Latest changes

release/4.3a0
Frank Dellaert 2010-06-24 19:35:56 +00:00
parent 676a74a0ac
commit 760f61ce4b
2 changed files with 151 additions and 24 deletions

View File

@ -123,6 +123,12 @@ Lie Groups
\end_inset
\begin_inset FormulaMacro
\newcommand{\AAdd}[1]{\mathbf{\mathop{Ad}}{}_{#1}}
{\mathbf{\mathop{Ad}}{}_{#1}}
\end_inset
\end_layout
\begin_layout Standard
@ -583,7 +589,7 @@ T_{1}T_{2}=(x_{1},\, y_{1},\,\theta_{1})(x_{2},\, y_{2},\,\theta_{2})=(x_{1}+\co
\end_inset
This is a bit clumsy, so we resort to a trick: embed the 2D poses in the
space of
\begin_inset Formula $3\times3$
\end_inset
@ -742,8 +748,9 @@ special Euclidean group
\end_inset
.
It is called a Lie group because it is both a manifold and a group, and
its group operation is smooth when operating on this manifold.
It is called a Lie group because it is simultaneously a topological group
and a manifold, which implies that the multiplication and the inversion
operations are smooth.
The space of 2D twists, together with a special binary operation to be
defined below, is called the Lie algebra
\begin_inset Formula $\setwo$
@ -778,7 +785,7 @@ A Lie group
\begin_inset Formula $G$
\end_inset
is a manifold that possesses a smooth group operation.
is a a group and a manifold that possesses a smooth group operation.
Associated with it is a Lie Algebra
\begin_inset Formula $\gg$
\end_inset
@ -896,8 +903,15 @@ Instead,
\begin_inset Formula $Z$
\end_inset
can be calculated using the Baker-Campbell-Hausdorff (BCH) formula:
\begin_inset Foot
can be calculated using the Baker-Campbell-Hausdorff (BCH) formula
\begin_inset CommandInset citation
LatexCommand cite
key "Hall00book"
\end_inset
\begin_inset Note Note
status collapsed
\begin_layout Plain Layout
@ -906,7 +920,7 @@ http://en.wikipedia.org/wiki/BakerCampbellHausdorff_formula
\end_inset
:
\begin_inset Formula \[
Z=X+Y+[X,Y]/2+[X-Y,[X,Y]]/12-[Y,[X,[X,Y]]]/24+\ldots\]
@ -929,7 +943,7 @@ For
\begin_inset Formula $n$
\end_inset
-dimensional matrix Lie groups, the Lie algebra
-dimensional matrix Lie groups, as a vector space the Lie algebra
\begin_inset Formula $\gg$
\end_inset
@ -937,7 +951,7 @@ For
\begin_inset Formula $\mathbb{R}^{n}$
\end_inset
, and we can define the wedge operator
, and we can define the hat operator
\begin_inset CommandInset citation
LatexCommand cite
after "page 41"
@ -990,7 +1004,7 @@ where the
\begin_inset Formula $n\times n$
\end_inset
matrices known as the Lie group generators.
matrices known as Lie group generators.
The meaning of the map
\begin_inset Formula $x\rightarrow\xhat$
\end_inset
@ -1003,12 +1017,92 @@ where the
\end_layout
\begin_layout Subsection
The Adjoint Map
Tangent Spaces and the Tangent Bundle
\end_layout
\begin_layout Standard
The tangent space
\begin_inset Formula $T_{g}G$
\end_inset
at a group element
\begin_inset Formula $g\in G$
\end_inset
is the vector space of tangent vectors at
\begin_inset Formula $g$
\end_inset
.
The tangent bundle
\begin_inset Formula $TG$
\end_inset
is the set of all tangent vectors
\begin_inset Formula \[
TG\define\bigcup_{g\in G}T_{g}G\]
\end_inset
A vector field
\begin_inset Formula $X:G\rightarrow TG$
\end_inset
assigns to each element
\begin_inset Formula $g$
\end_inset
as single tangent vector
\begin_inset Formula $x\in T_{g}G$
\end_inset
.
\end_layout
\begin_layout Subsection
The Adjoint Map and Adjoint Representation
\end_layout
\begin_layout Standard
\begin_inset Note Note
status open
\begin_layout Plain Layout
We do not fully understand this yet!!!
\end_layout
\end_inset
\end_layout
\begin_layout Standard
The
\emph on
adjoint map
\emph default
\begin_inset Formula $\AAdd g$
\end_inset
maps a group element
\begin_inset Formula $a\in G$
\end_inset
to its conjugate
\begin_inset Formula $gag^{-1}$
\end_inset
by
\begin_inset Formula $g$
\end_inset
.
\end_layout
\begin_layout Standard
Below we frequently make use of the equality
\begin_inset Foot
\begin_inset Note Note
status collapsed
\begin_layout Plain Layout
@ -1019,7 +1113,7 @@ http://en.wikipedia.org/wiki/Exponential_map
\begin_inset Formula \[
ge^{\xhat}g^{-1}=e^{\Ad g{\xhat}}\]
\AAdd ge^{\xhat}=ge^{\xhat}g^{-1}=e^{\Ad g{\xhat}}\]
\end_inset
@ -1031,7 +1125,16 @@ where
\begin_inset Formula $g$
\end_inset
, and is called the
\emph on
adjoint representation
\emph default
.
\begin_inset Note Note
status open
\begin_layout Plain Layout
The intuitive explanation is that a change
\begin_inset Formula $\exp\left(\xhat\right)$
\end_inset
@ -1049,8 +1152,16 @@ where
\end_inset
.
In the case of a matrix group the ajoint can be written as
\begin_inset Foot
\end_layout
\end_inset
\end_layout
\begin_layout Standard
In the case of a matrix group the adjoint can be written as
\begin_inset Note Note
status collapsed
\begin_layout Plain Layout
@ -1307,13 +1418,9 @@ all
\end_inset
which we can write in terms of
\begin_inset Formula $\omega$
\end_inset
as
i.e.,
\begin_inset Formula \[
\Ad R\omega=\omega\]
\Ad R\what=\what\]
\end_inset
@ -2292,6 +2399,8 @@ The action of
\begin_inset Formula \[
\hat{q}=\left[\begin{array}{c}
q\\
1\end{array}\right]=\left[\begin{array}{c}
Rp+t\\
1\end{array}\right]=\left[\begin{array}{cc}
R & t\\
0 & 1\end{array}\right]\left[\begin{array}{c}
@ -2372,6 +2481,24 @@ v\end{array}\right]\]
\end_inset
The inverse action
\begin_inset Formula $T^{-1}p$
\end_inset
is
\begin_inset Formula \[
\hat{q}=\left[\begin{array}{c}
q\\
1\end{array}\right]=\left[\begin{array}{c}
R^{T}(p-t)\\
1\end{array}\right]=\left[\begin{array}{cc}
R^{T} & -R^{T}t\\
0 & 1\end{array}\right]\left[\begin{array}{c}
p\\
1\end{array}\right]=T^{-1}\hat{p}\]
\end_inset
\end_layout

Binary file not shown.