GTSAM examples, cython versions

release/4.3a0
Frank Dellaert 2018-09-27 22:46:24 -04:00
parent 4ba7c59330
commit 7097880d49
6 changed files with 308 additions and 0 deletions

View File

@ -0,0 +1,38 @@
#!/usr/bin/env python
from __future__ import print_function
import numpy as np
import gtsam
# Create an empty nonlinear factor graph
graph = gtsam.NonlinearFactorGraph()
# Add a prior on the first pose, setting it to the origin
# A prior factor consists of a mean and a noise model (covariance matrix)
priorMean = gtsam.Pose2(0.0, 0.0, 0.0) # prior at origin
priorNoise = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.3, 0.3, 0.1]))
graph.add(gtsam.PriorFactorPose2(1, priorMean, priorNoise))
# Add odometry factors
odometry = gtsam.Pose2(2.0, 0.0, 0.0)
# For simplicity, we will use the same noise model for each odometry factor
odometryNoise = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.2, 0.2, 0.1]))
# Create odometry (Between) factors between consecutive poses
graph.add(gtsam.BetweenFactorPose2(1, 2, odometry, odometryNoise))
graph.add(gtsam.BetweenFactorPose2(2, 3, odometry, odometryNoise))
graph.print_("\nFactor Graph:\n")
# Create the data structure to hold the initialEstimate estimate to the solution
# For illustrative purposes, these have been deliberately set to incorrect values
initial = gtsam.Values()
initial.insert(1, gtsam.Pose2(0.5, 0.0, 0.2))
initial.insert(2, gtsam.Pose2(2.3, 0.1, -0.2))
initial.insert(3, gtsam.Pose2(4.1, 0.1, 0.1))
initial.print_("\nInitial Estimate:\n")
# optimize using Levenberg-Marquardt optimization
params = gtsam.LevenbergMarquardtParams()
optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initial, params)
result = optimizer.optimize()
result.print_("\nFinal Result:\n")

View File

@ -0,0 +1,75 @@
from __future__ import print_function
import math
import numpy as np
import gtsam
def Vector3(x, y, z): return np.array([x, y, z])
# 1. Create a factor graph container and add factors to it
graph = gtsam.NonlinearFactorGraph()
# 2a. Add a prior on the first pose, setting it to the origin
# A prior factor consists of a mean and a noise model (covariance matrix)
priorNoise = gtsam.noiseModel_Diagonal.Sigmas(Vector3(0.3, 0.3, 0.1))
graph.add(gtsam.PriorFactorPose2(1, gtsam.Pose2(0, 0, 0), priorNoise))
# For simplicity, we will use the same noise model for odometry and loop closures
model = gtsam.noiseModel_Diagonal.Sigmas(Vector3(0.2, 0.2, 0.1))
# 2b. Add odometry factors
# Create odometry (Between) factors between consecutive poses
graph.add(gtsam.BetweenFactorPose2(1, 2, gtsam.Pose2(2, 0, 0), model))
graph.add(gtsam.BetweenFactorPose2(
2, 3, gtsam.Pose2(2, 0, math.pi / 2), model))
graph.add(gtsam.BetweenFactorPose2(
3, 4, gtsam.Pose2(2, 0, math.pi / 2), model))
graph.add(gtsam.BetweenFactorPose2(
4, 5, gtsam.Pose2(2, 0, math.pi / 2), model))
# 2c. Add the loop closure constraint
# This factor encodes the fact that we have returned to the same pose. In real
# systems, these constraints may be identified in many ways, such as appearance-based
# techniques with camera images. We will use another Between Factor to enforce this constraint:
graph.add(gtsam.BetweenFactorPose2(
5, 2, gtsam.Pose2(2, 0, math.pi / 2), model))
graph.print_("\nFactor Graph:\n") # print
# 3. Create the data structure to hold the initial_estimate estimate to the
# solution. For illustrative purposes, these have been deliberately set to incorrect values
initial_estimate = gtsam.Values()
initial_estimate.insert(1, gtsam.Pose2(0.5, 0.0, 0.2))
initial_estimate.insert(2, gtsam.Pose2(2.3, 0.1, -0.2))
initial_estimate.insert(3, gtsam.Pose2(4.1, 0.1, math.pi / 2))
initial_estimate.insert(4, gtsam.Pose2(4.0, 2.0, math.pi))
initial_estimate.insert(5, gtsam.Pose2(2.1, 2.1, -math.pi / 2))
initial_estimate.print_("\nInitial Estimate:\n") # print
# 4. Optimize the initial values using a Gauss-Newton nonlinear optimizer
# The optimizer accepts an optional set of configuration parameters,
# controlling things like convergence criteria, the type of linear
# system solver to use, and the amount of information displayed during
# optimization. We will set a few parameters as a demonstration.
parameters = gtsam.GaussNewtonParams()
# Stop iterating once the change in error between steps is less than this value
parameters.setRelativeErrorTol(1e-5)
# Do not perform more than N iteration steps
parameters.setMaxIterations(100)
# Create the optimizer ...
optimizer = gtsam.GaussNewtonOptimizer(graph, initial_estimate, parameters)
# ... and optimize
result = optimizer.optimize()
result.print_("Final Result:\n")
# 5. Calculate and print marginal covariances for all variables
marginals = gtsam.Marginals(graph, result)
print("x1 covariance:\n", marginals.marginalCovariance(1))
print("x2 covariance:\n", marginals.marginalCovariance(2))
print("x3 covariance:\n", marginals.marginalCovariance(3))
print("x4 covariance:\n", marginals.marginalCovariance(4))
print("x5 covariance:\n", marginals.marginalCovariance(5))

View File

@ -0,0 +1,4 @@
These examples are almost identical to the old handwritten python wrapper
examples. However, there are just some slight name changes, for example .print
becomes .print_, and noiseModel.Diagonal becomes noiseModel_Diagonal etc...
Also, annoyingly, instead of gtsam.Symbol('b',0) we now need to say gtsam.symbol(ord('b'), 0))

View File

@ -0,0 +1,37 @@
"""
A structure-from-motion example with landmarks
- The landmarks form a 10 meter cube
- The robot rotates around the landmarks, always facing towards the cube
"""
import numpy as np
import gtsam
def createPoints():
# Create the set of ground-truth landmarks
points = [gtsam.Point3(10.0, 10.0, 10.0),
gtsam.Point3(-10.0, 10.0, 10.0),
gtsam.Point3(-10.0, -10.0, 10.0),
gtsam.Point3(10.0, -10.0, 10.0),
gtsam.Point3(10.0, 10.0, -10.0),
gtsam.Point3(-10.0, 10.0, -10.0),
gtsam.Point3(-10.0, -10.0, -10.0),
gtsam.Point3(10.0, -10.0, -10.0)]
return points
def createPoses(K):
# Create the set of ground-truth poses
radius = 30.0
angles = np.linspace(0, 2*np.pi, 8, endpoint=False)
up = gtsam.Point3(0, 0, 1)
target = gtsam.Point3(0, 0, 0)
poses = []
for theta in angles:
position = gtsam.Point3(radius*np.cos(theta),
radius*np.sin(theta), 0.0)
camera = gtsam.PinholeCameraCal3_S2.Lookat(position, target, up, K)
poses.append(camera.pose())
return poses

View File

@ -0,0 +1,153 @@
"""An example of running visual SLAM using iSAM2."""
# pylint: disable=invalid-name
from __future__ import print_function
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D # pylint: disable=W0611
import gtsam
import gtsam.utils.plot as gtsam_plot
from gtsam.examples import SFMdata
def X(i):
"""Create key for pose i."""
return int(gtsam.symbol(ord('x'), i))
def L(j):
"""Create key for landmark j."""
return int(gtsam.symbol(ord('l'), j))
def visual_ISAM2_plot(result):
"""
VisualISAMPlot plots current state of ISAM2 object
Author: Ellon Paiva
Based on MATLAB version by: Duy Nguyen Ta and Frank Dellaert
"""
# Declare an id for the figure
fignum = 0
fig = plt.figure(fignum)
axes = fig.gca(projection='3d')
plt.cla()
# Plot points
# Can't use data because current frame might not see all points
# marginals = Marginals(isam.getFactorsUnsafe(), isam.calculateEstimate())
# gtsam.plot_3d_points(result, [], marginals)
gtsam_plot.plot_3d_points(fignum, result, 'rx')
# Plot cameras
i = 0
while result.exists(X(i)):
pose_i = result.atPose3(X(i))
gtsam_plot.plot_pose3(fignum, pose_i, 10)
i += 1
# draw
axes.set_xlim3d(-40, 40)
axes.set_ylim3d(-40, 40)
axes.set_zlim3d(-40, 40)
plt.pause(1)
def visual_ISAM2_example():
plt.ion()
# Define the camera calibration parameters
K = gtsam.Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0)
# Define the camera observation noise model
measurement_noise = gtsam.noiseModel_Isotropic.Sigma(
2, 1.0) # one pixel in u and v
# Create the set of ground-truth landmarks
points = SFMdata.createPoints()
# Create the set of ground-truth poses
poses = SFMdata.createPoses(K)
# Create an iSAM2 object. Unlike iSAM1, which performs periodic batch steps
# to maintain proper linearization and efficient variable ordering, iSAM2
# performs partial relinearization/reordering at each step. A parameter
# structure is available that allows the user to set various properties, such
# as the relinearization threshold and type of linear solver. For this
# example, we we set the relinearization threshold small so the iSAM2 result
# will approach the batch result.
parameters = gtsam.ISAM2Params()
parameters.setRelinearizeThreshold(0.01)
parameters.setRelinearizeSkip(1)
isam = gtsam.ISAM2(parameters)
# Create a Factor Graph and Values to hold the new data
graph = gtsam.NonlinearFactorGraph()
initial_estimate = gtsam.Values()
# Loop over the different poses, adding the observations to iSAM incrementally
for i, pose in enumerate(poses):
# Add factors for each landmark observation
for j, point in enumerate(points):
camera = gtsam.PinholeCameraCal3_S2(pose, K)
measurement = camera.project(point)
graph.push_back(gtsam.GenericProjectionFactorCal3_S2(
measurement, measurement_noise, X(i), L(j), K))
# Add an initial guess for the current pose
# Intentionally initialize the variables off from the ground truth
initial_estimate.insert(X(i), pose.compose(gtsam.Pose3(
gtsam.Rot3.Rodrigues(-0.1, 0.2, 0.25), gtsam.Point3(0.05, -0.10, 0.20))))
# If this is the first iteration, add a prior on the first pose to set the
# coordinate frame and a prior on the first landmark to set the scale.
# Also, as iSAM solves incrementally, we must wait until each is observed
# at least twice before adding it to iSAM.
if i == 0:
# Add a prior on pose x0
pose_noise = gtsam.noiseModel_Diagonal.Sigmas(np.array(
[0.3, 0.3, 0.3, 0.1, 0.1, 0.1])) # 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
graph.push_back(gtsam.PriorFactorPose3(X(0), poses[0], pose_noise))
# Add a prior on landmark l0
point_noise = gtsam.noiseModel_Isotropic.Sigma(3, 0.1)
graph.push_back(gtsam.PriorFactorPoint3(
L(0), points[0], point_noise)) # add directly to graph
# Add initial guesses to all observed landmarks
# Intentionally initialize the variables off from the ground truth
for j, point in enumerate(points):
initial_estimate.insert(L(j), gtsam.Point3(
point.x()-0.25, point.y()+0.20, point.z()+0.15))
else:
# Update iSAM with the new factors
isam.update(graph, initial_estimate)
# Each call to iSAM2 update(*) performs one iteration of the iterative nonlinear solver.
# If accuracy is desired at the expense of time, update(*) can be called additional
# times to perform multiple optimizer iterations every step.
isam.update()
current_estimate = isam.calculateEstimate()
print("****************************************************")
print("Frame", i, ":")
for j in range(i + 1):
print(X(j), ":", current_estimate.atPose3(X(j)))
for j in range(len(points)):
print(L(j), ":", current_estimate.atPoint3(L(j)))
visual_ISAM2_plot(current_estimate)
# Clear the factor graph and values for the next iteration
graph.resize(0)
initial_estimate.clear()
plt.ioff()
plt.show()
if __name__ == '__main__':
visual_ISAM2_example()

View File

@ -0,0 +1 @@
from . import SFMdata