Working on IMU factors. made changes to noise

release/4.3a0
djensen3 2014-04-15 11:05:43 -04:00
parent 97dd2fb931
commit 75b042bbcd
1 changed files with 30 additions and 15 deletions

View File

@ -11,14 +11,16 @@ close all
%% Configuration
useRealData = 0; % controls whether or not to use the Real data (is available) as the ground truth traj
includeIMUFactors = 0; % if true, IMU type 1 Factors will be generated for the random trajectory
includeCameraFactors = 0; % not implemented yet
trajectoryLength = 10; % length of the ground truth trajectory
includeIMUFactors = 1; % if true, IMU type 1 Factors will be generated for the random trajectory
includeCameraFactors = 0; % not fully implemented yet
trajectoryLength = 4; % length of the ground truth trajectory
numMonteCarloRuns = 0;
%% Camera metadata
numberOfLandmarks = 40; % Total number of visual landmarks, used for camera factors
numberOfLandmarks = 10; % Total number of visual landmarks, used for camera factors
K = Cal3_S2(500,500,0,640/2,480/2); % Camera calibration
cameraMeasurementNoiseSigma = 1.0;
cameraMeasurementNoise = noiseModel.Isotropic.Sigma(2,cameraMeasurementNoiseSigma);
@ -27,14 +29,14 @@ cameraMeasurementNoise = noiseModel.Isotropic.Sigma(2,cameraMeasurementNoiseSigm
if includeCameraFactors == 1
for i = 1:numberOfLandmarks
gtLandmarkPoints(i) = Point3( ...
[rand()*20*(trajectoryLength*2.0); ... % uniformly distributed in the x axis along 200% of the trajectory length
randn()*50; ... % normally distributed in the y axis with a sigma of 50
randn()*50]); % normally distributed in the z axis with a sigma of 50
[rand()*20*(trajectoryLength*1.2) + 15*20; ... % uniformly distributed in the x axis along 120% of the trajectory length, starting after 15 poses
randn()*20; ... % normally distributed in the y axis with a sigma of 20
randn()*20]); % normally distributed in the z axis with a sigma of 20
end
end
%% Imu metadata
epsBias = 1e-7;
epsBias = 1e-20; % was 1e-7
zeroBias = imuBias.ConstantBias(zeros(3,1), zeros(3,1));
IMU_metadata.AccelerometerSigma = 1e-5;
IMU_metadata.GyroscopeSigma = 1e-7;
@ -42,7 +44,7 @@ IMU_metadata.IntegrationSigma = 1e-10;
IMU_metadata.BiasAccelerometerSigma = epsBias;
IMU_metadata.BiasGyroscopeSigma = epsBias;
IMU_metadata.BiasAccOmegaInit = epsBias;
noiseVel = noiseModel.Isotropic.Sigma(3, 0.1);
noiseVel = noiseModel.Isotropic.Sigma(3, 1e-10); % was 0.1
noiseBias = noiseModel.Isotropic.Sigma(6, epsBias);
%% Between metadata
@ -56,6 +58,7 @@ folderName = 'results/'
noiseVectorPose = [sigma_ang; sigma_ang; sigma_ang; sigma_cart; sigma_cart; sigma_cart];
noisePose = noiseModel.Diagonal.Sigmas(noiseVectorPose);
%noisePose = noiseModel.Isotropic.Sigma(6, 1e-3);
%% Create ground truth trajectory
gtValues = Values;
@ -120,11 +123,17 @@ else
unsmooth_DP = 0.5; % controls smoothness on translation norm
unsmooth_DR = 0.1; % controls smoothness on rotation norm
unsmooth_DP = 0;
unsmooth_DR = 0;
fprintf('\nCreating a random ground truth trajectory\n');
%% Add priors
currentPoseKey = symbol('x', 0);
gtValues.insert(currentPoseKey, currentPose);
gtGraph.add(PriorFactorPose3(currentPoseKey, currentPose, noisePose));
% NOSIE ON PRIOR WAS TOO HIGH? Changing this fixed the indeterminant
% linear system error
gtGraph.add(PriorFactorPose3(currentPoseKey, currentPose, noiseModel.Isotropic.Sigma(6, 1e-3)));
%gtGraph.add(PriorFactorPose3(currentPoseKey, currentPose, noisePose);
if includeIMUFactors == 1
currentVelKey = symbol('v', 0);
@ -155,7 +164,7 @@ else
gtValues.insert(currentPoseKey, currentPose);
% Add the factors to the factor graph
gtGraph.add(BetweenFactorPose3(currentPoseKey-1, currentPoseKey, gtMeasurements.deltaPose, noisePose));
%gtGraph.add(BetweenFactorPose3(currentPoseKey-1, currentPoseKey, gtMeasurements.deltaPose, noisePose));
%% Add IMU factors
if includeIMUFactors == 1
@ -167,7 +176,8 @@ else
% acc = (deltaPosition - initialVel * dT) * (2/dt^2)
gtMeasurements.imu.accel = (measurements.gtDeltaMatrix(i, 4:6)' - currentVel.*deltaT).*(2/(deltaT*deltaT));
% Initialize preintegration
imuMeasurement = gtsam.ImuFactorPreintegratedMeasurements(zeroBias, ...
imuMeasurement = gtsam.ImuFactorPreintegratedMeasurements(...
zeroBias, ...
IMU_metadata.AccelerometerSigma.^2 * eye(3), ...
IMU_metadata.GyroscopeSigma.^2 * eye(3), ...
IMU_metadata.IntegrationSigma.^2 * eye(3));
@ -187,7 +197,7 @@ else
currentVel = measurements.gtDeltaMatrix(i,4:6)'./deltaT;
gtValues.insert(currentVelKey, LieVector(currentVel));
gtGraph.add(PriorFactorLieVector(currentVelKey, LieVector(currentVel), noiseVel));
%gtGraph.add(PriorFactorLieVector(currentVelKey, LieVector(currentVel), noiseVel));
gtValues.insert(currentBiasKey, zeroBias);
end % end of IMU factor creation
@ -202,6 +212,8 @@ else
landmarkKey = symbol('p', j);
try
Z = gtCamera.project(gtLandmarkPoints(j));
%% TO-DO probably want to do some type of filtering on the measurement values, because
% they might not all be valid
gtGraph.add(GenericProjectionFactorCal3_S2(Z, cameraMeasurementNoise, currentPoseKey, landmarkKey, K));
catch
% Most likely the point is not within the camera's view, which
@ -209,7 +221,7 @@ else
numSkipped = numSkipped + 1;
end
end
fprintf('(Pose %d) %d landmarks behind the camera\n', i, numSkipped);
%fprintf('(Pose %d) %d landmarks behind the camera\n', i, numSkipped);
end % end of Camera factor creation
end % end of trajectory length
@ -223,6 +235,9 @@ else
end % end of ground truth creation
gtGraph.print(sprintf('\nGround Truth Factor graph:\n'));
gtValues.print(sprintf('\nGround Truth Values:\n '));
warning('Additional prior on zerobias')
warning('Additional PriorFactorLieVector on velocities')
@ -261,7 +276,7 @@ for k=1:numMonteCarloRuns
noisyDeltaPose = Pose3.Expmap(noisyDelta);
% Add the factors to the factor graph
graph.add(BetweenFactorPose3(currentPoseKey-1, currentPoseKey, noisyDeltaPose, noisePose));
%graph.add(BetweenFactorPose3(currentPoseKey-1, currentPoseKey, noisyDeltaPose, noisePose));
end
% optimize