diff --git a/doc/sphere.lyx b/doc/sphere.lyx index 35d6a47fb..0ddb9f156 100644 --- a/doc/sphere.lyx +++ b/doc/sphere.lyx @@ -65,7 +65,11 @@ \begin_body \begin_layout Title -Retraction on a Sphere +Manifold Geometry of the Sphere +\begin_inset Formula $S^{2}$ +\end_inset + + \end_layout \begin_layout Author @@ -74,8 +78,8 @@ Frank, Can, and Manohar \begin_layout Standard \begin_inset FormulaMacro -\newcommand{\xihat}{\hat{\xi}} -{\hat{\xi}} +\newcommand{\xihat}{z} +{z} \end_inset @@ -147,7 +151,7 @@ retraction \begin_inset Formula \[ -q=R_{p}(\xihat)=\frac{p+\xihat}{\left|p+\xihat\right|}=\frac{p+\xihat}{\alpha} +q=R_{p}(\xihat)=\frac{p+\xihat}{\left\Vert p+z\right\Vert }=\frac{p+\xihat}{\alpha} \] \end_inset @@ -407,6 +411,55 @@ and because \end_layout +\begin_layout Subsubsection* +Exponential Map +\end_layout + +\begin_layout Standard +The exponential map itself is not so difficult, and is given in Ma01ijcv, + as well as in this CVPR tutorial by Anuj Srivastava: +\begin_inset CommandInset href +LatexCommand href +name "http://stat.fsu.edu/~anuj/CVPR_Tutorial/Part2.pdf" + +\end_inset + +. + +\begin_inset Formula +\[ +\exp_{p}\xihat=\cos\left(\left\Vert \xihat\right\Vert \right)p+\sin\left(\left\Vert \xihat\right\Vert \right)\frac{\xihat}{\left\Vert \xihat\right\Vert } +\] + +\end_inset + +The latter also gives the inverse, i.e., get the tangent vector +\begin_inset Formula $z$ +\end_inset + + to go from +\begin_inset Formula $p$ +\end_inset + + to +\begin_inset Formula $q$ +\end_inset + +: +\begin_inset Formula +\[ +z=\log_{p}q=\frac{\theta}{\sin\theta}\left(q-p\cos\theta\right)p +\] + +\end_inset + +with +\begin_inset Formula $\theta=\cos^{-1}\left(p^{T}q\right)$ +\end_inset + +. +\end_layout + \begin_layout Standard \begin_inset CommandInset bibtex LatexCommand bibtex diff --git a/doc/sphere.pdf b/doc/sphere.pdf new file mode 100644 index 000000000..e82ac3327 Binary files /dev/null and b/doc/sphere.pdf differ