correct formatting
parent
c4644a0d61
commit
7699f04820
|
@ -35,7 +35,7 @@ using symbol_shorthand::L;
|
|||
static double tol = 1e-7;
|
||||
|
||||
/* ************************************************************************* */
|
||||
template <class BaseOptimizerParameters>
|
||||
template<class BaseOptimizerParameters>
|
||||
class GncParams {
|
||||
public:
|
||||
/** Verbosity levels */
|
||||
|
@ -50,11 +50,14 @@ public:
|
|||
|
||||
using BaseOptimizer = GaussNewtonOptimizer; // BaseOptimizerParameters::OptimizerType;
|
||||
|
||||
GncParams(const BaseOptimizerParameters& baseOptimizerParams):
|
||||
baseOptimizerParams(baseOptimizerParams) {}
|
||||
GncParams(const BaseOptimizerParameters& baseOptimizerParams) :
|
||||
baseOptimizerParams(baseOptimizerParams) {
|
||||
}
|
||||
|
||||
// default constructor
|
||||
GncParams(): baseOptimizerParams() {}
|
||||
GncParams() :
|
||||
baseOptimizerParams() {
|
||||
}
|
||||
|
||||
BaseOptimizerParameters baseOptimizerParams;
|
||||
/// any other specific GNC parameters:
|
||||
|
@ -62,29 +65,36 @@ public:
|
|||
size_t maxIterations = 100; /* maximum number of iterations*/
|
||||
double barcSq = 1.0; /* a factor is considered an inlier if factor.error() < barcSq. Note that factor.error() whitens by the covariance*/
|
||||
double muStep = 1.4; /* multiplicative factor to reduce/increase the mu in gnc */
|
||||
VerbosityGNC verbosityGNC = SILENT; /* verbosity level */
|
||||
VerbosityGNC verbosityGNC = SILENT; /* verbosity level */
|
||||
std::vector<size_t> knownInliers = std::vector<size_t>(); /* slots in the factor graph corresponding to measurements that we know are inliers */
|
||||
|
||||
void setLossType(const RobustLossType type){ lossType = type; }
|
||||
void setMaxIterations(const size_t maxIter){
|
||||
void setLossType(const RobustLossType type) {
|
||||
lossType = type;
|
||||
}
|
||||
void setMaxIterations(const size_t maxIter) {
|
||||
std::cout
|
||||
<< "setMaxIterations: changing the max nr of iters might lead to less accurate solutions and is not recommended! "
|
||||
<< std::endl;
|
||||
<< "setMaxIterations: changing the max nr of iters might lead to less accurate solutions and is not recommended! "
|
||||
<< std::endl;
|
||||
maxIterations = maxIter;
|
||||
}
|
||||
void setInlierThreshold(const double inth){ barcSq = inth; }
|
||||
void setMuStep(const double step){ muStep = step; }
|
||||
void setVerbosityGNC(const VerbosityGNC verbosity) { verbosityGNC = verbosity; }
|
||||
void setInlierThreshold(const double inth) {
|
||||
barcSq = inth;
|
||||
}
|
||||
void setMuStep(const double step) {
|
||||
muStep = step;
|
||||
}
|
||||
void setVerbosityGNC(const VerbosityGNC verbosity) {
|
||||
verbosityGNC = verbosity;
|
||||
}
|
||||
void setKnownInliers(const std::vector<size_t> knownIn) {
|
||||
for(size_t i=0; i<knownIn.size(); i++)
|
||||
for (size_t i = 0; i < knownIn.size(); i++)
|
||||
knownInliers.push_back(knownIn[i]);
|
||||
}
|
||||
|
||||
/// equals
|
||||
bool equals(const GncParams& other, double tol = 1e-9) const {
|
||||
return baseOptimizerParams.equals(other.baseOptimizerParams)
|
||||
&& lossType == other.lossType
|
||||
&& maxIterations == other.maxIterations
|
||||
&& lossType == other.lossType && maxIterations == other.maxIterations
|
||||
&& std::fabs(barcSq - other.barcSq) <= tol
|
||||
&& std::fabs(muStep - other.muStep) <= tol
|
||||
&& verbosityGNC == other.verbosityGNC
|
||||
|
@ -94,17 +104,18 @@ public:
|
|||
/// print function
|
||||
void print(const std::string& str) const {
|
||||
std::cout << str << "\n";
|
||||
switch(lossType) {
|
||||
case GM: std::cout << "lossType: Geman McClure" << "\n"; break;
|
||||
switch (lossType) {
|
||||
case GM:
|
||||
std::cout << "lossType: Geman McClure" << "\n";
|
||||
break;
|
||||
default:
|
||||
throw std::runtime_error(
|
||||
"GncParams::print: unknown loss type.");
|
||||
throw std::runtime_error("GncParams::print: unknown loss type.");
|
||||
}
|
||||
std::cout << "maxIterations: " << maxIterations << "\n";
|
||||
std::cout << "barcSq: " << barcSq << "\n";
|
||||
std::cout << "muStep: " << muStep << "\n";
|
||||
std::cout << "verbosityGNC: " << verbosityGNC << "\n";
|
||||
for(size_t i=0; i< knownInliers.size(); i++)
|
||||
for (size_t i = 0; i < knownInliers.size(); i++)
|
||||
std::cout << "knownInliers: " << knownInliers[i] << "\n";
|
||||
baseOptimizerParams.print(str);
|
||||
}
|
||||
|
@ -123,21 +134,24 @@ private:
|
|||
Vector weights_; // this could be a local variable in optimize, but it is useful to make it accessible from outside
|
||||
|
||||
public:
|
||||
GncOptimizer(const NonlinearFactorGraph& graph,
|
||||
const Values& initialValues, const GncParameters& params = GncParameters()) :
|
||||
state_(initialValues), params_(params) {
|
||||
GncOptimizer(const NonlinearFactorGraph& graph, const Values& initialValues,
|
||||
const GncParameters& params = GncParameters()) :
|
||||
state_(initialValues), params_(params) {
|
||||
|
||||
// make sure all noiseModels are Gaussian or convert to Gaussian
|
||||
nfg_.resize(graph.size());
|
||||
for (size_t i = 0; i < graph.size(); i++) {
|
||||
if(graph[i]){
|
||||
NoiseModelFactor::shared_ptr factor = boost::dynamic_pointer_cast<NoiseModelFactor>(graph[i]);
|
||||
noiseModel::Robust::shared_ptr robust = boost::dynamic_pointer_cast<noiseModel::Robust>(factor->noiseModel());
|
||||
if(robust){ // if the factor has a robust loss, we have to change it:
|
||||
if (graph[i]) {
|
||||
NoiseModelFactor::shared_ptr factor = boost::dynamic_pointer_cast<
|
||||
NoiseModelFactor>(graph[i]);
|
||||
noiseModel::Robust::shared_ptr robust = boost::dynamic_pointer_cast<
|
||||
noiseModel::Robust>(factor->noiseModel());
|
||||
if (robust) { // if the factor has a robust loss, we have to change it:
|
||||
SharedNoiseModel gaussianNoise = robust->noise();
|
||||
NoiseModelFactor::shared_ptr gaussianFactor = factor->cloneWithNewNoiseModel(gaussianNoise);
|
||||
NoiseModelFactor::shared_ptr gaussianFactor =
|
||||
factor->cloneWithNewNoiseModel(gaussianNoise);
|
||||
nfg_[i] = gaussianFactor;
|
||||
} else{ // else we directly push it back
|
||||
} else { // else we directly push it back
|
||||
nfg_[i] = factor;
|
||||
}
|
||||
}
|
||||
|
@ -145,22 +159,30 @@ public:
|
|||
}
|
||||
|
||||
/// getter functions
|
||||
NonlinearFactorGraph getFactors() const { return NonlinearFactorGraph(nfg_); }
|
||||
Values getState() const { return Values(state_); }
|
||||
GncParameters getParams() const { return GncParameters(params_); }
|
||||
Vector getWeights() const {return weights_;}
|
||||
NonlinearFactorGraph getFactors() const {
|
||||
return NonlinearFactorGraph(nfg_);
|
||||
}
|
||||
Values getState() const {
|
||||
return Values(state_);
|
||||
}
|
||||
GncParameters getParams() const {
|
||||
return GncParameters(params_);
|
||||
}
|
||||
Vector getWeights() const {
|
||||
return weights_;
|
||||
}
|
||||
|
||||
/// implement GNC main loop, including graduating nonconvexity with mu
|
||||
Values optimize() {
|
||||
// start by assuming all measurements are inliers
|
||||
weights_ = Vector::Ones(nfg_.size());
|
||||
GaussNewtonOptimizer baseOptimizer(nfg_,state_);
|
||||
GaussNewtonOptimizer baseOptimizer(nfg_, state_);
|
||||
Values result = baseOptimizer.optimize();
|
||||
double mu = initializeMu();
|
||||
for(size_t iter=0; iter < params_.maxIterations; iter++){
|
||||
for (size_t iter = 0; iter < params_.maxIterations; iter++) {
|
||||
|
||||
// display info
|
||||
if (params_.verbosityGNC >= GncParameters::VerbosityGNC::VALUES){
|
||||
if (params_.verbosityGNC >= GncParameters::VerbosityGNC::VALUES) {
|
||||
result.print("result\n");
|
||||
std::cout << "mu: " << mu << std::endl;
|
||||
std::cout << "weights: " << weights_ << std::endl;
|
||||
|
@ -174,9 +196,9 @@ public:
|
|||
result = baseOptimizer_iter.optimize();
|
||||
|
||||
// stopping condition
|
||||
if( checkMuConvergence(mu) ) {
|
||||
if (checkMuConvergence(mu)) {
|
||||
// display info
|
||||
if (params_.verbosityGNC >= GncParameters::VerbosityGNC::SUMMARY){
|
||||
if (params_.verbosityGNC >= GncParameters::VerbosityGNC::SUMMARY) {
|
||||
std::cout << "final iterations: " << iter << std::endl;
|
||||
std::cout << "final mu: " << mu << std::endl;
|
||||
std::cout << "final weights: " << weights_ << std::endl;
|
||||
|
@ -195,14 +217,14 @@ public:
|
|||
// compute largest error across all factors
|
||||
double rmax_sq = 0.0;
|
||||
for (size_t i = 0; i < nfg_.size(); i++) {
|
||||
if(nfg_[i]){
|
||||
if (nfg_[i]) {
|
||||
rmax_sq = std::max(rmax_sq, nfg_[i]->error(state_));
|
||||
}
|
||||
}
|
||||
// set initial mu
|
||||
switch(params_.lossType) {
|
||||
switch (params_.lossType) {
|
||||
case GncParameters::GM:
|
||||
return 2*rmax_sq / params_.barcSq; // initial mu
|
||||
return 2 * rmax_sq / params_.barcSq; // initial mu
|
||||
default:
|
||||
throw std::runtime_error(
|
||||
"GncOptimizer::initializeMu: called with unknown loss type.");
|
||||
|
@ -211,9 +233,9 @@ public:
|
|||
|
||||
/// update the gnc parameter mu to gradually increase nonconvexity
|
||||
double updateMu(const double mu) const {
|
||||
switch(params_.lossType) {
|
||||
switch (params_.lossType) {
|
||||
case GncParameters::GM:
|
||||
return std::max(1.0 , mu / params_.muStep); // reduce mu, but saturate at 1
|
||||
return std::max(1.0, mu / params_.muStep); // reduce mu, but saturate at 1
|
||||
default:
|
||||
throw std::runtime_error(
|
||||
"GncOptimizer::updateMu: called with unknown loss type.");
|
||||
|
@ -222,7 +244,7 @@ public:
|
|||
|
||||
/// check if we have reached the value of mu for which the surrogate loss matches the original loss
|
||||
bool checkMuConvergence(const double mu) const {
|
||||
switch(params_.lossType) {
|
||||
switch (params_.lossType) {
|
||||
case GncParameters::GM:
|
||||
return std::fabs(mu - 1.0) < 1e-9; // mu=1 recovers the original GM function
|
||||
default:
|
||||
|
@ -237,16 +259,20 @@ public:
|
|||
NonlinearFactorGraph newGraph;
|
||||
newGraph.resize(nfg_.size());
|
||||
for (size_t i = 0; i < nfg_.size(); i++) {
|
||||
if(nfg_[i]){
|
||||
NoiseModelFactor::shared_ptr factor = boost::dynamic_pointer_cast<NoiseModelFactor>(nfg_[i]);
|
||||
noiseModel::Gaussian::shared_ptr noiseModel = boost::dynamic_pointer_cast<noiseModel::Gaussian>(factor->noiseModel());
|
||||
if(noiseModel){
|
||||
if (nfg_[i]) {
|
||||
NoiseModelFactor::shared_ptr factor = boost::dynamic_pointer_cast<
|
||||
NoiseModelFactor>(nfg_[i]);
|
||||
noiseModel::Gaussian::shared_ptr noiseModel =
|
||||
boost::dynamic_pointer_cast<noiseModel::Gaussian>(
|
||||
factor->noiseModel());
|
||||
if (noiseModel) {
|
||||
Matrix newInfo = weights[i] * noiseModel->information();
|
||||
SharedNoiseModel newNoiseModel = noiseModel::Gaussian::Information(newInfo);
|
||||
SharedNoiseModel newNoiseModel = noiseModel::Gaussian::Information(
|
||||
newInfo);
|
||||
newGraph[i] = factor->cloneWithNewNoiseModel(newNoiseModel);
|
||||
}else{
|
||||
} else {
|
||||
throw std::runtime_error(
|
||||
"GncOptimizer::makeWeightedGraph: unexpected non-Gaussian noise model.");
|
||||
"GncOptimizer::makeWeightedGraph: unexpected non-Gaussian noise model.");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -254,24 +280,27 @@ public:
|
|||
}
|
||||
|
||||
/// calculate gnc weights
|
||||
Vector calculateWeights(const Values currentEstimate, const double mu){
|
||||
Vector calculateWeights(const Values currentEstimate, const double mu) {
|
||||
Vector weights = Vector::Ones(nfg_.size());
|
||||
|
||||
// do not update the weights that the user has decided are known inliers
|
||||
std::vector<size_t> allWeights;
|
||||
for (size_t k = 0; k < nfg_.size(); k++) {allWeights.push_back(k);}
|
||||
for (size_t k = 0; k < nfg_.size(); k++) {
|
||||
allWeights.push_back(k);
|
||||
}
|
||||
std::vector<size_t> unknownWeights;
|
||||
std::set_difference(allWeights.begin(), allWeights.end(),
|
||||
params_.knownInliers.begin(), params_.knownInliers.end(),
|
||||
std::inserter(unknownWeights, unknownWeights.begin()));
|
||||
|
||||
// update weights of known inlier/outlier measurements
|
||||
switch(params_.lossType) {
|
||||
switch (params_.lossType) {
|
||||
case GncParameters::GM: // use eq (12) in GNC paper
|
||||
for (size_t k : unknownWeights) {
|
||||
if(nfg_[k]){
|
||||
if (nfg_[k]) {
|
||||
double u2_k = nfg_[k]->error(currentEstimate); // squared (and whitened) residual
|
||||
weights[k] = std::pow( ( mu*params_.barcSq )/( u2_k + mu*params_.barcSq ) , 2);
|
||||
weights[k] = std::pow(
|
||||
(mu * params_.barcSq) / (u2_k + mu * params_.barcSq), 2);
|
||||
}
|
||||
}
|
||||
return weights;
|
||||
|
@ -284,7 +313,6 @@ public:
|
|||
|
||||
/* ************************************************************************* */
|
||||
TEST(GncOptimizer, gncParamsConstructor) {
|
||||
|
||||
//check params are correctly parsed
|
||||
LevenbergMarquardtParams lmParams;
|
||||
GncParams<LevenbergMarquardtParams> gncParams1(lmParams);
|
||||
|
@ -296,7 +324,7 @@ TEST(GncOptimizer, gncParamsConstructor) {
|
|||
|
||||
// and check params become different if we change lmParams
|
||||
lmParams.setVerbosity("DELTA");
|
||||
CHECK(! lmParams.equals(gncParams1.baseOptimizerParams));
|
||||
CHECK(!lmParams.equals(gncParams1.baseOptimizerParams));
|
||||
|
||||
// and same for GN
|
||||
GaussNewtonParams gnParams;
|
||||
|
@ -310,7 +338,7 @@ TEST(GncOptimizer, gncParamsConstructor) {
|
|||
// change something at the gncParams level
|
||||
GncParams<GaussNewtonParams> gncParams2c(gncParams2b);
|
||||
gncParams2c.setLossType(GncParams<GaussNewtonParams>::RobustLossType::TLS);
|
||||
CHECK(! gncParams2c.equals(gncParams2b.baseOptimizerParams));
|
||||
CHECK(!gncParams2c.equals(gncParams2b.baseOptimizerParams));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
@ -324,7 +352,8 @@ TEST(GncOptimizer, gncConstructor) {
|
|||
|
||||
LevenbergMarquardtParams lmParams;
|
||||
GncParams<LevenbergMarquardtParams> gncParams(lmParams);
|
||||
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial, gncParams);
|
||||
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial,
|
||||
gncParams);
|
||||
|
||||
CHECK(gnc.getFactors().equals(fg));
|
||||
CHECK(gnc.getState().equals(initial));
|
||||
|
@ -333,7 +362,6 @@ TEST(GncOptimizer, gncConstructor) {
|
|||
|
||||
/* ************************************************************************* */
|
||||
TEST(GncOptimizer, gncConstructorWithRobustGraphAsInput) {
|
||||
// simple graph with Gaussian noise model
|
||||
auto fg = example::sharedNonRobustFactorGraphWithOutliers();
|
||||
// same graph with robust noise model
|
||||
auto fg_robust = example::sharedRobustFactorGraphWithOutliers();
|
||||
|
@ -344,15 +372,15 @@ TEST(GncOptimizer, gncConstructorWithRobustGraphAsInput) {
|
|||
|
||||
LevenbergMarquardtParams lmParams;
|
||||
GncParams<LevenbergMarquardtParams> gncParams(lmParams);
|
||||
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg_robust, initial, gncParams);
|
||||
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg_robust,
|
||||
initial, gncParams);
|
||||
|
||||
// make sure that when parsing the graph is transformed into one without robust loss
|
||||
CHECK( fg.equals(gnc.getFactors()) );
|
||||
CHECK(fg.equals(gnc.getFactors()));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(GncOptimizer, initializeMu) {
|
||||
// has to have Gaussian noise models !
|
||||
auto fg = example::createReallyNonlinearFactorGraph();
|
||||
|
||||
Point2 p0(3, 3);
|
||||
|
@ -361,8 +389,10 @@ TEST(GncOptimizer, initializeMu) {
|
|||
|
||||
LevenbergMarquardtParams lmParams;
|
||||
GncParams<LevenbergMarquardtParams> gncParams(lmParams);
|
||||
gncParams.setLossType(GncParams<LevenbergMarquardtParams>::RobustLossType::GM);
|
||||
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial, gncParams);
|
||||
gncParams.setLossType(
|
||||
GncParams<LevenbergMarquardtParams>::RobustLossType::GM);
|
||||
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial,
|
||||
gncParams);
|
||||
EXPECT_DOUBLES_EQUAL(gnc.initializeMu(), 2 * 198.999, 1e-3); // according to rmk 5 in the gnc paper: m0 = 2 rmax^2 / barcSq (barcSq=1 in this example)
|
||||
}
|
||||
|
||||
|
@ -377,8 +407,10 @@ TEST(GncOptimizer, updateMu) {
|
|||
|
||||
LevenbergMarquardtParams lmParams;
|
||||
GncParams<LevenbergMarquardtParams> gncParams(lmParams);
|
||||
gncParams.setLossType(GncParams<LevenbergMarquardtParams>::RobustLossType::GM);
|
||||
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial, gncParams);
|
||||
gncParams.setLossType(
|
||||
GncParams<LevenbergMarquardtParams>::RobustLossType::GM);
|
||||
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial,
|
||||
gncParams);
|
||||
|
||||
double mu = 5.0;
|
||||
EXPECT_DOUBLES_EQUAL(gnc.updateMu(mu), mu / 1.4, tol);
|
||||
|
@ -399,8 +431,10 @@ TEST(GncOptimizer, checkMuConvergence) {
|
|||
|
||||
LevenbergMarquardtParams lmParams;
|
||||
GncParams<LevenbergMarquardtParams> gncParams(lmParams);
|
||||
gncParams.setLossType(GncParams<LevenbergMarquardtParams>::RobustLossType::GM);
|
||||
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial, gncParams);
|
||||
gncParams.setLossType(
|
||||
GncParams<LevenbergMarquardtParams>::RobustLossType::GM);
|
||||
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial,
|
||||
gncParams);
|
||||
|
||||
double mu = 1.0;
|
||||
CHECK(gnc.checkMuConvergence(mu));
|
||||
|
@ -408,67 +442,69 @@ TEST(GncOptimizer, checkMuConvergence) {
|
|||
|
||||
/* ************************************************************************* */
|
||||
TEST(GncOptimizer, calculateWeights) {
|
||||
// has to have Gaussian noise models !
|
||||
auto fg = example::sharedNonRobustFactorGraphWithOutliers();
|
||||
auto fg = example::sharedNonRobustFactorGraphWithOutliers();
|
||||
|
||||
Point2 p0(0, 0);
|
||||
Values initial;
|
||||
initial.insert(X(1), p0);
|
||||
Point2 p0(0, 0);
|
||||
Values initial;
|
||||
initial.insert(X(1), p0);
|
||||
|
||||
// we have 4 factors, 3 with zero errors (inliers), 1 with error 50 = 0.5 * 1/sigma^2 || [1;0] - [0;0] ||^2 (outlier)
|
||||
Vector weights_expected = Vector::Zero(4);
|
||||
weights_expected[0] = 1.0; // zero error
|
||||
weights_expected[1] = 1.0; // zero error
|
||||
weights_expected[2] = 1.0; // zero error
|
||||
weights_expected[3] = std::pow(1.0 / (50.0 + 1.0),2); // outlier, error = 50
|
||||
// we have 4 factors, 3 with zero errors (inliers), 1 with error 50 = 0.5 * 1/sigma^2 || [1;0] - [0;0] ||^2 (outlier)
|
||||
Vector weights_expected = Vector::Zero(4);
|
||||
weights_expected[0] = 1.0; // zero error
|
||||
weights_expected[1] = 1.0; // zero error
|
||||
weights_expected[2] = 1.0; // zero error
|
||||
weights_expected[3] = std::pow(1.0 / (50.0 + 1.0), 2); // outlier, error = 50
|
||||
|
||||
GaussNewtonParams gnParams;
|
||||
GncParams<GaussNewtonParams> gncParams(gnParams);
|
||||
auto gnc = GncOptimizer<GncParams<GaussNewtonParams>>(fg, initial, gncParams);
|
||||
double mu = 1.0;
|
||||
Vector weights_actual = gnc.calculateWeights(initial,mu);
|
||||
CHECK(assert_equal(weights_expected, weights_actual, tol));
|
||||
GaussNewtonParams gnParams;
|
||||
GncParams<GaussNewtonParams> gncParams(gnParams);
|
||||
auto gnc = GncOptimizer<GncParams<GaussNewtonParams>>(fg, initial, gncParams);
|
||||
double mu = 1.0;
|
||||
Vector weights_actual = gnc.calculateWeights(initial, mu);
|
||||
CHECK(assert_equal(weights_expected, weights_actual, tol));
|
||||
|
||||
mu = 2.0;
|
||||
double barcSq = 5.0;
|
||||
weights_expected[3] = std::pow(mu*barcSq / (50.0 + mu*barcSq),2); // outlier, error = 50
|
||||
gncParams.setInlierThreshold(barcSq);
|
||||
auto gnc2 = GncOptimizer<GncParams<GaussNewtonParams>>(fg, initial, gncParams);
|
||||
weights_actual = gnc2.calculateWeights(initial,mu);
|
||||
CHECK(assert_equal(weights_expected, weights_actual, tol));
|
||||
mu = 2.0;
|
||||
double barcSq = 5.0;
|
||||
weights_expected[3] = std::pow(mu * barcSq / (50.0 + mu * barcSq), 2); // outlier, error = 50
|
||||
gncParams.setInlierThreshold(barcSq);
|
||||
auto gnc2 = GncOptimizer<GncParams<GaussNewtonParams>>(fg, initial,
|
||||
gncParams);
|
||||
weights_actual = gnc2.calculateWeights(initial, mu);
|
||||
CHECK(assert_equal(weights_expected, weights_actual, tol));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(GncOptimizer, makeWeightedGraph) {
|
||||
// create original factor
|
||||
double sigma1 = 0.1;
|
||||
NonlinearFactorGraph nfg = example::nonlinearFactorGraphWithGivenSigma(sigma1);
|
||||
double sigma1 = 0.1;
|
||||
NonlinearFactorGraph nfg = example::nonlinearFactorGraphWithGivenSigma(
|
||||
sigma1);
|
||||
|
||||
// create expected
|
||||
double sigma2 = 10;
|
||||
NonlinearFactorGraph expected = example::nonlinearFactorGraphWithGivenSigma(sigma2);
|
||||
// create expected
|
||||
double sigma2 = 10;
|
||||
NonlinearFactorGraph expected = example::nonlinearFactorGraphWithGivenSigma(
|
||||
sigma2);
|
||||
|
||||
// create weights
|
||||
Vector weights = Vector::Ones(1); // original info:1/0.1^2 = 100. New info: 1/10^2 = 0.01. Ratio is 10-4
|
||||
weights[0] = 1e-4;
|
||||
// create weights
|
||||
Vector weights = Vector::Ones(1); // original info:1/0.1^2 = 100. New info: 1/10^2 = 0.01. Ratio is 10-4
|
||||
weights[0] = 1e-4;
|
||||
|
||||
// create actual
|
||||
Point2 p0(3, 3);
|
||||
Values initial;
|
||||
initial.insert(X(1), p0);
|
||||
// create actual
|
||||
Point2 p0(3, 3);
|
||||
Values initial;
|
||||
initial.insert(X(1), p0);
|
||||
|
||||
LevenbergMarquardtParams lmParams;
|
||||
GncParams<LevenbergMarquardtParams> gncParams(lmParams);
|
||||
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(nfg, initial, gncParams);
|
||||
NonlinearFactorGraph actual = gnc.makeWeightedGraph(weights);
|
||||
LevenbergMarquardtParams lmParams;
|
||||
GncParams<LevenbergMarquardtParams> gncParams(lmParams);
|
||||
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(nfg, initial,
|
||||
gncParams);
|
||||
NonlinearFactorGraph actual = gnc.makeWeightedGraph(weights);
|
||||
|
||||
// check it's all good
|
||||
CHECK(assert_equal(expected, actual));
|
||||
// check it's all good
|
||||
CHECK(assert_equal(expected, actual));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(GncOptimizer, optimizeSimple) {
|
||||
// has to have Gaussian noise models !
|
||||
auto fg = example::createReallyNonlinearFactorGraph();
|
||||
|
||||
Point2 p0(3, 3);
|
||||
|
@ -477,7 +513,8 @@ TEST(GncOptimizer, optimizeSimple) {
|
|||
|
||||
LevenbergMarquardtParams lmParams;
|
||||
GncParams<LevenbergMarquardtParams> gncParams(lmParams);
|
||||
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial, gncParams);
|
||||
auto gnc = GncOptimizer<GncParams<LevenbergMarquardtParams>>(fg, initial,
|
||||
gncParams);
|
||||
|
||||
Values actual = gnc.optimize();
|
||||
DOUBLES_EQUAL(0, fg.error(actual), tol);
|
||||
|
@ -485,7 +522,6 @@ TEST(GncOptimizer, optimizeSimple) {
|
|||
|
||||
/* ************************************************************************* */
|
||||
TEST(GncOptimizer, optimize) {
|
||||
// has to have Gaussian noise models !
|
||||
auto fg = example::sharedNonRobustFactorGraphWithOutliers();
|
||||
|
||||
Point2 p0(1, 0);
|
||||
|
@ -497,26 +533,25 @@ TEST(GncOptimizer, optimize) {
|
|||
GaussNewtonOptimizer gn(fg, initial, gnParams);
|
||||
Values gn_results = gn.optimize();
|
||||
// converges to incorrect point due to lack of robustness to an outlier, ideal solution is Point2(0,0)
|
||||
CHECK(assert_equal(Point2(0.25,0.0), gn_results.at<Point2>(X(1)), 1e-3));
|
||||
CHECK(assert_equal(Point2(0.25, 0.0), gn_results.at<Point2>(X(1)), 1e-3));
|
||||
|
||||
// try with robust loss function and standard GN
|
||||
auto fg_robust = example::sharedRobustFactorGraphWithOutliers(); // same as fg, but with factors wrapped in Geman McClure losses
|
||||
GaussNewtonOptimizer gn2(fg_robust, initial, gnParams);
|
||||
Values gn2_results = gn2.optimize();
|
||||
// converges to incorrect point, this time due to the nonconvexity of the loss
|
||||
CHECK(assert_equal(Point2(0.999706,0.0), gn2_results.at<Point2>(X(1)), 1e-3));
|
||||
CHECK(assert_equal(Point2(0.999706, 0.0), gn2_results.at<Point2>(X(1)), 1e-3));
|
||||
|
||||
// .. but graduated nonconvexity ensures both robustness and convergence in the face of nonconvexity
|
||||
GncParams<GaussNewtonParams> gncParams(gnParams);
|
||||
// gncParams.setVerbosityGNC(GncParams<GaussNewtonParams>::VerbosityGNC::SUMMARY);
|
||||
auto gnc = GncOptimizer<GncParams<GaussNewtonParams>>(fg, initial, gncParams);
|
||||
Values gnc_result = gnc.optimize();
|
||||
CHECK(assert_equal(Point2(0.0,0.0), gnc_result.at<Point2>(X(1)), 1e-3));
|
||||
CHECK(assert_equal(Point2(0.0, 0.0), gnc_result.at<Point2>(X(1)), 1e-3));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(GncOptimizer, optimizeWithKnownInliers) {
|
||||
// has to have Gaussian noise models !
|
||||
auto fg = example::sharedNonRobustFactorGraphWithOutliers();
|
||||
|
||||
Point2 p0(1, 0);
|
||||
|
@ -535,7 +570,7 @@ TEST(GncOptimizer, optimizeWithKnownInliers) {
|
|||
auto gnc = GncOptimizer<GncParams<GaussNewtonParams>>(fg, initial, gncParams);
|
||||
|
||||
Values gnc_result = gnc.optimize();
|
||||
CHECK(assert_equal(Point2(0.0,0.0), gnc_result.at<Point2>(X(1)), 1e-3));
|
||||
CHECK(assert_equal(Point2(0.0, 0.0), gnc_result.at<Point2>(X(1)), 1e-3));
|
||||
|
||||
// check weights were actually fixed:
|
||||
Vector finalWeights = gnc.getWeights();
|
||||
|
|
Loading…
Reference in New Issue