update ImuFactorExample.py
parent
bc95b41efc
commit
7114cf93d3
|
@ -12,15 +12,17 @@ Author: Frank Dellaert, Varun Agrawal
|
||||||
|
|
||||||
from __future__ import print_function
|
from __future__ import print_function
|
||||||
|
|
||||||
|
import argparse
|
||||||
import math
|
import math
|
||||||
|
|
||||||
import gtsam
|
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
import numpy as np
|
|
||||||
from gtsam.gtsam.symbol_shorthand import B, V, X
|
|
||||||
|
|
||||||
from gtsam.utils.plot import plot_pose3
|
|
||||||
from mpl_toolkits.mplot3d import Axes3D
|
from mpl_toolkits.mplot3d import Axes3D
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
import gtsam
|
||||||
|
from gtsam.gtsam.symbol_shorthand import B, V, X
|
||||||
|
from gtsam.utils.plot import plot_pose3
|
||||||
|
|
||||||
|
|
||||||
from PreintegrationExample import POSES_FIG, PreintegrationExample
|
from PreintegrationExample import POSES_FIG, PreintegrationExample
|
||||||
|
|
||||||
|
@ -32,24 +34,27 @@ np.set_printoptions(precision=3, suppress=True)
|
||||||
|
|
||||||
class ImuFactorExample(PreintegrationExample):
|
class ImuFactorExample(PreintegrationExample):
|
||||||
|
|
||||||
def __init__(self):
|
def __init__(self, twist_scenario="sick_twist"):
|
||||||
self.velocity = np.array([2, 0, 0])
|
self.velocity = np.array([2, 0, 0])
|
||||||
self.priorNoise = gtsam.noiseModel.Isotropic.Sigma(6, 0.1)
|
self.priorNoise = gtsam.noiseModel.Isotropic.Sigma(6, 0.1)
|
||||||
self.velNoise = gtsam.noiseModel.Isotropic.Sigma(3, 0.1)
|
self.velNoise = gtsam.noiseModel.Isotropic.Sigma(3, 0.1)
|
||||||
|
|
||||||
# Choose one of these twists to change scenario:
|
# Choose one of these twists to change scenario:
|
||||||
zero_twist = (np.zeros(3), np.zeros(3))
|
twist_scenarios = dict(
|
||||||
forward_twist = (np.zeros(3), self.velocity)
|
zero_twist=(np.zeros(3), np.zeros(3)),
|
||||||
loop_twist = (np.array([0, -math.radians(30), 0]), self.velocity)
|
forward_twist=(np.zeros(3), self.velocity),
|
||||||
sick_twist = (
|
loop_twist=(np.array([0, -math.radians(30), 0]), self.velocity),
|
||||||
np.array([math.radians(30), -math.radians(30), 0]), self.velocity)
|
sick_twist=(np.array([math.radians(30), -math.radians(30), 0]),
|
||||||
|
self.velocity)
|
||||||
|
)
|
||||||
|
|
||||||
accBias = np.array([-0.3, 0.1, 0.2])
|
accBias = np.array([-0.3, 0.1, 0.2])
|
||||||
gyroBias = np.array([0.1, 0.3, -0.1])
|
gyroBias = np.array([0.1, 0.3, -0.1])
|
||||||
bias = gtsam.imuBias.ConstantBias(accBias, gyroBias)
|
bias = gtsam.imuBias.ConstantBias(accBias, gyroBias)
|
||||||
|
|
||||||
dt = 1e-2
|
dt = 1e-2
|
||||||
super(ImuFactorExample, self).__init__(sick_twist, bias, dt)
|
super(ImuFactorExample, self).__init__(twist_scenarios[twist_scenario],
|
||||||
|
bias, dt)
|
||||||
|
|
||||||
def addPrior(self, i, graph):
|
def addPrior(self, i, graph):
|
||||||
state = self.scenario.navState(i)
|
state = self.scenario.navState(i)
|
||||||
|
@ -58,65 +63,73 @@ class ImuFactorExample(PreintegrationExample):
|
||||||
graph.push_back(gtsam.PriorFactorVector(
|
graph.push_back(gtsam.PriorFactorVector(
|
||||||
V(i), state.velocity(), self.velNoise))
|
V(i), state.velocity(), self.velNoise))
|
||||||
|
|
||||||
def run(self):
|
def run(self, T=12, compute_covariances=False, verbose=True):
|
||||||
graph = gtsam.NonlinearFactorGraph()
|
graph = gtsam.NonlinearFactorGraph()
|
||||||
|
|
||||||
# initialize data structure for pre-integrated IMU measurements
|
# initialize data structure for pre-integrated IMU measurements
|
||||||
pim = gtsam.PreintegratedImuMeasurements(self.params, self.actualBias)
|
pim = gtsam.PreintegratedImuMeasurements(self.params, self.actualBias)
|
||||||
|
|
||||||
T = 12
|
T = 12
|
||||||
num_poses = T + 1 # assumes 1 factor per second
|
num_poses = T # assumes 1 factor per second
|
||||||
initial = gtsam.Values()
|
initial = gtsam.Values()
|
||||||
initial.insert(BIAS_KEY, self.actualBias)
|
initial.insert(BIAS_KEY, self.actualBias)
|
||||||
for i in range(num_poses):
|
|
||||||
state_i = self.scenario.navState(float(i))
|
|
||||||
|
|
||||||
poseNoise = gtsam.Pose3.Expmap(np.random.randn(3)*0.1)
|
|
||||||
pose = state_i.pose().compose(poseNoise)
|
|
||||||
|
|
||||||
velocity = state_i.velocity() + np.random.randn(3)*0.1
|
|
||||||
|
|
||||||
initial.insert(X(i), pose)
|
|
||||||
initial.insert(V(i), velocity)
|
|
||||||
|
|
||||||
# simulate the loop
|
# simulate the loop
|
||||||
i = 0 # state index
|
i = 0 # state index
|
||||||
actual_state_i = self.scenario.navState(0)
|
initial_state_i = self.scenario.navState(0)
|
||||||
|
initial.insert(X(i), initial_state_i.pose())
|
||||||
|
initial.insert(V(i), initial_state_i.velocity())
|
||||||
|
|
||||||
|
# add prior on beginning
|
||||||
|
self.addPrior(0, graph)
|
||||||
|
|
||||||
for k, t in enumerate(np.arange(0, T, self.dt)):
|
for k, t in enumerate(np.arange(0, T, self.dt)):
|
||||||
# get measurements and add them to PIM
|
# get measurements and add them to PIM
|
||||||
measuredOmega = self.runner.measuredAngularVelocity(t)
|
measuredOmega = self.runner.measuredAngularVelocity(t)
|
||||||
measuredAcc = self.runner.measuredSpecificForce(t)
|
measuredAcc = self.runner.measuredSpecificForce(t)
|
||||||
pim.integrateMeasurement(measuredAcc, measuredOmega, self.dt)
|
pim.integrateMeasurement(measuredAcc, measuredOmega, self.dt)
|
||||||
|
|
||||||
poseNoise = gtsam.Pose3.Expmap(np.random.randn(3)*0.1)
|
|
||||||
|
|
||||||
actual_state_i = gtsam.NavState(
|
|
||||||
actual_state_i.pose().compose(poseNoise),
|
|
||||||
actual_state_i.velocity() + np.random.randn(3)*0.1)
|
|
||||||
|
|
||||||
# Plot IMU many times
|
# Plot IMU many times
|
||||||
if k % 10 == 0:
|
if k % 10 == 0:
|
||||||
self.plotImu(t, measuredOmega, measuredAcc)
|
self.plotImu(t, measuredOmega, measuredAcc)
|
||||||
|
|
||||||
# Plot every second
|
if (k+1) % int(1 / self.dt) == 0:
|
||||||
if k % int(1 / self.dt) == 0:
|
# Plot every second
|
||||||
self.plotGroundTruthPose(t)
|
self.plotGroundTruthPose(t, scale=1)
|
||||||
|
plt.title("Ground Truth Trajectory")
|
||||||
|
|
||||||
# create IMU factor every second
|
# create IMU factor every second
|
||||||
if (k + 1) % int(1 / self.dt) == 0:
|
factor = gtsam.ImuFactor(X(i), V(i),
|
||||||
factor = gtsam.ImuFactor(X(i), V(i), X(
|
X(i + 1), V(i + 1),
|
||||||
i + 1), V(i + 1), BIAS_KEY, pim)
|
BIAS_KEY, pim)
|
||||||
graph.push_back(factor)
|
graph.push_back(factor)
|
||||||
if True:
|
|
||||||
|
if verbose:
|
||||||
print(factor)
|
print(factor)
|
||||||
print(pim.predict(actual_state_i, self.actualBias))
|
print(pim.predict(actual_state_i, self.actualBias))
|
||||||
|
|
||||||
pim.resetIntegration()
|
pim.resetIntegration()
|
||||||
|
|
||||||
|
rotationNoise = gtsam.Rot3.Expmap(np.random.randn(3)*0.1)
|
||||||
|
translationNoise = gtsam.Point3(*np.random.randn(3)*1)
|
||||||
|
poseNoise = gtsam.Pose3(rotationNoise, translationNoise)
|
||||||
|
|
||||||
actual_state_i = self.scenario.navState(t + self.dt)
|
actual_state_i = self.scenario.navState(t + self.dt)
|
||||||
|
print("Actual state at {0}:\n{1}".format(
|
||||||
|
t+self.dt, actual_state_i))
|
||||||
|
|
||||||
|
noisy_state_i = gtsam.NavState(
|
||||||
|
actual_state_i.pose().compose(poseNoise),
|
||||||
|
actual_state_i.velocity() + np.random.randn(3)*0.1)
|
||||||
|
|
||||||
|
initial.insert(X(i+1), noisy_state_i.pose())
|
||||||
|
initial.insert(V(i+1), noisy_state_i.velocity())
|
||||||
i += 1
|
i += 1
|
||||||
|
|
||||||
# add priors on beginning and end
|
# add priors on end
|
||||||
self.addPrior(0, graph)
|
# self.addPrior(num_poses - 1, graph)
|
||||||
self.addPrior(num_poses - 1, graph)
|
|
||||||
|
initial.print_("Initial values:")
|
||||||
|
|
||||||
# optimize using Levenberg-Marquardt optimization
|
# optimize using Levenberg-Marquardt optimization
|
||||||
params = gtsam.LevenbergMarquardtParams()
|
params = gtsam.LevenbergMarquardtParams()
|
||||||
|
@ -124,29 +137,46 @@ class ImuFactorExample(PreintegrationExample):
|
||||||
optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initial, params)
|
optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initial, params)
|
||||||
result = optimizer.optimize()
|
result = optimizer.optimize()
|
||||||
|
|
||||||
# Calculate and print marginal covariances
|
result.print_("Optimized values:")
|
||||||
marginals = gtsam.Marginals(graph, result)
|
|
||||||
print("Covariance on bias:\n", marginals.marginalCovariance(BIAS_KEY))
|
if compute_covariances:
|
||||||
for i in range(num_poses):
|
# Calculate and print marginal covariances
|
||||||
print("Covariance on pose {}:\n{}\n".format(
|
marginals = gtsam.Marginals(graph, result)
|
||||||
i, marginals.marginalCovariance(X(i))))
|
print("Covariance on bias:\n",
|
||||||
print("Covariance on vel {}:\n{}\n".format(
|
marginals.marginalCovariance(BIAS_KEY))
|
||||||
i, marginals.marginalCovariance(V(i))))
|
for i in range(num_poses):
|
||||||
|
print("Covariance on pose {}:\n{}\n".format(
|
||||||
|
i, marginals.marginalCovariance(X(i))))
|
||||||
|
print("Covariance on vel {}:\n{}\n".format(
|
||||||
|
i, marginals.marginalCovariance(V(i))))
|
||||||
|
|
||||||
# Plot resulting poses
|
# Plot resulting poses
|
||||||
i = 0
|
i = 0
|
||||||
while result.exists(X(i)):
|
while result.exists(X(i)):
|
||||||
pose_i = result.atPose3(X(i))
|
pose_i = result.atPose3(X(i))
|
||||||
plot_pose3(POSES_FIG, pose_i, 0.1)
|
plot_pose3(POSES_FIG+1, pose_i, 1)
|
||||||
i += 1
|
i += 1
|
||||||
|
plt.title("Estimated Trajectory")
|
||||||
|
|
||||||
gtsam.utils.plot.set_axes_equal(POSES_FIG)
|
gtsam.utils.plot.set_axes_equal(POSES_FIG+1)
|
||||||
|
|
||||||
print(result.atConstantBias(BIAS_KEY))
|
print("Bias Values", result.atConstantBias(BIAS_KEY))
|
||||||
|
|
||||||
plt.ioff()
|
plt.ioff()
|
||||||
plt.show()
|
plt.show()
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
ImuFactorExample().run()
|
parser = argparse.ArgumentParser("ImuFactorExample.py")
|
||||||
|
parser.add_argument("--twist_scenario",
|
||||||
|
default="sick_twist",
|
||||||
|
choices=("zero_twist", "forward_twist", "loop_twist", "sick_twist"))
|
||||||
|
parser.add_argument("--time", "-T", default=12,
|
||||||
|
type=int, help="Total time in seconds")
|
||||||
|
parser.add_argument("--compute_covariances",
|
||||||
|
default=False, action='store_true')
|
||||||
|
parser.add_argument("--verbose", default=False, action='store_true')
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
ImuFactorExample(args.twist_scenario).run(
|
||||||
|
args.time, args.compute_covariances, args.verbose)
|
||||||
|
|
Loading…
Reference in New Issue