Sanitized G2o I/O interface to conform to what we had before. No sense in having many different styles, and this works better for MATLAB (now wrapped, as well).

BAL reading/writing should be similarly cleaned up.
release/4.3a0
dellaert 2014-06-01 11:46:23 -04:00
parent 470527ff99
commit 7119d0c3c2
7 changed files with 168 additions and 262 deletions

View File

@ -35,18 +35,18 @@ int main(const int argc, const char *argv[]) {
else
g2oFile = argv[1];
NonlinearFactorGraph graph;
Values initial;
readG2o(g2oFile, graph, initial);
NonlinearFactorGraph::shared_ptr graph;
Values::shared_ptr initial;
boost::tie(graph, initial) = readG2o(g2oFile);
// Add prior on the pose having index (key) = 0
NonlinearFactorGraph graphWithPrior = graph;
NonlinearFactorGraph graphWithPrior = *graph;
noiseModel::Diagonal::shared_ptr priorModel = //
noiseModel::Diagonal::Variances((Vector(3) << 1e-6, 1e-6, 1e-8));
graphWithPrior.add(PriorFactor<Pose2>(0, Pose2(), priorModel));
std::cout << "Optimizing the factor graph" << std::endl;
GaussNewtonOptimizer optimizer(graphWithPrior, initial); // , parameters);
GaussNewtonOptimizer optimizer(graphWithPrior, *initial);
Values result = optimizer.optimize();
std::cout << "Optimization complete" << std::endl;
@ -55,7 +55,7 @@ int main(const int argc, const char *argv[]) {
} else {
const string outputFile = argv[2];
std::cout << "Writing results to file: " << outputFile << std::endl;
writeG2o(outputFile, graph, result);
writeG2o(*graph, result, outputFile);
std::cout << "done! " << std::endl;
}
return 0;

View File

@ -36,12 +36,12 @@ int main(const int argc, const char *argv[]) {
else
g2oFile = argv[1];
NonlinearFactorGraph graph;
Values initial;
readG2o(g2oFile, graph, initial);
NonlinearFactorGraph::shared_ptr graph;
Values::shared_ptr initial;
boost::tie(graph, initial) = readG2o(g2oFile);
// Add prior on the pose having index (key) = 0
NonlinearFactorGraph graphWithPrior = graph;
NonlinearFactorGraph graphWithPrior = *graph;
noiseModel::Diagonal::shared_ptr priorModel = //
noiseModel::Diagonal::Variances((Vector(3) << 1e-6, 1e-6, 1e-8));
graphWithPrior.add(PriorFactor<Pose2>(0, Pose2(), priorModel));
@ -56,7 +56,7 @@ int main(const int argc, const char *argv[]) {
} else {
const string outputFile = argv[2];
std::cout << "Writing results to file: " << outputFile << std::endl;
writeG2o(outputFile, graph, estimateLago);
writeG2o(*graph, estimateLago, outputFile);
std::cout << "done! " << std::endl;
}

View File

@ -2249,6 +2249,13 @@ pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> load2D(string filename,
pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> load2D(string filename);
pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> load2D_robust(string filename,
gtsam::noiseModel::Base* model);
void save2D(const gtsam::NonlinearFactorGraph& graph,
const gtsam::Values& config, gtsam::noiseModel::Diagonal* model,
string filename);
pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> readG2o(string filename);
void writeG2o(const gtsam::NonlinearFactorGraph& graph,
const gtsam::Values& estimate, string filename);
//*************************************************************************
// Navigation

View File

@ -258,13 +258,13 @@ TEST( Lago, smallGraph2 ) {
/* *************************************************************************** */
TEST( Lago, largeGraphNoisy_orientations ) {
NonlinearFactorGraph g;
Values initial;
string inputFile = findExampleDataFile("noisyToyGraph");
readG2o(inputFile, g, initial);
NonlinearFactorGraph::shared_ptr g;
Values::shared_ptr initial;
boost::tie(g, initial) = readG2o(inputFile);
// Add prior on the pose having index (key) = 0
NonlinearFactorGraph graphWithPrior = g;
NonlinearFactorGraph graphWithPrior = *g;
noiseModel::Diagonal::shared_ptr priorModel = noiseModel::Diagonal::Variances((Vector(3) << 1e-2, 1e-2, 1e-4));
graphWithPrior.add(PriorFactor<Pose2>(0, Pose2(), priorModel));
@ -279,40 +279,40 @@ TEST( Lago, largeGraphNoisy_orientations ) {
actual.insert(key, poseLago);
}
}
NonlinearFactorGraph gmatlab;
Values expected;
string matlabFile = findExampleDataFile("orientationsNoisyToyGraph");
readG2o(matlabFile, gmatlab, expected);
NonlinearFactorGraph::shared_ptr gmatlab;
Values::shared_ptr expected;
boost::tie(gmatlab, expected) = readG2o(matlabFile);
BOOST_FOREACH(const Values::KeyValuePair& key_val, expected){
BOOST_FOREACH(const Values::KeyValuePair& key_val, *expected){
Key k = key_val.key;
EXPECT(assert_equal(expected.at<Pose2>(k), actual.at<Pose2>(k), 1e-5));
EXPECT(assert_equal(expected->at<Pose2>(k), actual.at<Pose2>(k), 1e-5));
}
}
/* *************************************************************************** */
TEST( Lago, largeGraphNoisy ) {
NonlinearFactorGraph g;
Values initial;
string inputFile = findExampleDataFile("noisyToyGraph");
readG2o(inputFile, g, initial);
NonlinearFactorGraph::shared_ptr g;
Values::shared_ptr initial;
boost::tie(g, initial) = readG2o(inputFile);
// Add prior on the pose having index (key) = 0
NonlinearFactorGraph graphWithPrior = g;
NonlinearFactorGraph graphWithPrior = *g;
noiseModel::Diagonal::shared_ptr priorModel = noiseModel::Diagonal::Variances((Vector(3) << 1e-2, 1e-2, 1e-4));
graphWithPrior.add(PriorFactor<Pose2>(0, Pose2(), priorModel));
Values actual = lago::initialize(graphWithPrior);
NonlinearFactorGraph gmatlab;
Values expected;
string matlabFile = findExampleDataFile("optimizedNoisyToyGraph");
readG2o(matlabFile, gmatlab, expected);
NonlinearFactorGraph::shared_ptr gmatlab;
Values::shared_ptr expected;
boost::tie(gmatlab, expected) = readG2o(matlabFile);
BOOST_FOREACH(const Values::KeyValuePair& key_val, expected){
BOOST_FOREACH(const Values::KeyValuePair& key_val, *expected){
Key k = key_val.key;
EXPECT(assert_equal(expected.at<Pose2>(k), actual.at<Pose2>(k), 1e-2));
EXPECT(assert_equal(expected->at<Pose2>(k), actual.at<Pose2>(k), 1e-2));
}
}

View File

@ -62,7 +62,7 @@ string findExampleDataFile(const string& name) {
// If we did not return already, then we did not find the file
throw
std::invalid_argument(
invalid_argument(
"gtsam::findExampleDataFile could not find a matching file in\n"
SOURCE_TREE_DATASET_DIR " or\n"
INSTALLED_DATASET_DIR " named\n" +
@ -73,7 +73,7 @@ std::invalid_argument(
string createRewrittenFileName(const string& name) {
// Search source tree and installed location
if (!exists(fs::path(name))) {
throw std::invalid_argument(
throw invalid_argument(
"gtsam::createRewrittenFileName could not find a matching file in\n"
+ name);
}
@ -89,9 +89,8 @@ string createRewrittenFileName(const string& name) {
#endif
/* ************************************************************************* */
pair<NonlinearFactorGraph::shared_ptr, Values::shared_ptr> load2D(
pair<string, SharedNoiseModel> dataset, int maxID, bool addNoise,
bool smart, NoiseFormat noiseFormat,
GraphAndValues load2D(pair<string, SharedNoiseModel> dataset, int maxID,
bool addNoise, bool smart, NoiseFormat noiseFormat,
KernelFunctionType kernelFunctionType) {
return load2D(dataset.first, dataset.second, maxID, addNoise, smart,
noiseFormat, kernelFunctionType);
@ -111,7 +110,7 @@ static SharedNoiseModel readNoiseModel(ifstream& is, bool smart,
case NoiseFormatCOV:
// i.e., [ v1 v2 v3; v2' v4 v5; v3' v5' v6 ]
if (v1 == 0.0 || v4 == 0.0 || v6 == 0.0)
throw std::runtime_error(
throw runtime_error(
"load2D::readNoiseModel looks like this is not G2O matrix order");
M << v1, v2, v3, v2, v4, v5, v3, v5, v6;
break;
@ -121,12 +120,12 @@ static SharedNoiseModel readNoiseModel(ifstream& is, bool smart,
// inf_ff inf_fs inf_ss inf_rr inf_fr inf_sr
// i.e., [ v1 v2 v5; v2' v3 v6; v5' v6' v4 ]
if (v1 == 0.0 || v3 == 0.0 || v4 == 0.0)
throw std::invalid_argument(
throw invalid_argument(
"load2D::readNoiseModel looks like this is not TORO matrix order");
M << v1, v2, v5, v2, v3, v6, v5, v6, v4;
break;
default:
throw std::runtime_error("load2D: invalid noise format");
throw runtime_error("load2D: invalid noise format");
}
// Now, create a Gaussian noise model
@ -144,11 +143,11 @@ static SharedNoiseModel readNoiseModel(ifstream& is, bool smart,
model = noiseModel::Gaussian::Covariance(M, smart);
break;
default:
throw std::invalid_argument("load2D: invalid noise format");
throw invalid_argument("load2D: invalid noise format");
}
switch (kernelFunctionType) {
case KernelFunctionTypeQUADRATIC:
case KernelFunctionTypeNONE:
return model;
break;
case KernelFunctionTypeHUBER:
@ -160,20 +159,18 @@ static SharedNoiseModel readNoiseModel(ifstream& is, bool smart,
noiseModel::mEstimator::Tukey::Create(4.6851), model);
break;
default:
throw std::invalid_argument("load2D: invalid kernel function type");
throw invalid_argument("load2D: invalid kernel function type");
}
}
/* ************************************************************************* */
pair<NonlinearFactorGraph::shared_ptr, Values::shared_ptr> load2D(
const string& filename, SharedNoiseModel model, int maxID, bool addNoise,
bool smart, NoiseFormat noiseFormat,
GraphAndValues load2D(const string& filename, SharedNoiseModel model, int maxID,
bool addNoise, bool smart, NoiseFormat noiseFormat,
KernelFunctionType kernelFunctionType) {
cout << "Will try to read " << filename << endl;
ifstream is(filename.c_str());
if (!is)
throw std::invalid_argument("load2D: can not find file " + filename);
throw invalid_argument("load2D: can not find file " + filename);
Values::shared_ptr initial(new Values);
NonlinearFactorGraph::shared_ptr graph(new NonlinearFactorGraph);
@ -270,8 +267,8 @@ pair<NonlinearFactorGraph::shared_ptr, Values::shared_ptr> load2D(
is >> id1 >> id2 >> lmx >> lmy >> v1 >> v2 >> v3;
// Convert x,y to bearing,range
bearing = std::atan2(lmy, lmx);
range = std::sqrt(lmx * lmx + lmy * lmy);
bearing = atan2(lmy, lmx);
range = sqrt(lmx * lmx + lmy * lmy);
// In our experience, the x-y covariance on landmark sightings is not very good, so assume
// it describes the uncertainty at a range of 10m, and convert that to bearing/range uncertainty.
@ -319,12 +316,15 @@ pair<NonlinearFactorGraph::shared_ptr, Values::shared_ptr> load2D(
is.ignore(LINESIZE, '\n');
}
cout << "load2D read a graph file with " << initial->size()
<< " vertices and " << graph->nrFactors() << " factors" << endl;
return make_pair(graph, initial);
}
/* ************************************************************************* */
GraphAndValues load2D_robust(const string& filename,
noiseModel::Base::shared_ptr& model, int maxID) {
return load2D(filename, model, maxID);
}
/* ************************************************************************* */
void save2D(const NonlinearFactorGraph& graph, const Values& config,
const noiseModel::Diagonal::shared_ptr model, const string& filename) {
@ -357,6 +357,54 @@ void save2D(const NonlinearFactorGraph& graph, const Values& config,
stream.close();
}
/* ************************************************************************* */
GraphAndValues readG2o(const string& g2oFile,
KernelFunctionType kernelFunctionType) {
// just call load2D
int maxID = 0;
bool addNoise = false;
bool smart = true;
return load2D(g2oFile, SharedNoiseModel(), maxID, addNoise, smart,
NoiseFormatG2O, kernelFunctionType);
}
/* ************************************************************************* */
void writeG2o(const NonlinearFactorGraph& graph, const Values& estimate,
const string& filename) {
fstream stream(filename.c_str(), fstream::out);
// save poses
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, estimate) {
const Pose2& pose = dynamic_cast<const Pose2&>(key_value.value);
stream << "VERTEX_SE2 " << key_value.key << " " << pose.x() << " "
<< pose.y() << " " << pose.theta() << endl;
}
// save edges
BOOST_FOREACH(boost::shared_ptr<NonlinearFactor> factor_, graph) {
boost::shared_ptr<BetweenFactor<Pose2> > factor =
boost::dynamic_pointer_cast<BetweenFactor<Pose2> >(factor_);
if (!factor)
continue;
SharedNoiseModel model = factor->get_noiseModel();
boost::shared_ptr<noiseModel::Diagonal> diagonalModel =
boost::dynamic_pointer_cast<noiseModel::Diagonal>(model);
if (!diagonalModel)
throw invalid_argument(
"writeG2o: invalid noise model (current version assumes diagonal noise model)!");
Pose2 pose = factor->measured(); //.inverse();
stream << "EDGE_SE2 " << factor->key1() << " " << factor->key2() << " "
<< pose.x() << " " << pose.y() << " " << pose.theta() << " "
<< diagonalModel->precision(0) << " " << 0.0 << " " << 0.0 << " "
<< diagonalModel->precision(1) << " " << 0.0 << " "
<< diagonalModel->precision(2) << endl;
}
stream.close();
}
/* ************************************************************************* */
bool load3D(const string& filename) {
ifstream is(filename.c_str());
@ -399,105 +447,6 @@ bool load3D(const string& filename) {
return true;
}
/* ************************************************************************* */
pair<NonlinearFactorGraph::shared_ptr, Values::shared_ptr> load2D_robust(
const string& filename, noiseModel::Base::shared_ptr& model, int maxID) {
cout << "Will try to read " << filename << endl;
ifstream is(filename.c_str());
if (!is)
throw std::invalid_argument("load2D: can not find the file!");
Values::shared_ptr initial(new Values);
NonlinearFactorGraph::shared_ptr graph(new NonlinearFactorGraph);
string tag;
// load the poses
while (is) {
is >> tag;
if ((tag == "VERTEX2") || (tag == "VERTEX")) {
int id;
double x, y, yaw;
is >> id >> x >> y >> yaw;
// optional filter
if (maxID && id >= maxID)
continue;
initial->insert(id, Pose2(x, y, yaw));
}
is.ignore(LINESIZE, '\n');
}
is.clear(); /* clears the end-of-file and error flags */
is.seekg(0, ios::beg);
// Create a sampler with random number generator
Sampler sampler(42u);
// load the factors
while (is) {
is >> tag;
if ((tag == "EDGE2") || (tag == "EDGE") || (tag == "ODOMETRY")) {
int id1, id2;
double x, y, yaw;
is >> id1 >> id2 >> x >> y >> yaw;
Matrix m = eye(3);
is >> m(0, 0) >> m(0, 1) >> m(1, 1) >> m(2, 2) >> m(0, 2) >> m(1, 2);
m(2, 0) = m(0, 2);
m(2, 1) = m(1, 2);
m(1, 0) = m(0, 1);
// optional filter
if (maxID && (id1 >= maxID || id2 >= maxID))
continue;
Pose2 l1Xl2(x, y, yaw);
// Insert vertices if pure odometry file
if (!initial->exists(id1))
initial->insert(id1, Pose2());
if (!initial->exists(id2))
initial->insert(id2, initial->at<Pose2>(id1) * l1Xl2);
NonlinearFactor::shared_ptr factor(
new BetweenFactor<Pose2>(id1, id2, l1Xl2, model));
graph->push_back(factor);
}
if (tag == "BR") {
int id1, id2;
double bearing, range, bearing_std, range_std;
is >> id1 >> id2 >> bearing >> range >> bearing_std >> range_std;
// optional filter
if (maxID && (id1 >= maxID || id2 >= maxID))
continue;
noiseModel::Diagonal::shared_ptr measurementNoise =
noiseModel::Diagonal::Sigmas((Vector(2) << bearing_std, range_std));
*graph += BearingRangeFactor<Pose2, Point2>(id1, id2, bearing, range,
measurementNoise);
// Insert poses or points if they do not exist yet
if (!initial->exists(id1))
initial->insert(id1, Pose2());
if (!initial->exists(id2)) {
Pose2 pose = initial->at<Pose2>(id1);
Point2 local(cos(bearing) * range, sin(bearing) * range);
Point2 global = pose.transform_from(local);
initial->insert(id2, global);
}
}
is.ignore(LINESIZE, '\n');
}
cout << "load2D read a graph file with " << initial->size()
<< " vertices and " << graph->nrFactors() << " factors" << endl;
return make_pair(graph, initial);
}
/* ************************************************************************* */
Rot3 openGLFixedRotation() { // this is due to different convention for cameras in gtsam and openGL
/* R = [ 1 0 0
@ -617,61 +566,6 @@ bool readBundler(const string& filename, SfM_data &data) {
return true;
}
/* ************************************************************************* */
bool readG2o(const std::string& g2oFile, NonlinearFactorGraph& graph,
Values& initial, KernelFunctionType kernelFunctionType) {
// just call load2D
NonlinearFactorGraph::shared_ptr graph_ptr;
Values::shared_ptr initial_ptr;
int maxID = 0;
bool addNoise = false;
bool smart = true;
boost::tie(graph_ptr, initial_ptr) = load2D(g2oFile, SharedNoiseModel(),
maxID, addNoise, smart, NoiseFormatG2O, kernelFunctionType);
graph = *graph_ptr;
initial = *initial_ptr;
return true;
}
/* ************************************************************************* */
bool writeG2o(const std::string& filename, const NonlinearFactorGraph& graph,
const Values& estimate) {
fstream stream(filename.c_str(), fstream::out);
// save poses
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, estimate) {
const Pose2& pose = dynamic_cast<const Pose2&>(key_value.value);
stream << "VERTEX_SE2 " << key_value.key << " " << pose.x() << " "
<< pose.y() << " " << pose.theta() << endl;
}
// save edges
BOOST_FOREACH(boost::shared_ptr<NonlinearFactor> factor_, graph) {
boost::shared_ptr<BetweenFactor<Pose2> > factor =
boost::dynamic_pointer_cast<BetweenFactor<Pose2> >(factor_);
if (!factor)
continue;
SharedNoiseModel model = factor->get_noiseModel();
boost::shared_ptr<noiseModel::Diagonal> diagonalModel =
boost::dynamic_pointer_cast<noiseModel::Diagonal>(model);
if (!diagonalModel)
throw std::invalid_argument(
"writeG2o: invalid noise model (current version assumes diagonal noise model)!");
Pose2 pose = factor->measured(); //.inverse();
stream << "EDGE_SE2 " << factor->key1() << " " << factor->key2() << " "
<< pose.x() << " " << pose.y() << " " << pose.theta() << " "
<< diagonalModel->precision(0) << " " << 0.0 << " " << 0.0 << " "
<< diagonalModel->precision(1) << " " << 0.0 << " "
<< diagonalModel->precision(2) << endl;
}
stream.close();
return true;
}
/* ************************************************************************* */
bool readBAL(const string& filename, SfM_data &data) {
// Load the data file

View File

@ -60,10 +60,14 @@ enum NoiseFormat {
NoiseFormatCOV ///< Covariance matrix C11, C12, C13, C22, C23, C33
};
/// Robust kernel type to wrap around quadratic noise model
enum KernelFunctionType {
KernelFunctionTypeQUADRATIC, KernelFunctionTypeHUBER, KernelFunctionTypeTUKEY
KernelFunctionTypeNONE, KernelFunctionTypeHUBER, KernelFunctionTypeTUKEY
};
/// Return type for load functions
typedef std::pair<NonlinearFactorGraph::shared_ptr, Values::shared_ptr> GraphAndValues;
/**
* Load TORO 2D Graph
* @param dataset/model pair as constructed by [dataset]
@ -71,36 +75,58 @@ enum KernelFunctionType {
* @param addNoise add noise to the edges
* @param smart try to reduce complexity of covariance to cheapest model
*/
GTSAM_EXPORT std::pair<NonlinearFactorGraph::shared_ptr, Values::shared_ptr> load2D(
GTSAM_EXPORT GraphAndValues load2D(
std::pair<std::string, SharedNoiseModel> dataset, int maxID = 0,
bool addNoise = false,
bool smart = true, //
NoiseFormat noiseFormat = NoiseFormatGRAPH,
KernelFunctionType kernelFunctionType = KernelFunctionTypeQUADRATIC);
KernelFunctionType kernelFunctionType = KernelFunctionTypeNONE);
/**
* Load TORO 2D Graph
* Load TORO/G2O style graph files
* @param filename
* @param model optional noise model to use instead of one specified by file
* @param maxID if non-zero cut out vertices >= maxID
* @param addNoise add noise to the edges
* @param smart try to reduce complexity of covariance to cheapest model
* @param noiseFormat how noise parameters are stored
* @param kernelFunctionType whether to wrap the noise model in a robust kernel
* @return graph and initial values
*/
GTSAM_EXPORT std::pair<NonlinearFactorGraph::shared_ptr, Values::shared_ptr> load2D(
const std::string& filename, SharedNoiseModel model = SharedNoiseModel(),
int maxID = 0, bool addNoise = false, bool smart = true,
NoiseFormat noiseFormat = NoiseFormatGRAPH, //
KernelFunctionType kernelFunctionType = KernelFunctionTypeQUADRATIC);
GTSAM_EXPORT GraphAndValues load2D(const std::string& filename,
SharedNoiseModel model = SharedNoiseModel(), int maxID = 0, bool addNoise =
false, bool smart = true, NoiseFormat noiseFormat = NoiseFormatGRAPH, //
KernelFunctionType kernelFunctionType = KernelFunctionTypeNONE);
GTSAM_EXPORT std::pair<NonlinearFactorGraph::shared_ptr, Values::shared_ptr> load2D_robust(
const std::string& filename, noiseModel::Base::shared_ptr& model,
int maxID = 0);
/// @deprecated load2D now allows for arbitrary models and wrapping a robust kernel
GTSAM_EXPORT GraphAndValues load2D_robust(const std::string& filename,
noiseModel::Base::shared_ptr& model, int maxID = 0);
/** save 2d graph */
GTSAM_EXPORT void save2D(const NonlinearFactorGraph& graph,
const Values& config, const noiseModel::Diagonal::shared_ptr model,
const std::string& filename);
/**
* @brief This function parses a g2o file and stores the measurements into a
* NonlinearFactorGraph and the initial guess in a Values structure
* @param filename The name of the g2o file
* @param kernelFunctionType whether to wrap the noise model in a robust kernel
* @return graph and initial values
*/
GTSAM_EXPORT GraphAndValues readG2o(const std::string& g2oFile,
KernelFunctionType kernelFunctionType = KernelFunctionTypeNONE);
/**
* @brief This function writes a g2o file from
* NonlinearFactorGraph and a Values structure
* @param filename The name of the g2o file to write
* @param graph NonlinearFactor graph storing the measurements
* @param estimate Values
*/
GTSAM_EXPORT void writeG2o(const NonlinearFactorGraph& graph,
const Values& estimate, const std::string& filename);
/**
* Load TORO 3D Graph
*/
@ -143,27 +169,6 @@ struct SfM_data {
*/
GTSAM_EXPORT bool readBundler(const std::string& filename, SfM_data &data);
/**
* @brief This function parses a g2o file and stores the measurements into a
* NonlinearFactorGraph and the initial guess in a Values structure
* @param filename The name of the g2o file
* @param graph NonlinearFactor graph storing the measurements (EDGE_SE2). NOTE: information matrix is assumed diagonal.
* @return initial Values containing the initial guess (VERTEX_SE2)
*/
GTSAM_EXPORT bool readG2o(const std::string& g2oFile,
NonlinearFactorGraph& graph, Values& initial,
KernelFunctionType kernelFunctionType = KernelFunctionTypeQUADRATIC);
/**
* @brief This function writes a g2o file from
* NonlinearFactorGraph and a Values structure
* @param filename The name of the g2o file to write
* @param graph NonlinearFactor graph storing the measurements (EDGE_SE2)
* @return estimate Values containing the values (VERTEX_SE2)
*/
GTSAM_EXPORT bool writeG2o(const std::string& filename,
const NonlinearFactorGraph& graph, const Values& estimate);
/**
* @brief This function parses a "Bundle Adjustment in the Large" (BAL) file and stores the data into a
* SfM_data structure

View File

@ -81,9 +81,9 @@ TEST( dataSet, Balbianello)
TEST( dataSet, readG2o)
{
const string g2oFile = findExampleDataFile("pose2example");
NonlinearFactorGraph actualGraph;
Values actualValues;
readG2o(g2oFile, actualGraph, actualValues);
NonlinearFactorGraph::shared_ptr actualGraph;
Values::shared_ptr actualValues;
boost::tie(actualGraph, actualValues) = readG2o(g2oFile);
Values expectedValues;
expectedValues.insert(0, Pose2(0.000000, 0.000000, 0.000000));
@ -97,7 +97,7 @@ TEST( dataSet, readG2o)
expectedValues.insert(8, Pose2(4.128877, 2.321481, -1.825391));
expectedValues.insert(9, Pose2(3.884653, 1.327509, -1.953016));
expectedValues.insert(10, Pose2(3.531067, 0.388263, -2.148934));
EXPECT(assert_equal(expectedValues,actualValues,1e-5));
EXPECT(assert_equal(expectedValues,*actualValues,1e-5));
noiseModel::Diagonal::shared_ptr model = noiseModel::Diagonal::Precisions((Vector(3) << 44.721360, 44.721360, 30.901699));
NonlinearFactorGraph expectedGraph;
@ -113,16 +113,16 @@ TEST( dataSet, readG2o)
expectedGraph.add(BetweenFactor<Pose2>(9,10, Pose2(1.003350, 0.022250, -0.195918), model));
expectedGraph.add(BetweenFactor<Pose2>(5, 9, Pose2(0.033943, 0.032439, 3.073637), model));
expectedGraph.add(BetweenFactor<Pose2>(3,10, Pose2(0.044020, 0.988477, -1.553511), model));
EXPECT(assert_equal(actualGraph,expectedGraph,1e-5));
EXPECT(assert_equal(expectedGraph,*actualGraph,1e-5));
}
/* ************************************************************************* */
TEST( dataSet, readG2oHuber)
{
const string g2oFile = findExampleDataFile("pose2example");
NonlinearFactorGraph actualGraph;
Values actualValues;
readG2o(g2oFile, actualGraph, actualValues, KernelFunctionTypeHUBER);
NonlinearFactorGraph::shared_ptr actualGraph;
Values::shared_ptr actualValues;
boost::tie(actualGraph, actualValues) = readG2o(g2oFile, KernelFunctionTypeHUBER);
noiseModel::Diagonal::shared_ptr baseModel = noiseModel::Diagonal::Precisions((Vector(3) << 44.721360, 44.721360, 30.901699));
SharedNoiseModel model = noiseModel::Robust::Create(noiseModel::mEstimator::Huber::Create(1.345), baseModel);
@ -140,16 +140,16 @@ TEST( dataSet, readG2oHuber)
expectedGraph.add(BetweenFactor<Pose2>(9,10, Pose2(1.003350, 0.022250, -0.195918), model));
expectedGraph.add(BetweenFactor<Pose2>(5, 9, Pose2(0.033943, 0.032439, 3.073637), model));
expectedGraph.add(BetweenFactor<Pose2>(3,10, Pose2(0.044020, 0.988477, -1.553511), model));
EXPECT(assert_equal(actualGraph,expectedGraph,1e-5));
EXPECT(assert_equal(expectedGraph,*actualGraph,1e-5));
}
/* ************************************************************************* */
TEST( dataSet, readG2oTukey)
{
const string g2oFile = findExampleDataFile("pose2example");
NonlinearFactorGraph actualGraph;
Values actualValues;
readG2o(g2oFile, actualGraph, actualValues, KernelFunctionTypeTUKEY);
NonlinearFactorGraph::shared_ptr actualGraph;
Values::shared_ptr actualValues;
boost::tie(actualGraph, actualValues) = readG2o(g2oFile, KernelFunctionTypeTUKEY);
noiseModel::Diagonal::shared_ptr baseModel = noiseModel::Diagonal::Precisions((Vector(3) << 44.721360, 44.721360, 30.901699));
SharedNoiseModel model = noiseModel::Robust::Create(noiseModel::mEstimator::Tukey::Create(4.6851), baseModel);
@ -167,25 +167,25 @@ TEST( dataSet, readG2oTukey)
expectedGraph.add(BetweenFactor<Pose2>(9,10, Pose2(1.003350, 0.022250, -0.195918), model));
expectedGraph.add(BetweenFactor<Pose2>(5, 9, Pose2(0.033943, 0.032439, 3.073637), model));
expectedGraph.add(BetweenFactor<Pose2>(3,10, Pose2(0.044020, 0.988477, -1.553511), model));
EXPECT(assert_equal(actualGraph,expectedGraph,1e-5));
EXPECT(assert_equal(expectedGraph,*actualGraph,1e-5));
}
/* ************************************************************************* */
TEST( dataSet, writeG2o)
{
const string g2oFile = findExampleDataFile("pose2example");
NonlinearFactorGraph expectedGraph;
Values expectedValues;
readG2o(g2oFile, expectedGraph, expectedValues);
NonlinearFactorGraph::shared_ptr expectedGraph;
Values::shared_ptr expectedValues;
boost::tie(expectedGraph, expectedValues) = readG2o(g2oFile);
const string filenameToWrite = createRewrittenFileName(g2oFile);
writeG2o(filenameToWrite, expectedGraph, expectedValues);
writeG2o(*expectedGraph, *expectedValues, filenameToWrite);
NonlinearFactorGraph actualGraph;
Values actualValues;
readG2o(filenameToWrite, actualGraph, actualValues);
EXPECT(assert_equal(expectedValues,actualValues,1e-5));
EXPECT(assert_equal(actualGraph,expectedGraph,1e-5));
NonlinearFactorGraph::shared_ptr actualGraph;
Values::shared_ptr actualValues;
boost::tie(actualGraph, actualValues) = readG2o(filenameToWrite);
EXPECT(assert_equal(*expectedValues,*actualValues,1e-5));
EXPECT(assert_equal(*expectedGraph,*actualGraph,1e-5));
}
/* ************************************************************************* */