All tests pass

release/4.3a0
Frank Dellaert 2011-09-04 01:05:59 +00:00
parent f2a66a64fc
commit 6ee0291246
1 changed files with 111 additions and 325 deletions

View File

@ -15,12 +15,12 @@
* Test simple linear Kalman filter on a moving 2D point * Test simple linear Kalman filter on a moving 2D point
* *
* Created on: Aug 19, 2011 * Created on: Aug 19, 2011
* @Author: Frank Dellaert
* @Author: Stephen Williams * @Author: Stephen Williams
* @Author: Frank Dellaert
*/ */
#include <gtsam/linear/GaussianSequentialSolver.h> #include <gtsam/linear/GaussianSequentialSolver.h>
#include <gtsam/linear/HessianFactor.h> #include <gtsam/linear/JacobianFactor.h>
#include <CppUnitLite/TestHarness.h> #include <CppUnitLite/TestHarness.h>
using namespace std; using namespace std;
@ -30,10 +30,9 @@ class KalmanFilter {
private: private:
size_t n_; /** dimensionality of state */ size_t n_; /** dimensionality of state */
Matrix I_; /** identity matrix of size n*n */
/** /** The Kalman filter posterior density is a Gaussian Conditional with no parents */
* The Kalman filter posterior density is a Gaussian Conditional with no parents
*/
GaussianConditional::shared_ptr density_; GaussianConditional::shared_ptr density_;
/** /**
@ -47,7 +46,11 @@ private:
// As this is a filter, all we need is the posterior P(x_t), // As this is a filter, all we need is the posterior P(x_t),
// so we just keep the root of the Bayes net // so we just keep the root of the Bayes net
density_ = bayesNet->back(); // We need to create a new density, because we always keep the index at 0
const GaussianConditional::shared_ptr& root = bayesNet->back();
density_.reset(
new GaussianConditional(0, root->get_d(), root->get_R(),
root->get_sigmas()));
} }
public: public:
@ -56,34 +59,23 @@ public:
* Constructor from prior density at time k=0 * Constructor from prior density at time k=0
* In Kalman Filter notation, these are is x_{0|0} and P_{0|0} * In Kalman Filter notation, these are is x_{0|0} and P_{0|0}
* @param x estimate at time 0 * @param x estimate at time 0
* @param P covariance at time 0 * @param P covariance at time 0, restricted to diagonal Gaussian 'model' for now
* *
*/ */
KalmanFilter(const Vector& x, const Matrix& P) : KalmanFilter(const Vector& x, const SharedDiagonal& model) :
n_(x.size()) { n_(x.size()), I_(eye(n_, n_)) {
// Create a Hessian Factor from (x,P) // Create a factor graph f(x0), eliminate it into P(x0)
HessianFactor::shared_ptr factor(new HessianFactor(0, x, P));
#ifdef LOWLEVEL
// Eliminate it directly using LDL
size_t nrFrontals = 1;
Eigen::LDLT<Matrix>::TranspositionType pi = factor->partialLDL(nrFrontals);
vector<Index> keys;
keys.push_back(0);
density_ = factor->splitEliminatedFactor(nrFrontals, keys, pi);
#else
// Create a factor graph f(x), eliminate it into P(x)
GaussianFactorGraph factorGraph; GaussianFactorGraph factorGraph;
factorGraph.push_back(factor); factorGraph.add(0, I_, x, model);
solve(factorGraph); solve(factorGraph);
#endif
} }
/** /**
* Return mean of posterior P(x|Z) at given all measurements Z * Return mean of posterior P(x|Z) at given all measurements Z
*/ */
Vector mean() const { Vector mean() const {
// Solve for mean
Index nVars = 1; Index nVars = 1;
VectorValues x(nVars, n_); VectorValues x(nVars, n_);
density_->rhs(x); density_->rhs(x);
@ -113,339 +105,133 @@ public:
* In a linear Kalman Filter, the motion model is f(x_{t}) = F*x_{t} + B*u_{t} + w * In a linear Kalman Filter, the motion model is f(x_{t}) = F*x_{t} + B*u_{t} + w
* where F is the state transition model/matrix, B is the control input model, * where F is the state transition model/matrix, B is the control input model,
* and w is zero-mean, Gaussian white noise with covariance Q. * and w is zero-mean, Gaussian white noise with covariance Q.
* Note, in some models, Q is actually derived as G*w*G^T where w models uncertainty of some * Q is normally derived as G*w*G^T where w models uncertainty of some physical property,
* physical property, such as velocity or acceleration, and G is derived from physics. * such as velocity or acceleration, and G is derived from physics.
* In the current implementation, the noise model for w is restricted to a diagonal.
* TODO: allow for a G
*/ */
void predict(const Matrix& F, const Matrix& B, const Vector& u, void predict(const Matrix& F, const Matrix& B, const Vector& u,
const Matrix& Q) { const SharedDiagonal& model) {
// We will create a small factor graph f1-(x0)-f2-(x1) // We will create a small factor graph f1-(x0)-f2-(x1)
// where factor f1 is just the prior from time t0, P(x0) // where factor f1 is just the prior from time t0, P(x0)
// and factor f2 is from the motion model // and factor f2 is from the motion model
GaussianFactorGraph factorGraph; GaussianFactorGraph factorGraph;
// push back f1 // push back f1
factorGraph.push_back(density_->toFactor()); factorGraph.push_back(density_->toFactor());
// The factor related to the motion model is defined as // The factor related to the motion model is defined as
// f2(x_{t},x_{t+1}) = (F*x_{t} - x_{t+1}) * Q^-1 * (F*x_{t} - x_{t+1})^T // f2(x_{t},x_{t+1}) = (F*x_{t} + B*u - x_{t+1}) * Q^-1 * (F*x_{t} + B*u - x_{t+1})^T
factorGraph.add(0, -F, 1, I_, B*u, model);
// Eliminate graph in order x0, x1, to get Bayes net P(x0|x1)P(x1)
// Eliminate graph in order x0, x1, to get Bayes net P(x0|x1)P(x1)
solve(factorGraph); solve(factorGraph);
} }
/**
* Update Kalman filter with a measurement
* For the Kalman Filter, the measurement function, h(x_{t}) = z_{t}
* will be of the form h(x_{t}) = H*x_{t} + v
* where H is the observation model/matrix, and v is zero-mean,
* Gaussian white noise with covariance R.
* Currently, R is restricted to diagonal Gaussians (model parameter)
*/
void update(const Matrix& H, const Vector& z, const SharedDiagonal& model) {
// We will create a small factor graph f1-(x0)-f2
// where factor f1 is the predictive density
// and factor f2 is from the measurement model
GaussianFactorGraph factorGraph;
// push back f1
factorGraph.push_back(density_->toFactor());
// The factor related to the measurements would be defined as
// f2 = (h(x_{t}) - z_{t}) * R^-1 * (h(x_{t}) - z_{t})^T
// = (x_{t} - z_{t}) * R^-1 * (x_{t} - z_{t})^T
factorGraph.add(0, H, z, model);
// Eliminate graph in order x0, x1, to get Bayes net P(x0|x1)P(x1)
solve(factorGraph);
}
}; };
// KalmanFilter // KalmanFilter
/* ************************************************************************* */ /* ************************************************************************* */
TEST(GaussianConditional, constructor) {
// [code below basically does SRIF with LDL] /** Small 2D point class implemented as a Vector */
struct State: Vector {
State(double x, double y) :
Vector(Vector_(2, x, y)) {
}
};
// Ground truth example /* ************************************************************************* */
// Start at origin, move to the right (x-axis): 0,0 0,1 0,2 TEST( KalmanFilter, linear1 ) {
// Motion model is just moving to the right (x'-x)^2
// Measurements are GPS like, (x-z)^2, where z is a 2D measurement
// i.e., we should get 0,0 0,1 0,2 if there is no noise
// Initialize state x0 (2D point) at origin // Create the controls and measurement properties for our example
Vector x00 = Vector_(2,0.0,0.0);
Matrix P00 = 0.1*eye(2,2);
// Initialize a Kalman filter
KalmanFilter kalmanFilter(x00,P00);
EXPECT(assert_equal(x00, kalmanFilter.mean()));
EXPECT(assert_equal(P00, kalmanFilter.covariance()));
// Now predict the state at t=1, i.e. P(x_1)
// For the purposes of this example, let us assume we are using a constant-position model and
// the controls are driving the point to the right at 1 m/s.
// Then, F = [1 0 ; 0 1], B = [1 0 ; 0 1] and u = [1 ; 0].
// Let us also assume that the process noise Q = [0.1 0 ; 0 0.1];
Matrix F = eye(2,2); Matrix F = eye(2,2);
Matrix B = eye(2,2); Matrix B = eye(2,2);
Vector u = Vector_(2,1.0,0.0); Vector u = Vector_(2, 1.0, 0.0);
Matrix Q = 0.2*eye(2,2); SharedDiagonal modelQ = noiseModel::Isotropic::Sigma(2, 0.1);
kalmanFilter.predict(F, B, u, Q); Matrix Q = 0.01*eye(2,2);
Matrix H = eye(2,2);
State z1(1.0, 0.0);
State z2(2.0, 0.0);
State z3(3.0, 0.0);
SharedDiagonal modelR = noiseModel::Isotropic::Sigma(2, 0.1);
Matrix R = 0.01*eye(2,2);
Vector x10 = Vector_(2,0.0,0.0); // Create the set of expected output TestValues
Matrix P10 = 0.1*eye(2,2); State expected0(0.0, 0.0);
EXPECT(assert_equal(x10, kalmanFilter.mean())); Matrix P00 = 0.01*eye(2,2);
EXPECT(assert_equal(P10, kalmanFilter.covariance()));
/*
//
// Because of the way GTSAM works internally, we have used nonlinear class even though this example
// system is linear. We first convert the nonlinear factor graph into a linear one, using the specified
// ordering. Linear factors are simply numbered, and are not accessible via named key like the nonlinear
// variables. Also, the nonlinear factors are linearized around an initial estimate. For a true linear
// system, the initial estimate is not important.
// Solve the linear factor graph, converting it into a linear Bayes Network ( P(x0,x1) = P(x0|x1)*P(x1) ) State expected1(1.0, 0.0);
GaussianSequentialSolver solver0(*linearFactorGraph); Matrix P01 = P00 + Q;
GaussianBayesNet::shared_ptr linearBayesNet = solver0.eliminate(); Matrix I11 = inverse(P01) + inverse(R);
// Extract the current estimate of x1,P1 from the Bayes Network State expected2(2.0, 0.0);
VectorValues result = optimize(*linearBayesNet); Matrix P12 = inverse(I11) + Q;
Vector x1_predict = linearizationPoints[x1].expmap(result[ordering->at(x1)]); Matrix I22 = inverse(P12) + inverse(R);
x1_predict.print("X1 Predict");
// Update the new linearization point to the new estimate State expected3(3.0, 0.0);
linearizationPoints.update(x1, x1_predict); Matrix P23 = inverse(I22) + Q;
Matrix I33 = inverse(P23) + inverse(R);
// Create the Kalman Filter initialization point
State x_initial(0.0,0.0);
SharedDiagonal P_initial = noiseModel::Isotropic::Sigma(2,0.1);
// Create an KalmanFilter object
KalmanFilter kalmanFilter(x_initial, P_initial);
EXPECT(assert_equal(expected0,kalmanFilter.mean()));
EXPECT(assert_equal(P00,kalmanFilter.covariance()));
// Create a new, empty graph and add the prior from the previous step // Run iteration 1
linearFactorGraph = GaussianFactorGraph::shared_ptr(new GaussianFactorGraph); kalmanFilter.predict(F, B, u, modelQ);
EXPECT(assert_equal(expected1,kalmanFilter.mean()));
EXPECT(assert_equal(P01,kalmanFilter.covariance()));
kalmanFilter.update(H,z1,modelR);
EXPECT(assert_equal(expected1,kalmanFilter.mean()));
EXPECT(assert_equal(I11,kalmanFilter.information()));
// Convert the root conditional, P(x1) in this case, into a Prior for the next step // Run iteration 2
// Some care must be done here, as the linearization point in future steps will be different kalmanFilter.predict(F, B, u, modelQ);
// than what was used when the factor was created. EXPECT(assert_equal(expected2,kalmanFilter.mean()));
// f = || F*dx1' - (F*x0 - x1) ||^2, originally linearized at x1 = x0 kalmanFilter.update(H,z2,modelR);
// After this step, the factor needs to be linearized around x1 = x1_predict EXPECT(assert_equal(expected2,kalmanFilter.mean()));
// This changes the factor to f = || F*dx1'' - b'' ||^2
// = || F*(dx1' - (dx1' - dx1'')) - b'' ||^2
// = || F*dx1' - F*(dx1' - dx1'') - b'' ||^2
// = || F*dx1' - (b'' + F(dx1' - dx1'')) ||^2
// -> b' = b'' + F(dx1' - dx1'')
// -> b'' = b' - F(dx1' - dx1'')
// = || F*dx1'' - (b' - F(dx1' - dx1'')) ||^2
// = || F*dx1'' - (b' - F(x_predict - x_inital)) ||^2
const GaussianConditional::shared_ptr& cg0 = linearBayesNet->back();
assert(cg0->nrFrontals() == 1);
assert(cg0->nrParents() == 0);
linearFactorGraph->add(0, cg0->get_R(), cg0->get_d() - cg0->get_R()*result[ordering->at(x1)], noiseModel::Diagonal::Sigmas(cg0->get_sigmas(), true));
// Create the desired ordering // Run iteration 3
ordering = Ordering::shared_ptr(new Ordering); kalmanFilter.predict(F, B, u, modelQ);
ordering->insert(x1, 0); EXPECT(assert_equal(expected3,kalmanFilter.mean()));
kalmanFilter.update(H,z3,modelR);
// Now, a measurement, z1, has been received, and the Kalman Filter should be "Updated"/"Corrected" EXPECT(assert_equal(expected3,kalmanFilter.mean()));
// This is equivalent to saying P(x1|z1) ~ P(z1|x1)*P(x1) ~ f3(x1)*f4(x1;z1)
// where f3 is the prior from the previous step, and
// where f4 is a measurement factor
//
// So, now we need to create the measurement factor, f4
// For the Kalman Filter, this is the measurement function, h(x_{t}) = z_{t}
// Assuming the system is linear, this will be of the form h(x_{t}) = H*x_{t} + v
// where H is the observation model/matrix, and v is zero-mean, Gaussian white noise with covariance R
//
// For the purposes of this example, let us assume we have something like a GPS that returns
// the current position of the robot. For this simple example, we can use a PriorFactor to model the
// observation as it depends on only a single state variable, x1. To model real sensor observations
// generally requires the creation of a new factor type. For example, factors for range sensors, bearing
// sensors, and camera projections have already been added to GTSAM.
//
// In the case of factor graphs, the factor related to the measurements would be defined as
// f4 = (h(x_{t}) - z_{t}) * R^-1 * (h(x_{t}) - z_{t})^T
// = (x_{t} - z_{t}) * R^-1 * (x_{t} - z_{t})^T
// This can be modeled using the PriorFactor, where the mean is z_{t} and the covariance is R.
Vector z1(1.0, 0.0);
SharedDiagonal R1 = noiseModel::Diagonal::Sigmas(Vector_(2, 0.25, 0.25));
PriorFactor<Values, Key> factor4(x1, z1, R1);
// Linearize the factor and add it to the linear factor graph
linearFactorGraph->push_back(factor4.linearize(linearizationPoints, *ordering));
// We have now made the small factor graph f3-(x1)-f4
// where factor f3 is the prior from previous time ( P(x1) )
// and factor f4 is from the measurement, z1 ( P(x1|z1) )
// Eliminate this in order x1, to get Bayes net P(x1)
// As this is a filter, all we need is the posterior P(x1), so we just keep the root of the Bayes net
// We solve as before...
// Solve the linear factor graph, converting it into a linear Bayes Network ( P(x0,x1) = P(x0|x1)*P(x1) )
GaussianSequentialSolver solver1(*linearFactorGraph);
linearBayesNet = solver1.eliminate();
// Extract the current estimate of x1 from the Bayes Network
result = optimize(*linearBayesNet);
Vector x1_update = linearizationPoints[x1].expmap(result[ordering->at(x1)]);
x1_update.print("X1 Update");
// Update the linearization point to the new estimate
linearizationPoints.update(x1, x1_update);
// Wash, rinse, repeat for another time step
// Create a new, empty graph and add the prior from the previous step
linearFactorGraph = GaussianFactorGraph::shared_ptr(new GaussianFactorGraph);
// Convert the root conditional, P(x1) in this case, into a Prior for the next step
// The linearization point of this prior must be moved to the new estimate of x, and the key/index needs to be reset to 0,
// the first key in the next iteration
const GaussianConditional::shared_ptr& cg1 = linearBayesNet->back();
assert(cg1->nrFrontals() == 1);
assert(cg1->nrParents() == 0);
JacobianFactor tmpPrior1 = JacobianFactor(*cg1);
linearFactorGraph->add(0, tmpPrior1.getA(tmpPrior1.begin()), tmpPrior1.getb() - tmpPrior1.getA(tmpPrior1.begin()) * result[ordering->at(x1)], tmpPrior1.get_model());
// Create a key for the new state
Key x2(2);
// Create the desired ordering
ordering = Ordering::shared_ptr(new Ordering);
ordering->insert(x1, 0);
ordering->insert(x2, 1);
// Create a nonlinear factor describing the motion model
difference = Vector(1,0);
Q = noiseModel::Diagonal::Sigmas(Vector_(2, 0.1, 0.1));
BetweenFactor<Values, Key> factor6(x1, x2, difference, Q);
// Linearize the factor and add it to the linear factor graph
linearizationPoints.insert(x2, x1_update);
linearFactorGraph->push_back(factor6.linearize(linearizationPoints, *ordering));
// Solve the linear factor graph, converting it into a linear Bayes Network ( P(x1,x2) = P(x1|x2)*P(x2) )
GaussianSequentialSolver solver2(*linearFactorGraph);
linearBayesNet = solver2.eliminate();
// Extract the current estimate of x2 from the Bayes Network
result = optimize(*linearBayesNet);
Vector x2_predict = linearizationPoints[x2].expmap(result[ordering->at(x2)]);
x2_predict.print("X2 Predict");
// Update the linearization point to the new estimate
linearizationPoints.update(x2, x2_predict);
// Now add the next measurement
// Create a new, empty graph and add the prior from the previous step
linearFactorGraph = GaussianFactorGraph::shared_ptr(new GaussianFactorGraph);
// Convert the root conditional, P(x1) in this case, into a Prior for the next step
const GaussianConditional::shared_ptr& cg2 = linearBayesNet->back();
assert(cg2->nrFrontals() == 1);
assert(cg2->nrParents() == 0);
JacobianFactor tmpPrior2 = JacobianFactor(*cg2);
linearFactorGraph->add(0, tmpPrior2.getA(tmpPrior2.begin()), tmpPrior2.getb() - tmpPrior2.getA(tmpPrior2.begin()) * result[ordering->at(x2)], tmpPrior2.get_model());
// Create the desired ordering
ordering = Ordering::shared_ptr(new Ordering);
ordering->insert(x2, 0);
// And update using z2 ...
Vector z2(2.0, 0.0);
SharedDiagonal R2 = noiseModel::Diagonal::Sigmas(Vector_(2, 0.25, 0.25));
PriorFactor<Values, Key> factor8(x2, z2, R2);
// Linearize the factor and add it to the linear factor graph
linearFactorGraph->push_back(factor8.linearize(linearizationPoints, *ordering));
// We have now made the small factor graph f7-(x2)-f8
// where factor f7 is the prior from previous time ( P(x2) )
// and factor f8 is from the measurement, z2 ( P(x2|z2) )
// Eliminate this in order x2, to get Bayes net P(x2)
// As this is a filter, all we need is the posterior P(x2), so we just keep the root of the Bayes net
// We solve as before...
// Solve the linear factor graph, converting it into a linear Bayes Network ( P(x0,x1) = P(x0|x1)*P(x1) )
GaussianSequentialSolver solver3(*linearFactorGraph);
linearBayesNet = solver3.eliminate();
// Extract the current estimate of x2 from the Bayes Network
result = optimize(*linearBayesNet);
Vector x2_update = linearizationPoints[x2].expmap(result[ordering->at(x2)]);
x2_update.print("X2 Update");
// Update the linearization point to the new estimate
linearizationPoints.update(x2, x2_update);
// Wash, rinse, repeat for a third time step
// Create a new, empty graph and add the prior from the previous step
linearFactorGraph = GaussianFactorGraph::shared_ptr(new GaussianFactorGraph);
// Convert the root conditional, P(x1) in this case, into a Prior for the next step
const GaussianConditional::shared_ptr& cg3 = linearBayesNet->back();
assert(cg3->nrFrontals() == 1);
assert(cg3->nrParents() == 0);
JacobianFactor tmpPrior3 = JacobianFactor(*cg3);
linearFactorGraph->add(0, tmpPrior3.getA(tmpPrior3.begin()), tmpPrior3.getb() - tmpPrior3.getA(tmpPrior3.begin()) * result[ordering->at(x2)], tmpPrior3.get_model());
// Create a key for the new state
Key x3(3);
// Create the desired ordering
ordering = Ordering::shared_ptr(new Ordering);
ordering->insert(x2, 0);
ordering->insert(x3, 1);
// Create a nonlinear factor describing the motion model
difference = Vector(1,0);
Q = noiseModel::Diagonal::Sigmas(Vector_(2, 0.1, 0.1));
BetweenFactor<Values, Key> factor10(x2, x3, difference, Q);
// Linearize the factor and add it to the linear factor graph
linearizationPoints.insert(x3, x2_update);
linearFactorGraph->push_back(factor10.linearize(linearizationPoints, *ordering));
// Solve the linear factor graph, converting it into a linear Bayes Network ( P(x1,x2) = P(x1|x2)*P(x2) )
GaussianSequentialSolver solver4(*linearFactorGraph);
linearBayesNet = solver4.eliminate();
// Extract the current estimate of x3 from the Bayes Network
result = optimize(*linearBayesNet);
Vector x3_predict = linearizationPoints[x3].expmap(result[ordering->at(x3)]);
x3_predict.print("X3 Predict");
// Update the linearization point to the new estimate
linearizationPoints.update(x3, x3_predict);
// Now add the next measurement
// Create a new, empty graph and add the prior from the previous step
linearFactorGraph = GaussianFactorGraph::shared_ptr(new GaussianFactorGraph);
// Convert the root conditional, P(x1) in this case, into a Prior for the next step
const GaussianConditional::shared_ptr& cg4 = linearBayesNet->back();
assert(cg4->nrFrontals() == 1);
assert(cg4->nrParents() == 0);
JacobianFactor tmpPrior4 = JacobianFactor(*cg4);
linearFactorGraph->add(0, tmpPrior4.getA(tmpPrior4.begin()), tmpPrior4.getb() - tmpPrior4.getA(tmpPrior4.begin()) * result[ordering->at(x3)], tmpPrior4.get_model());
// Create the desired ordering
ordering = Ordering::shared_ptr(new Ordering);
ordering->insert(x3, 0);
// And update using z3 ...
Vector z3(3.0, 0.0);
SharedDiagonal R3 = noiseModel::Diagonal::Sigmas(Vector_(2, 0.25, 0.25));
PriorFactor<Values, Key> factor12(x3, z3, R3);
// Linearize the factor and add it to the linear factor graph
linearFactorGraph->push_back(factor12.linearize(linearizationPoints, *ordering));
// We have now made the small factor graph f11-(x3)-f12
// where factor f11 is the prior from previous time ( P(x3) )
// and factor f12 is from the measurement, z3 ( P(x3|z3) )
// Eliminate this in order x3, to get Bayes net P(x3)
// As this is a filter, all we need is the posterior P(x3), so we just keep the root of the Bayes net
// We solve as before...
// Solve the linear factor graph, converting it into a linear Bayes Network ( P(x0,x1) = P(x0|x1)*P(x1) )
GaussianSequentialSolver solver5(*linearFactorGraph);
linearBayesNet = solver5.eliminate();
// Extract the current estimate of x2 from the Bayes Network
result = optimize(*linearBayesNet);
Vector x3_update = linearizationPoints[x3].expmap(result[ordering->at(x3)]);
x3_update.print("X3 Update");
// Update the linearization point to the new estimate
linearizationPoints.update(x3, x3_update);
*/
} }
/* ************************************************************************* */ /* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr);} int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */ /* ************************************************************************* */