Base class
parent
f104951494
commit
76175feb95
|
@ -13,7 +13,33 @@
|
|||
|
||||
namespace gtsam {
|
||||
|
||||
/**
|
||||
* @brief Abstract base class for FundamentalMatrix
|
||||
*
|
||||
* This class provides a common interface for all types of fundamental matrices.
|
||||
* It declares a virtual function `matrix()` that must be implemented by derived
|
||||
* classes. The `matrix()` function returns a 3x3 matrix representation of the
|
||||
* fundamental matrix.
|
||||
*/
|
||||
class FundamentalMatrix {
|
||||
public:
|
||||
/**
|
||||
* @brief Returns a 3x3 matrix representation of the fundamental matrix
|
||||
*
|
||||
* @return A 3x3 matrix representing the fundamental matrix
|
||||
*/
|
||||
virtual Matrix3 matrix() const = 0;
|
||||
};
|
||||
|
||||
/**
|
||||
* @class GeneralFundamentalMatrix
|
||||
* @brief Represents a general fundamental matrix.
|
||||
*
|
||||
* This class represents a general fundamental matrix, which is a 3x3 matrix
|
||||
* that describes the relationship between two images. It is parameterized by a
|
||||
* left rotation U, a scalar s, and a right rotation V.
|
||||
*/
|
||||
class GeneralFundamentalMatrix : public FundamentalMatrix {
|
||||
private:
|
||||
Rot3 U_; ///< Left rotation
|
||||
double s_; ///< Scalar parameter for S
|
||||
|
@ -21,14 +47,23 @@ class FundamentalMatrix {
|
|||
|
||||
public:
|
||||
/// Default constructor
|
||||
FundamentalMatrix() : U_(Rot3()), s_(1.0), V_(Rot3()) {}
|
||||
GeneralFundamentalMatrix() : U_(Rot3()), s_(1.0), V_(Rot3()) {}
|
||||
|
||||
/// Construct from U, V, and scalar s
|
||||
FundamentalMatrix(const Rot3& U, double s, const Rot3& V)
|
||||
/**
|
||||
* @brief Construct from U, V, and scalar s
|
||||
*
|
||||
* Initializes the GeneralFundamentalMatrix with the given left rotation U,
|
||||
* scalar s, and right rotation V.
|
||||
*
|
||||
* @param U Left rotation matrix
|
||||
* @param s Scalar parameter for the fundamental matrix
|
||||
* @param V Right rotation matrix
|
||||
*/
|
||||
GeneralFundamentalMatrix(const Rot3& U, double s, const Rot3& V)
|
||||
: U_(U), s_(s), V_(V) {}
|
||||
|
||||
/// Return the fundamental matrix representation
|
||||
Matrix3 matrix() const {
|
||||
Matrix3 matrix() const override {
|
||||
return U_.matrix() * Vector3(1, s_, 1).asDiagonal() *
|
||||
V_.transpose().matrix();
|
||||
}
|
||||
|
@ -36,15 +71,16 @@ class FundamentalMatrix {
|
|||
/// @name Testable
|
||||
/// @{
|
||||
|
||||
/// Print the FundamentalMatrix
|
||||
/// Print the GeneralFundamentalMatrix
|
||||
void print(const std::string& s = "") const {
|
||||
std::cout << s << "U:\n"
|
||||
<< U_.matrix() << "\ns: " << s_ << "\nV:\n"
|
||||
<< V_.matrix() << std::endl;
|
||||
}
|
||||
|
||||
/// Check if the FundamentalMatrix is equal to another within a tolerance
|
||||
bool equals(const FundamentalMatrix& other, double tol = 1e-9) const {
|
||||
/// Check if the GeneralFundamentalMatrix is equal to another within a
|
||||
/// tolerance
|
||||
bool equals(const GeneralFundamentalMatrix& other, double tol = 1e-9) const {
|
||||
return U_.equals(other.U_, tol) && std::abs(s_ - other.s_) < tol &&
|
||||
V_.equals(other.V_, tol);
|
||||
}
|
||||
|
@ -57,8 +93,8 @@ class FundamentalMatrix {
|
|||
inline static size_t Dim() { return dimension; }
|
||||
inline size_t dim() const { return dimension; }
|
||||
|
||||
/// Return local coordinates with respect to another FundamentalMatrix
|
||||
Vector localCoordinates(const FundamentalMatrix& F) const {
|
||||
/// Return local coordinates with respect to another GeneralFundamentalMatrix
|
||||
Vector localCoordinates(const GeneralFundamentalMatrix& F) const {
|
||||
Vector result(7);
|
||||
result.head<3>() = U_.localCoordinates(F.U_);
|
||||
result(3) = F.s_ - s_; // Difference in scalar
|
||||
|
@ -66,12 +102,12 @@ class FundamentalMatrix {
|
|||
return result;
|
||||
}
|
||||
|
||||
/// Retract the given vector to get a new FundamentalMatrix
|
||||
FundamentalMatrix retract(const Vector& delta) const {
|
||||
/// Retract the given vector to get a new GeneralFundamentalMatrix
|
||||
GeneralFundamentalMatrix retract(const Vector& delta) const {
|
||||
Rot3 newU = U_.retract(delta.head<3>());
|
||||
double newS = s_ + delta(3); // Update scalar
|
||||
Rot3 newV = V_.retract(delta.tail<3>());
|
||||
return FundamentalMatrix(newU, newS, newV);
|
||||
return GeneralFundamentalMatrix(newU, newS, newV);
|
||||
}
|
||||
|
||||
/// @}
|
||||
|
@ -85,7 +121,7 @@ class FundamentalMatrix {
|
|||
* parameterization of the essential matrix and focal lengths for left and right
|
||||
* cameras. Principal points are not part of the manifold but a convenience.
|
||||
*/
|
||||
class SimpleFundamentalMatrix {
|
||||
class SimpleFundamentalMatrix : FundamentalMatrix {
|
||||
private:
|
||||
EssentialMatrix E_; ///< Essential matrix
|
||||
double fa_; ///< Focal length for left camera
|
||||
|
@ -106,7 +142,7 @@ class SimpleFundamentalMatrix {
|
|||
: E_(E), fa_(fa), fb_(fb), ca_(ca), cb_(cb) {}
|
||||
|
||||
/// Return the fundamental matrix representation
|
||||
Matrix3 matrix() const {
|
||||
Matrix3 matrix() const override {
|
||||
Matrix3 Ka, Kb;
|
||||
Ka << fa_, 0, ca_.x(), 0, fa_, ca_.y(), 0, 0, 1; // Left calibration
|
||||
Kb << fb_, 0, cb_.x(), 0, fb_, cb_.y(), 0, 0, 1; // Right calibration
|
||||
|
@ -158,8 +194,8 @@ class SimpleFundamentalMatrix {
|
|||
};
|
||||
|
||||
template <>
|
||||
struct traits<FundamentalMatrix>
|
||||
: public internal::Manifold<FundamentalMatrix> {};
|
||||
struct traits<GeneralFundamentalMatrix>
|
||||
: public internal::Manifold<GeneralFundamentalMatrix> {};
|
||||
|
||||
template <>
|
||||
struct traits<SimpleFundamentalMatrix>
|
||||
|
|
|
@ -16,34 +16,34 @@ using namespace std::placeholders;
|
|||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
GTSAM_CONCEPT_TESTABLE_INST(FundamentalMatrix)
|
||||
GTSAM_CONCEPT_MANIFOLD_INST(FundamentalMatrix)
|
||||
GTSAM_CONCEPT_TESTABLE_INST(GeneralFundamentalMatrix)
|
||||
GTSAM_CONCEPT_MANIFOLD_INST(GeneralFundamentalMatrix)
|
||||
|
||||
//*************************************************************************
|
||||
// Create two rotations and corresponding fundamental matrix F
|
||||
Rot3 trueU = Rot3::Yaw(M_PI_2);
|
||||
Rot3 trueV = Rot3::Yaw(M_PI_4);
|
||||
double trueS = 0.5;
|
||||
FundamentalMatrix trueF(trueU, trueS, trueV);
|
||||
GeneralFundamentalMatrix trueF(trueU, trueS, trueV);
|
||||
|
||||
//*************************************************************************
|
||||
TEST(FundamentalMatrix, localCoordinates) {
|
||||
TEST(GeneralFundamentalMatrix, localCoordinates) {
|
||||
Vector expected = Z_7x1; // Assuming 7 dimensions for U, V, and s
|
||||
Vector actual = trueF.localCoordinates(trueF);
|
||||
EXPECT(assert_equal(expected, actual, 1e-8));
|
||||
}
|
||||
|
||||
//*************************************************************************
|
||||
TEST(FundamentalMatrix, retract) {
|
||||
FundamentalMatrix actual = trueF.retract(Z_7x1);
|
||||
TEST(GeneralFundamentalMatrix, retract) {
|
||||
GeneralFundamentalMatrix actual = trueF.retract(Z_7x1);
|
||||
EXPECT(assert_equal(trueF, actual));
|
||||
}
|
||||
|
||||
//*************************************************************************
|
||||
TEST(FundamentalMatrix, RoundTrip) {
|
||||
TEST(GeneralFundamentalMatrix, RoundTrip) {
|
||||
Vector7 d;
|
||||
d << 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7;
|
||||
FundamentalMatrix hx = trueF.retract(d);
|
||||
GeneralFundamentalMatrix hx = trueF.retract(d);
|
||||
Vector actual = trueF.localCoordinates(hx);
|
||||
EXPECT(assert_equal(d, actual, 1e-8));
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue