wrap GaussianDensity::FromMeanAndStddev
parent
e5e9996299
commit
6f74fe49c9
|
|
@ -23,9 +23,11 @@ using namespace std;
|
|||
namespace gtsam {
|
||||
|
||||
/* ************************************************************************* */
|
||||
GaussianDensity GaussianDensity::FromMeanAndStddev(Key key, const Vector& mean, const double& sigma)
|
||||
{
|
||||
return GaussianDensity(key, mean / sigma, Matrix::Identity(mean.size(), mean.size()) / sigma);
|
||||
GaussianDensity GaussianDensity::FromMeanAndStddev(Key key,
|
||||
const Vector& mean,
|
||||
double sigma) {
|
||||
return GaussianDensity(key, mean / sigma,
|
||||
Matrix::Identity(mean.size(), mean.size()) / sigma);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
@ -35,8 +37,8 @@ namespace gtsam {
|
|||
for(const_iterator it = beginFrontals(); it != endFrontals(); ++it)
|
||||
cout << (boost::format("[%1%]")%(formatter(*it))).str() << " ";
|
||||
cout << endl;
|
||||
gtsam::print(Matrix(R()), "R: ");
|
||||
gtsam::print(Vector(d()), "d: ");
|
||||
gtsam::print(mean(), "mean: ");
|
||||
gtsam::print(covariance(), "covariance: ");
|
||||
if(model_)
|
||||
model_->print("Noise model: ");
|
||||
}
|
||||
|
|
|
|||
|
|
@ -24,11 +24,10 @@
|
|||
namespace gtsam {
|
||||
|
||||
/**
|
||||
* A Gaussian density.
|
||||
*
|
||||
* It is implemented as a GaussianConditional without parents.
|
||||
* A GaussianDensity is a GaussianConditional without parents.
|
||||
* The negative log-probability is given by \f$ |Rx - d|^2 \f$
|
||||
* with \f$ \Lambda = \Sigma^{-1} = R^T R \f$ and \f$ \mu = R^{-1} d \f$
|
||||
* @addtogroup linear
|
||||
*/
|
||||
class GTSAM_EXPORT GaussianDensity : public GaussianConditional {
|
||||
|
||||
|
|
@ -52,8 +51,9 @@ namespace gtsam {
|
|||
GaussianDensity(Key key, const Vector& d, const Matrix& R, const SharedDiagonal& noiseModel = SharedDiagonal()) :
|
||||
GaussianConditional(key, d, R, noiseModel) {}
|
||||
|
||||
/// Construct using a mean and variance
|
||||
static GaussianDensity FromMeanAndStddev(Key key, const Vector& mean, const double& sigma);
|
||||
/// Construct using a mean and standard deviation
|
||||
static GaussianDensity FromMeanAndStddev(Key key, const Vector& mean,
|
||||
double sigma);
|
||||
|
||||
/// print
|
||||
void print(const std::string& = "GaussianDensity",
|
||||
|
|
|
|||
|
|
@ -490,14 +490,19 @@ virtual class GaussianConditional : gtsam::JacobianFactor {
|
|||
|
||||
#include <gtsam/linear/GaussianDensity.h>
|
||||
virtual class GaussianDensity : gtsam::GaussianConditional {
|
||||
//Constructors
|
||||
GaussianDensity(size_t key, Vector d, Matrix R, const gtsam::noiseModel::Diagonal* sigmas);
|
||||
// Constructors
|
||||
GaussianDensity(gtsam::Key key, Vector d, Matrix R,
|
||||
const gtsam::noiseModel::Diagonal* sigmas);
|
||||
|
||||
//Standard Interface
|
||||
static gtsam::GaussianDensity FromMeanAndStddev(gtsam::Key key,
|
||||
const Vector& mean,
|
||||
double sigma);
|
||||
|
||||
// Standard Interface
|
||||
void print(string s = "GaussianDensity",
|
||||
const gtsam::KeyFormatter& keyFormatter =
|
||||
gtsam::DefaultKeyFormatter) const;
|
||||
bool equals(const gtsam::GaussianDensity &cg, double tol) const;
|
||||
bool equals(const gtsam::GaussianDensity& cg, double tol) const;
|
||||
Vector mean() const;
|
||||
Matrix covariance() const;
|
||||
};
|
||||
|
|
|
|||
Loading…
Reference in New Issue