Inline q, use 100k
parent
07b4c236eb
commit
70651e2cc5
|
|
@ -235,7 +235,7 @@ static HybridBayesNet GetGaussianMixtureModel(double mu0, double mu1,
|
|||
hbn.emplace_shared<GaussianMixture>(KeyVector{z}, KeyVector{},
|
||||
DiscreteKeys{m}, std::vector{c0, c1});
|
||||
|
||||
auto mixing = make_shared<DiscreteConditional>(m, "0.5/0.5");
|
||||
auto mixing = make_shared<DiscreteConditional>(m, "50/50");
|
||||
hbn.push_back(mixing);
|
||||
|
||||
return hbn;
|
||||
|
|
@ -281,7 +281,7 @@ TEST(GaussianMixtureFactor, GaussianMixtureModel) {
|
|||
|
||||
// At the halfway point between the means, we should get P(m|z)=0.5
|
||||
HybridBayesNet expected;
|
||||
expected.emplace_shared<DiscreteConditional>(m, "0.5/0.5");
|
||||
expected.emplace_shared<DiscreteConditional>(m, "50/50");
|
||||
|
||||
EXPECT(assert_equal(expected, *bn));
|
||||
}
|
||||
|
|
@ -429,50 +429,37 @@ HybridBayesNet CreateBayesNet(
|
|||
hbn.push_back(hybridMotionModel);
|
||||
|
||||
// Discrete uniform prior.
|
||||
hbn.emplace_shared<DiscreteConditional>(m1, "0.5/0.5");
|
||||
|
||||
return hbn;
|
||||
}
|
||||
|
||||
/// Create importance sampling network q(x0,x1,m) = p(x1|x0,m1) q(x0) P(m1),
|
||||
/// using q(x0) = N(z0, sigma_Q) to sample x0.
|
||||
HybridBayesNet CreateProposalNet(
|
||||
const GaussianMixture::shared_ptr& hybridMotionModel, const Vector1& z0,
|
||||
double sigma_Q) {
|
||||
HybridBayesNet hbn;
|
||||
|
||||
// Add hybrid motion model
|
||||
hbn.push_back(hybridMotionModel);
|
||||
|
||||
// Add proposal q(x0) for x0
|
||||
auto measurement_model = noiseModel::Isotropic::Sigma(1, sigma_Q);
|
||||
hbn.emplace_shared<GaussianConditional>(
|
||||
GaussianConditional::FromMeanAndStddev(X(0), z0, sigma_Q));
|
||||
|
||||
// Discrete uniform prior.
|
||||
hbn.emplace_shared<DiscreteConditional>(m1, "0.5/0.5");
|
||||
hbn.emplace_shared<DiscreteConditional>(m1, "50/50");
|
||||
|
||||
return hbn;
|
||||
}
|
||||
|
||||
/// Approximate the discrete marginal P(m1) using importance sampling
|
||||
/// Not typically called as expensive, but values are used in the tests.
|
||||
void approximateDiscreteMarginal(const HybridBayesNet& hbn,
|
||||
const HybridBayesNet& proposalNet,
|
||||
const VectorValues& given) {
|
||||
void approximateDiscreteMarginal(
|
||||
const HybridBayesNet& hbn,
|
||||
const GaussianMixture::shared_ptr& hybridMotionModel,
|
||||
const VectorValues& given, size_t N = 100000) {
|
||||
/// Create importance sampling network q(x0,x1,m) = p(x1|x0,m1) q(x0) P(m1),
|
||||
/// using q(x0) = N(z0, sigma_Q) to sample x0.
|
||||
HybridBayesNet q;
|
||||
q.push_back(hybridMotionModel); // Add hybrid motion model
|
||||
q.emplace_shared<GaussianConditional>(GaussianConditional::FromMeanAndStddev(
|
||||
X(0), given.at(Z(0)), /* sigma_Q = */ 3.0)); // Add proposal q(x0) for x0
|
||||
q.emplace_shared<DiscreteConditional>(m1, "50/50"); // Discrete prior.
|
||||
|
||||
// Do importance sampling
|
||||
double w0 = 0.0, w1 = 0.0;
|
||||
std::mt19937_64 rng(44);
|
||||
for (int i = 0; i < 50000; i++) {
|
||||
HybridValues sample = proposalNet.sample(&rng);
|
||||
std::mt19937_64 rng(42);
|
||||
for (int i = 0; i < N; i++) {
|
||||
HybridValues sample = q.sample(&rng);
|
||||
sample.insert(given);
|
||||
double weight = hbn.evaluate(sample) / proposalNet.evaluate(sample);
|
||||
double weight = hbn.evaluate(sample) / q.evaluate(sample);
|
||||
(sample.atDiscrete(M(1)) == 0) ? w0 += weight : w1 += weight;
|
||||
}
|
||||
double sumWeights = w0 + w1;
|
||||
double pm1 = w1 / sumWeights;
|
||||
std::cout << "p(m0) ~ " << 1.0 - pm1 << std::endl;
|
||||
std::cout << "p(m1) ~ " << pm1 << std::endl;
|
||||
double pm1 = w1 / (w0 + w1);
|
||||
std::cout << "p(m0) = " << 100 * (1.0 - pm1) << std::endl;
|
||||
std::cout << "p(m1) = " << 100 * pm1 << std::endl;
|
||||
}
|
||||
|
||||
} // namespace test_two_state_estimation
|
||||
|
|
@ -502,38 +489,32 @@ TEST(GaussianMixtureFactor, TwoStateModel) {
|
|||
VectorValues given;
|
||||
given.insert(Z(0), z0);
|
||||
|
||||
// Create proposal network for importance sampling
|
||||
auto proposalNet = CreateProposalNet(hybridMotionModel, z0, 3.0);
|
||||
EXPECT_LONGS_EQUAL(3, proposalNet.size());
|
||||
|
||||
{
|
||||
HybridBayesNet hbn = CreateBayesNet(hybridMotionModel);
|
||||
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
|
||||
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
|
||||
|
||||
// Since no measurement on x1, we hedge our bets
|
||||
// Importance sampling run with 50k samples gives 0.49934/0.50066
|
||||
// approximateDiscreteMarginal(hbn, proposalNet, given);
|
||||
DiscreteConditional expected(m1, "0.5/0.5");
|
||||
// Importance sampling run with 100k samples gives 50.051/49.949
|
||||
// approximateDiscreteMarginal(hbn, hybridMotionModel, given);
|
||||
DiscreteConditional expected(m1, "50/50");
|
||||
EXPECT(assert_equal(expected, *(bn->at(2)->asDiscrete())));
|
||||
}
|
||||
|
||||
{
|
||||
// Now we add a measurement z1 on x1
|
||||
HybridBayesNet hbn = CreateBayesNet(hybridMotionModel, true);
|
||||
|
||||
// If we set z1=4.5 (>> 2.5 which is the halfway point),
|
||||
// probability of discrete mode should be leaning to m1==1.
|
||||
const Vector1 z1(4.5);
|
||||
given.insert(Z(1), z1);
|
||||
|
||||
HybridBayesNet hbn = CreateBayesNet(hybridMotionModel, true);
|
||||
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
|
||||
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
|
||||
|
||||
// Since we have a measurement on x1, we get a definite result
|
||||
// Values taken from an importance sampling run with 50k samples:
|
||||
// approximateDiscreteMarginal(hbn, proposalNet, given);
|
||||
DiscreteConditional expected(m1, "0.446629/0.553371");
|
||||
// Values taken from an importance sampling run with 100k samples:
|
||||
// approximateDiscreteMarginal(hbn, hybridMotionModel, given);
|
||||
DiscreteConditional expected(m1, "44.3854/55.6146");
|
||||
EXPECT(assert_equal(expected, *(bn->at(2)->asDiscrete()), 0.002));
|
||||
}
|
||||
}
|
||||
|
|
@ -563,10 +544,6 @@ TEST(GaussianMixtureFactor, TwoStateModel2) {
|
|||
VectorValues given;
|
||||
given.insert(Z(0), z0);
|
||||
|
||||
// Create proposal network for importance sampling
|
||||
// uncomment this and the approximateDiscreteMarginal calls to run
|
||||
// auto proposalNet = CreateProposalNet(hybridMotionModel, z0, 3.0);
|
||||
|
||||
{
|
||||
HybridBayesNet hbn = CreateBayesNet(hybridMotionModel);
|
||||
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
|
||||
|
|
@ -584,22 +561,21 @@ TEST(GaussianMixtureFactor, TwoStateModel2) {
|
|||
|
||||
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
|
||||
|
||||
// Importance sampling run with 50k samples gives 0.49934/0.50066
|
||||
// approximateDiscreteMarginal(hbn, proposalNet, given);
|
||||
// Importance sampling run with 100k samples gives 50.095/49.905
|
||||
// approximateDiscreteMarginal(hbn, hybridMotionModel, given);
|
||||
|
||||
// Since no measurement on x1, we a 50/50 probability
|
||||
auto p_m = bn->at(2)->asDiscrete();
|
||||
EXPECT_DOUBLES_EQUAL(0.5, p_m->operator()(DiscreteValues{{M(1), 0}}), 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(0.5, p_m->operator()(DiscreteValues{{M(1), 1}}), 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(0.5, p_m->operator()({{M(1), 0}}), 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(0.5, p_m->operator()({{M(1), 1}}), 1e-9);
|
||||
}
|
||||
|
||||
{
|
||||
// Now we add a measurement z1 on x1
|
||||
HybridBayesNet hbn = CreateBayesNet(hybridMotionModel, true);
|
||||
|
||||
const Vector1 z1(4.0); // favors m==1
|
||||
given.insert(Z(1), z1);
|
||||
|
||||
HybridBayesNet hbn = CreateBayesNet(hybridMotionModel, true);
|
||||
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
|
||||
|
||||
// Check that ratio of Bayes net and factor graph for different modes is
|
||||
|
|
@ -615,28 +591,25 @@ TEST(GaussianMixtureFactor, TwoStateModel2) {
|
|||
|
||||
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
|
||||
|
||||
// Since we have a measurement z1 on x1, we get a definite result
|
||||
// Values taken from an importance sampling run with 50k samples:
|
||||
// approximateDiscreteMarginal(hbn, proposalNet, given);
|
||||
DiscreteConditional expected(m1, "0.481793/0.518207");
|
||||
EXPECT(assert_equal(expected, *(bn->at(2)->asDiscrete()), 0.001));
|
||||
// Values taken from an importance sampling run with 100k samples:
|
||||
// approximateDiscreteMarginal(hbn, hybridMotionModel, given);
|
||||
DiscreteConditional expected(m1, "48.3158/51.6842");
|
||||
EXPECT(assert_equal(expected, *(bn->at(2)->asDiscrete()), 0.002));
|
||||
}
|
||||
|
||||
{
|
||||
// Add a different measurement z1 on x1 that favors m==0
|
||||
HybridBayesNet hbn = CreateBayesNet(hybridMotionModel, true);
|
||||
|
||||
const Vector1 z1(1.1);
|
||||
given.insert_or_assign(Z(1), z1);
|
||||
|
||||
HybridBayesNet hbn = CreateBayesNet(hybridMotionModel, true);
|
||||
HybridGaussianFactorGraph gfg = hbn.toFactorGraph(given);
|
||||
HybridBayesNet::shared_ptr bn = gfg.eliminateSequential();
|
||||
|
||||
// Since we have a measurement z1 on x1, we get a definite result
|
||||
// Values taken from an importance sampling run with 50k samples:
|
||||
// approximateDiscreteMarginal(hbn, proposalNet, given);
|
||||
DiscreteConditional expected(m1, "0.554485/0.445515");
|
||||
EXPECT(assert_equal(expected, *(bn->at(2)->asDiscrete()), 0.001));
|
||||
// Values taken from an importance sampling run with 100k samples:
|
||||
// approximateDiscreteMarginal(hbn, hybridMotionModel, given);
|
||||
DiscreteConditional expected(m1, "55.396/44.604");
|
||||
EXPECT(assert_equal(expected, *(bn->at(2)->asDiscrete()), 0.002));
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue