E], "4/1 1/1 1/1 1/4")
# P(A,B,C|D,E) = P(A,B|D) P(C|D,E) = P(C|D,E) P(A,B|D)
for actual in [AB_given_D * C_given_DE, C_given_DE * AB_given_D]:
self.assertEqual(3, actual.nrFrontals())
self.assertEqual(2, actual.nrParents())
for v, value in actual.enumerate():
self.assertAlmostEqual(
actual(v), AB_given_D(v) * C_given_DE(v))
def test_marginals(self):
conditional = DiscreteConditional(A, [B], "1/2 2/1")
prior = DiscreteConditional(B, "1/2")
pAB = prior * conditional
self.gtsamAssertEquals(prior, pAB.marginal(B[0]))
pA = DiscreteConditional(A, "5/4")
self.gtsamAssertEquals(pA, pAB.marginal(A[0]))
def test_markdown(self): def test_markdown(self):
"""Test whether the _repr_markdown_ method.""" """Test whether the _repr_markdown_ method."""
@ -48,8 +102,7 @@ class TestDiscreteConditional(GtsamTestCase):
conditional = DiscreteConditional(A, parents, conditional = DiscreteConditional(A, parents,
"0/1 1/3 1/1 3/1 0/1 1/0") "0/1 1/3 1/1 3/1 0/1 1/0")
expected = \ expected = " *P(A|B,C):*\n\n" \
" *P(A|B,C):*\n\n" \
"|*B*|*C*|0|1|\n" \ "|*B*|*C*|0|1|\n" \
"|:-:|:-:|:-:|:-:|\n" \ "|:-:|:-:|:-:|:-:|\n" \
"|0|0|0|1|\n" \ "|0|0|0|1|\n" \

View File

@ -14,7 +14,7 @@ Author: Frank Dellaert
import unittest import unittest
import numpy as np import numpy as np
from gtsam import DecisionTreeFactor, DiscreteKeys, DiscretePrior from gtsam import DecisionTreeFactor, DiscreteKeys, DiscreteDistribution
from gtsam.utils.test_case import GtsamTestCase from gtsam.utils.test_case import GtsamTestCase
X = 0, 2 X = 0, 2
@ -25,32 +25,36 @@ class TestDiscretePrior(GtsamTestCase):
def test_constructor(self): def test_constructor(self):
"""Test various constructors.""" """Test various constructors."""
actual = DiscretePrior(X, "2/3")
keys = DiscreteKeys() keys = DiscreteKeys()
keys.push_back(X) keys.push_back(X)
f = DecisionTreeFactor(keys, "0.4 0.6") f = DecisionTreeFactor(keys, "0.4 0.6")
expected = DiscretePrior(f) expected = DiscreteDistribution(f)
actual = DiscreteDistribution(X, "2/3")
self.gtsamAssertEquals(actual, expected) self.gtsamAssertEquals(actual, expected)
actual2 = DiscreteDistribution(X, [0.4, 0.6])
self.gtsamAssertEquals(actual2, expected)
def test_operator(self): def test_operator(self):
prior = DiscretePrior(X, "2/3") prior = DiscreteDistribution(X, "2/3")
self.assertAlmostEqual(prior(0), 0.4) self.assertAlmostEqual(prior(0), 0.4)
self.assertAlmostEqual(prior(1), 0.6) self.assertAlmostEqual(prior(1), 0.6)
def test_pmf(self): def test_pmf(self):
prior = DiscretePrior(X, "2/3") prior = DiscreteDistribution(X, "2/3")
expected = np.array([0.4, 0.6]) expected = np.array([0.4, 0.6])
np.testing.assert_allclose(expected, prior.pmf()) np.testing.assert_allclose(expected, prior.pmf())
def test_sample(self): def test_sample(self):
prior = DiscretePrior(X, "2/3") prior = DiscreteDistribution(X, "2/3")
actual = prior.sample() actual = prior.sample()
self.assertIsInstance(actual, int) self.assertIsInstance(actual, int)
def test_markdown(self): def test_markdown(self):
"""Test the _repr_markdown_ method.""" """Test the _repr_markdown_ method."""
prior = DiscretePrior(X, "2/3") prior = DiscreteDistribution(X, "2/3")
expected = " *P(0):*\n\n" \ expected = " *P(0):*\n\n" \
"|0|value|\n" \ "|0|value|\n" \
"|:-:|:-:|\n" \ "|:-:|:-:|\n" \

View File

@ -107,6 +107,24 @@ TEST( NonlinearFactorGraph, probPrime )
DOUBLES_EQUAL(expected,actual,0); DOUBLES_EQUAL(expected,actual,0);
} }
/* ************************************************************************* */
TEST(NonlinearFactorGraph, ProbPrime2) {
NonlinearFactorGraph fg;
fg.emplace_shared<PriorFactor<double>>(1, 0.0,
noiseModel::Isotropic::Sigma(1, 1.0));
Values values;
values.insert(1, 1.0);
// The prior factor squared error is: 0.5.
EXPECT_DOUBLES_EQUAL(0.5, fg.error(values), 1e-12);
// The probability value is: exp^(-factor_error) / sqrt(2 * PI)
// Ignore the denominator and we get: exp^(-factor_error) = exp^(-0.5)
double expected = exp(-0.5);
EXPECT_DOUBLES_EQUAL(expected, fg.probPrime(values), 1e-12);
}
/* ************************************************************************* */ /* ************************************************************************* */
TEST( NonlinearFactorGraph, linearize ) TEST( NonlinearFactorGraph, linearize )
{ {