Added test with transform

release/4.3a0
Frank Dellaert 2019-01-06 18:18:23 -05:00
parent 67f3b51ab2
commit 737d369ecf
1 changed files with 58 additions and 0 deletions

View File

@ -812,6 +812,64 @@ TEST(SmartProjectionFactor, implicitJacobianFactor ) {
}
/* *************************************************************************/
TEST(SmartProjectionFactor, smartFactorWithSensorBodyTransform) {
using namespace vanilla;
// create arbitrary body_T_sensor (transforms from sensor to body)
Pose3 body_T_sensor = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(1, 1, 1));
// These are the poses we want to estimate, from camera measurements
const Pose3 sensor_T_body = body_T_sensor.inverse();
Pose3 wTb1 = cam1.pose() * sensor_T_body;
Pose3 wTb2 = cam2.pose() * sensor_T_body;
Pose3 wTb3 = cam3.pose() * sensor_T_body;
// three landmarks ~5 meters infront of camera
Point3 landmark1(5, 0.5, 1.2), landmark2(5, -0.5, 1.2), landmark3(5, 0, 3.0);
Point2Vector measurements_cam1, measurements_cam2, measurements_cam3;
// Project three landmarks into three cameras
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
// Create smart factors
KeyVector views {1, 2, 3};
SmartProjectionParams params;
params.setRankTolerance(1.0);
params.setDegeneracyMode(IGNORE_DEGENERACY);
params.setEnableEPI(false);
SmartFactor smartFactor1(unit2, body_T_sensor, params);
smartFactor1.add(measurements_cam1, views);
SmartFactor smartFactor2(unit2, body_T_sensor, params);
smartFactor2.add(measurements_cam2, views);
SmartFactor smartFactor3(unit2, body_T_sensor, params);
smartFactor3.add(measurements_cam3, views);
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
// Put all factors in factor graph, adding priors
NonlinearFactorGraph graph;
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
// Check errors at ground truth poses
Values gtValues;
gtValues.insert(1, cam1);
gtValues.insert(2, cam2);
gtValues.insert(3, cam3);
double actualError = graph.error(gtValues);
double expectedError = 0.0;
DOUBLES_EQUAL(expectedError, actualError, 1e-7);
}
/* ************************************************************************* */
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Constrained, "gtsam_noiseModel_Constrained");
BOOST_CLASS_EXPORT_GUID(gtsam::noiseModel::Diagonal, "gtsam_noiseModel_Diagonal");