VisualSLAM matlab example
parent
22e71e4374
commit
715d663e4f
|
@ -0,0 +1,119 @@
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
% GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||||
|
% Atlanta, Georgia 30332-0415
|
||||||
|
% All Rights Reserved
|
||||||
|
% Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||||
|
%
|
||||||
|
% See LICENSE for the license information
|
||||||
|
%
|
||||||
|
% @brief A simple visual SLAM example for structure from motion
|
||||||
|
% @author Duy-Nguyen Ta
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
|
||||||
|
%% Assumptions
|
||||||
|
% - Landmarks as 8 vertices of a cube: (10,10,10) (-10,10,10) etc...
|
||||||
|
% - Cameras are on a circle around the cube, pointing at the world origin
|
||||||
|
% - Each camera sees all landmarks.
|
||||||
|
% - Visual measurements as 2D points are given, corrupted by Gaussian noise.
|
||||||
|
|
||||||
|
%% Generate simulated data
|
||||||
|
% 3D landmarks as vertices of a cube
|
||||||
|
points = {gtsamPoint3([10 10 10]'),...
|
||||||
|
gtsamPoint3([-10 10 10]'),...
|
||||||
|
gtsamPoint3([-10 -10 10]'),...
|
||||||
|
gtsamPoint3([10 -10 10]'),...
|
||||||
|
gtsamPoint3([10 10 -10]'),...
|
||||||
|
gtsamPoint3([-10 10 -10]'),...
|
||||||
|
gtsamPoint3([-10 -10 -10]'),...
|
||||||
|
gtsamPoint3([10 -10 -10]')};
|
||||||
|
|
||||||
|
% Camera poses on a circle around the cube, pointing at the world origin
|
||||||
|
nCameras = 8;
|
||||||
|
r = 30;
|
||||||
|
poses = {};
|
||||||
|
for i=1:nCameras
|
||||||
|
theta = i*2*pi/nCameras;
|
||||||
|
posei = gtsamPose3(...
|
||||||
|
gtsamRot3([-sin(theta) 0 -cos(theta);
|
||||||
|
cos(theta) 0 -sin(theta);
|
||||||
|
0 -1 0]),...
|
||||||
|
gtsamPoint3([r*cos(theta), r*sin(theta), 0]'));
|
||||||
|
poses = [poses {posei}];
|
||||||
|
end
|
||||||
|
|
||||||
|
% 2D visual measurements, simulated with Gaussian noise
|
||||||
|
z = {};
|
||||||
|
measurementNoiseSigmas = [0.5,0.5]';
|
||||||
|
measurementNoiseSampler = gtsamSharedDiagonal(measurementNoiseSigmas);
|
||||||
|
K = gtsamCal3_S2(50,50,0,50,50);
|
||||||
|
for i=1:size(poses,2)
|
||||||
|
zi = {};
|
||||||
|
camera = gtsamSimpleCamera(K,poses{i});
|
||||||
|
for j=1:size(points,2)
|
||||||
|
zi = [zi {camera.project(points{j}).compose(gtsamPoint2(measurementNoiseSampler.sample()))}];
|
||||||
|
end
|
||||||
|
z = [z; zi];
|
||||||
|
end
|
||||||
|
|
||||||
|
pointNoiseSigmas = [0.1,0.1,0.1]';
|
||||||
|
pointNoiseSampler = gtsamSharedDiagonal(pointNoiseSigmas);
|
||||||
|
|
||||||
|
poseNoiseSigmas = [0.001 0.001 0.001 0.1 0.1 0.1]';
|
||||||
|
poseNoiseSampler = gtsamSharedDiagonal(poseNoiseSigmas);
|
||||||
|
|
||||||
|
hold off;
|
||||||
|
|
||||||
|
%% Create the graph (defined in visualSLAM.h, derived from NonlinearFactorGraph)
|
||||||
|
graph = visualSLAMGraph;
|
||||||
|
|
||||||
|
%% Add factors for all measurements
|
||||||
|
measurementNoise = gtsamSharedNoiseModel_Sigmas(measurementNoiseSigmas);
|
||||||
|
for i=1:size(z,1)
|
||||||
|
for j=1:size(z,2)
|
||||||
|
graph.addMeasurement(z{i,j}, measurementNoise, symbol('x',i), symbol('l',j), K);
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
%% Add Gaussian priors for a pose and a landmark to constraint the system
|
||||||
|
posePriorNoise = gtsamSharedNoiseModel_Sigmas(poseNoiseSigmas);
|
||||||
|
graph.addPosePrior(symbol('x',1), poses{1}, posePriorNoise);
|
||||||
|
pointPriorNoise = gtsamSharedNoiseModel_Sigmas(pointNoiseSigmas);
|
||||||
|
graph.addPointPrior(symbol('l',1), points{1}, pointPriorNoise);
|
||||||
|
|
||||||
|
%% Print the graph
|
||||||
|
graph.print(sprintf('\nFactor graph:\n'));
|
||||||
|
|
||||||
|
%% Initialize to noisy poses and points
|
||||||
|
initialEstimate = visualSLAMValues;
|
||||||
|
for i=1:size(poses,2)
|
||||||
|
initialEstimate.insertPose(symbol('x',i), poses{i}.compose(gtsamPose3_Expmap(poseNoiseSampler.sample())));
|
||||||
|
end
|
||||||
|
for j=1:size(points,2)
|
||||||
|
initialEstimate.insertPoint(symbol('l',j), points{j}.compose(gtsamPoint3(pointNoiseSampler.sample())));
|
||||||
|
end
|
||||||
|
initialEstimate.print(sprintf('\nInitial estimate:\n '));
|
||||||
|
|
||||||
|
%% Optimize using Levenberg-Marquardt optimization with an ordering from colamd
|
||||||
|
result = graph.optimize(initialEstimate);
|
||||||
|
result.print(sprintf('\nFinal result:\n '));
|
||||||
|
|
||||||
|
%% Query the marginals
|
||||||
|
marginals = graph.marginals(result);
|
||||||
|
|
||||||
|
%% Plot results with covariance ellipses
|
||||||
|
hold on;
|
||||||
|
for j=1:size(points,2)
|
||||||
|
P = marginals.marginalCovariance(symbol('l',j));
|
||||||
|
point_j = result.point(symbol('l',j));
|
||||||
|
plot3(point_j.x, point_j.y, point_j.z,'marker','o');
|
||||||
|
covarianceEllipse3D([point_j.x;point_j.y;point_j.z],P);
|
||||||
|
end
|
||||||
|
|
||||||
|
for i=1:size(poses,2)
|
||||||
|
P = marginals.marginalCovariance(symbol('x',i));
|
||||||
|
posei = result.pose(symbol('x',i))
|
||||||
|
plotCamera(posei,10);
|
||||||
|
posei_t = posei.translation()
|
||||||
|
covarianceEllipse3D([posei_t.x;posei_t.y;posei_t.z],P(4:6,4:6));
|
||||||
|
end
|
||||||
|
|
|
@ -0,0 +1,25 @@
|
||||||
|
function covarianceEllipse3D(c,P)
|
||||||
|
% covarianceEllipse3D: plot a Gaussian as an uncertainty ellipse
|
||||||
|
% Based on Maybeck Vol 1, page 366
|
||||||
|
% k=2.296 corresponds to 1 std, 68.26% of all probability
|
||||||
|
% k=11.82 corresponds to 3 std, 99.74% of all probability
|
||||||
|
%
|
||||||
|
% Modified from http://www.mathworks.com/matlabcentral/newsreader/view_thread/42966
|
||||||
|
|
||||||
|
[e,s] = eig(P);
|
||||||
|
k = 11.82;
|
||||||
|
radii = k*sqrt(diag(s));
|
||||||
|
|
||||||
|
% generate data for "unrotated" ellipsoid
|
||||||
|
[xc,yc,zc] = ellipsoid(0,0,0,radii(1),radii(2),radii(3));
|
||||||
|
|
||||||
|
% rotate data with orientation matrix U and center M
|
||||||
|
data = kron(e(:,1),xc) + kron(e(:,2),yc) + kron(e(:,3),zc);
|
||||||
|
n = size(data,2);
|
||||||
|
x = data(1:n,:)+c(1); y = data(n+1:2*n,:)+c(2); z = data(2*n+1:end,:)+c(3);
|
||||||
|
|
||||||
|
% now plot the rotated ellipse
|
||||||
|
sc = mesh(x,y,z);
|
||||||
|
shading interp
|
||||||
|
alpha(0.5)
|
||||||
|
axis equal
|
|
@ -0,0 +1,18 @@
|
||||||
|
function plotCamera(pose, axisLength)
|
||||||
|
C = pose.translation().vector();
|
||||||
|
R = pose.rotation().matrix();
|
||||||
|
|
||||||
|
xAxis = C+R(:,1)*axisLength;
|
||||||
|
L = [C xAxis]';
|
||||||
|
line(L(:,1),L(:,2),L(:,3),'Color','r');
|
||||||
|
|
||||||
|
yAxis = C+R(:,2)*axisLength;
|
||||||
|
L = [C yAxis]';
|
||||||
|
line(L(:,1),L(:,2),L(:,3),'Color','g');
|
||||||
|
|
||||||
|
zAxis = C+R(:,3)*axisLength;
|
||||||
|
L = [C zAxis]';
|
||||||
|
line(L(:,1),L(:,2),L(:,3),'Color','b');
|
||||||
|
|
||||||
|
axis equal
|
||||||
|
end
|
Loading…
Reference in New Issue