diff --git a/matlab/testLinearFactorGraph.m b/matlab/testLinearFactorGraph.m deleted file mode 100644 index 0639f9d9c..000000000 --- a/matlab/testLinearFactorGraph.m +++ /dev/null @@ -1,111 +0,0 @@ -%----------------------------------------------------------------------- -% equals -fg = createGaussianFactorGraph(); -fg2 = createGaussianFactorGraph(); -CHECK('equals',fg.equals(fg2,1e-9)); - -%----------------------------------------------------------------------- -% error -cfg = createZeroDelta(); -actual = fg.error(cfg); -DOUBLES_EQUAL( 5.625, actual, 1e-9 ); - -%----------------------------------------------------------------------- -% combine_factors_x1 -fg = createGaussianFactorGraph(); -actual = fg.combine_factors('x1'); -Al1 = [ - 0., 0. - 0., 0. - 0., 0. - 0., 0. - 5., 0. - 0., 5. - ]; - -Ax1 = [ - 10., 0. - 0.00, 10. - -10., 0. - 0.00,-10. - -5., 0. - 00., -5. - ]; - -Ax2 = [ - 0., 0. - 0., 0. - 10., 0. - +0.,10. - 0., 0. - 0., 0. - ]; - -b=[-1;-1;2;-1;0;1]; - -expected = GaussianFactor('l1',Al1,'x1',Ax1,'x2',Ax2,b); -CHECK('combine_factors_x1', actual.equals(expected,1e-9)); - -%----------------------------------------------------------------------- -% combine_factors_x2 -fg = createGaussianFactorGraph(); -actual = fg.combine_factors('x2'); - -%----------------------------------------------------------------------- -% eliminate_x1 -fg = createGaussianFactorGraph(); -actual = fg.eliminateOne('x1'); - -%----------------------------------------------------------------------- -% eliminate_x2 -fg = createGaussianFactorGraph(); -actual = fg.eliminateOne('x2'); - -%----------------------------------------------------------------------- -% eliminateAll -sigma1=.1; -R1 = eye(2); -d1=[-.1;-.1]; -cg1 = ConditionalGaussian('x1',d1, R1,sigma1); - -sigma2=0.149071; -R2 = eye(2); -A1= -eye(2); -d2=[0; .2]; -cg2 = ConditionalGaussian('l1',d2, R2, 'x1', A1,sigma2); - -sigma3=0.0894427; -R3 = eye(2); -A21 = [ -.2, 0.0 - 0.0, -.2]; -A22 = [-.8, 0.0 - 0.0, -.8]; -d3 =[.2; -.14]; -cg3 = ConditionalGaussian('x2',d3, R3, 'l1', A21, 'x1', A22, sigma3); - -expected = GaussianBayesNet; -expected.push_back(cg1); -expected.push_back(cg2); -expected.push_back(cg3); -expected.print_(); -% Check one ordering -fg1 = createGaussianFactorGraph(); -ord1 = Ordering; -ord1.push_back('x2'); -ord1.push_back('l1'); -ord1.push_back('x1'); -actual1 = fg1.eliminate_(ord1); -actual1.print(); -%CHECK('eliminateAll', actual1.equals(expected)); - -%----------------------------------------------------------------------- -% matrix - -fg = createGaussianFactorGraph(); -ord = Ordering; -ord.push_back('x2'); -ord.push_back('l1'); -ord.push_back('x1'); - -A = fg.matrix(ord); -