Added Sim3
parent
a056086ea4
commit
6e1879a60d
|
@ -1,5 +1,5 @@
|
|||
#LyX 2.0 created this file. For more info see http://www.lyx.org/
|
||||
\lyxformat 413
|
||||
#LyX 2.1 created this file. For more info see http://www.lyx.org/
|
||||
\lyxformat 474
|
||||
\begin_document
|
||||
\begin_header
|
||||
\textclass article
|
||||
|
@ -15,13 +15,13 @@ theorems-std
|
|||
\font_roman times
|
||||
\font_sans default
|
||||
\font_typewriter default
|
||||
\font_math auto
|
||||
\font_default_family rmdefault
|
||||
\use_non_tex_fonts false
|
||||
\font_sc false
|
||||
\font_osf false
|
||||
\font_sf_scale 100
|
||||
\font_tt_scale 100
|
||||
|
||||
\graphics default
|
||||
\default_output_format default
|
||||
\output_sync 0
|
||||
|
@ -32,15 +32,24 @@ theorems-std
|
|||
\use_hyperref false
|
||||
\papersize default
|
||||
\use_geometry true
|
||||
\use_amsmath 1
|
||||
\use_esint 0
|
||||
\use_mhchem 1
|
||||
\use_mathdots 1
|
||||
\use_package amsmath 1
|
||||
\use_package amssymb 1
|
||||
\use_package cancel 1
|
||||
\use_package esint 0
|
||||
\use_package mathdots 1
|
||||
\use_package mathtools 1
|
||||
\use_package mhchem 1
|
||||
\use_package stackrel 1
|
||||
\use_package stmaryrd 1
|
||||
\use_package undertilde 1
|
||||
\cite_engine basic
|
||||
\cite_engine_type default
|
||||
\biblio_style plain
|
||||
\use_bibtopic false
|
||||
\use_indices false
|
||||
\paperorientation portrait
|
||||
\suppress_date false
|
||||
\justification true
|
||||
\use_refstyle 0
|
||||
\index Index
|
||||
\shortcut idx
|
||||
|
@ -96,7 +105,7 @@ We will start with a small example of a robot moving in a plane, parameterized
|
|||
2D pose
|
||||
\emph default
|
||||
|
||||
\begin_inset Formula $(x,\, y,\,\theta)$
|
||||
\begin_inset Formula $(x,\,y,\,\theta)$
|
||||
\end_inset
|
||||
|
||||
.
|
||||
|
@ -135,7 +144,7 @@ A similar story holds for translation in the
|
|||
direction, and in fact for translations in general:
|
||||
\begin_inset Formula
|
||||
\[
|
||||
(x_{t},\, y_{t},\,\theta_{t})=(x_{0}+v_{x}t,\, y_{0}+v_{y}t,\,\theta_{0})
|
||||
(x_{t},\,y_{t},\,\theta_{t})=(x_{0}+v_{x}t,\,y_{0}+v_{y}t,\,\theta_{0})
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
@ -143,7 +152,7 @@ A similar story holds for translation in the
|
|||
Similarly for rotation we have
|
||||
\begin_inset Formula
|
||||
\[
|
||||
(x_{t},\, y_{t},\,\theta_{t})=(x_{0},\, y_{0},\,\theta_{0}+\omega t)
|
||||
(x_{t},\,y_{t},\,\theta_{t})=(x_{0},\,y_{0},\,\theta_{0}+\omega t)
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
@ -175,7 +184,7 @@ status collapsed
|
|||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Caption
|
||||
\begin_inset Caption Standard
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Robot moving along a circular trajectory.
|
||||
|
@ -196,20 +205,20 @@ However, if we combine translation and rotation, the story breaks down!
|
|||
We cannot write
|
||||
\begin_inset Formula
|
||||
\[
|
||||
(x_{t},\, y_{t},\,\theta_{t})=(x_{0}+v_{x}t,\, y_{0}+v_{y}t,\,\theta_{0}+\omega t)
|
||||
(x_{t},\,y_{t},\,\theta_{t})=(x_{0}+v_{x}t,\,y_{0}+v_{y}t,\,\theta_{0}+\omega t)
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
The reason is that, if we move the robot a tiny bit according to the velocity
|
||||
vector
|
||||
\begin_inset Formula $(v_{x},\, v_{y},\,\omega)$
|
||||
\begin_inset Formula $(v_{x},\,v_{y},\,\omega)$
|
||||
\end_inset
|
||||
|
||||
, we have (to first order)
|
||||
\begin_inset Formula
|
||||
\[
|
||||
(x_{\delta},\, y_{\delta},\,\theta_{\delta})=(x_{0}+v_{x}\delta,\, y_{0}+v_{y}\delta,\,\theta_{0}+\omega\delta)
|
||||
(x_{\delta},\,y_{\delta},\,\theta_{\delta})=(x_{0}+v_{x}\delta,\,y_{0}+v_{y}\delta,\,\theta_{0}+\omega\delta)
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
@ -255,7 +264,7 @@ status open
|
|||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Caption
|
||||
\begin_inset Caption Standard
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset CommandInset label
|
||||
|
@ -290,7 +299,7 @@ To make progress, we have to be more precise about how the robot behaves.
|
|||
as
|
||||
\begin_inset Formula
|
||||
\[
|
||||
T_{1}T_{2}=(x_{1},\, y_{1},\,\theta_{1})(x_{2},\, y_{2},\,\theta_{2})=(x_{1}+\cos\theta_{1}x_{2}-\sin\theta y_{2},\, y_{1}+\sin\theta_{1}x_{2}+\cos\theta_{1}y_{2},\,\theta_{1}+\theta_{2})
|
||||
T_{1}T_{2}=(x_{1},\,y_{1},\,\theta_{1})(x_{2},\,y_{2},\,\theta_{2})=(x_{1}+\cos\theta_{1}x_{2}-\sin\theta y_{2},\,y_{1}+\sin\theta_{1}x_{2}+\cos\theta_{1}y_{2},\,\theta_{1}+\theta_{2})
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
@ -1600,13 +1609,13 @@ Hence, an alternative way of writing down elements of
|
|||
\end_inset
|
||||
|
||||
is as the ordered pair
|
||||
\begin_inset Formula $(R,\, t)$
|
||||
\begin_inset Formula $(R,\,t)$
|
||||
\end_inset
|
||||
|
||||
, with composition defined a
|
||||
\begin_inset Formula
|
||||
\[
|
||||
(R_{1},\, t_{1})(R_{2},\, t_{2})=(R_{1}R_{2},\, R{}_{1}t_{2}+t_{1})
|
||||
(R_{1},\,t_{1})(R_{2},\,t_{2})=(R_{1}R_{2},\,R{}_{1}t_{2}+t_{1})
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
@ -2569,13 +2578,13 @@ where
|
|||
\end_inset
|
||||
|
||||
is as the ordered pair
|
||||
\begin_inset Formula $(R,\, t)$
|
||||
\begin_inset Formula $(R,\,t)$
|
||||
\end_inset
|
||||
|
||||
, with composition defined as
|
||||
\begin_inset Formula
|
||||
\[
|
||||
(R_{1},\, t_{1})(R_{2},\, t_{2})=(R_{1}R_{2},\, R{}_{1}t_{2}+t_{1})
|
||||
(R_{1},\,t_{1})(R_{2},\,t_{2})=(R_{1}R_{2},\,R{}_{1}t_{2}+t_{1})
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
@ -2944,6 +2953,218 @@ p\\
|
|||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Section
|
||||
3D Similarity Transformations
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
The group of 3D similarity transformations
|
||||
\begin_inset Formula $Sim(3)$
|
||||
\end_inset
|
||||
|
||||
is the set of
|
||||
\begin_inset Formula $4\times4$
|
||||
\end_inset
|
||||
|
||||
invertible matrices of the form
|
||||
\begin_inset Formula
|
||||
\[
|
||||
T\define\left[\begin{array}{cc}
|
||||
R & t\\
|
||||
0 & s^{-1}
|
||||
\end{array}\right]
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
where
|
||||
\begin_inset Formula $s$
|
||||
\end_inset
|
||||
|
||||
is a scalar.
|
||||
There are several different conventions in use for the Lie algebra generators,
|
||||
but we use
|
||||
\begin_inset Formula
|
||||
\[
|
||||
G^{1}=\left(\begin{array}{cccc}
|
||||
0 & 0 & 0 & 0\\
|
||||
0 & 0 & -1 & 0\\
|
||||
0 & 1 & 0 & 0\\
|
||||
0 & 0 & 0 & 0
|
||||
\end{array}\right)\mbox{}G^{2}=\left(\begin{array}{cccc}
|
||||
0 & 0 & 1 & 0\\
|
||||
0 & 0 & 0 & 0\\
|
||||
-1 & 0 & 0 & 0\\
|
||||
0 & 0 & 0 & 0
|
||||
\end{array}\right)\mbox{ }G^{3}=\left(\begin{array}{cccc}
|
||||
0 & -1 & 0 & 0\\
|
||||
1 & 0 & 0 & 0\\
|
||||
0 & 0 & 0 & 0\\
|
||||
0 & 0 & 0 & 0
|
||||
\end{array}\right)
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula
|
||||
\[
|
||||
G^{4}=\left(\begin{array}{cccc}
|
||||
0 & 0 & 0 & 1\\
|
||||
0 & 0 & 0 & 0\\
|
||||
0 & 0 & 0 & 0\\
|
||||
0 & 0 & 0 & 0
|
||||
\end{array}\right)\mbox{}G^{5}=\left(\begin{array}{cccc}
|
||||
0 & 0 & 0 & 0\\
|
||||
0 & 0 & 0 & 1\\
|
||||
0 & 0 & 0 & 0\\
|
||||
0 & 0 & 0 & 0
|
||||
\end{array}\right)\mbox{ }G^{6}=\left(\begin{array}{cccc}
|
||||
0 & 0 & 0 & 0\\
|
||||
0 & 0 & 0 & 0\\
|
||||
0 & 0 & 0 & 1\\
|
||||
0 & 0 & 0 & 0
|
||||
\end{array}\right)\mbox{ }G^{7}=\left(\begin{array}{cccc}
|
||||
0 & 0 & 0 & 0\\
|
||||
0 & 0 & 0 & 0\\
|
||||
0 & 0 & 0 & 0\\
|
||||
0 & 0 & 0 & -1
|
||||
\end{array}\right)
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Actions
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
The action of
|
||||
\begin_inset Formula $\SEthree$
|
||||
\end_inset
|
||||
|
||||
on 3D points is done by embedding the points in
|
||||
\begin_inset Formula $\mathbb{R}^{4}$
|
||||
\end_inset
|
||||
|
||||
by using homogeneous coordinates
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\hat{q}=\left[\begin{array}{c}
|
||||
q\\
|
||||
s^{-1}
|
||||
\end{array}\right]=\left[\begin{array}{c}
|
||||
Rp+t\\
|
||||
s^{-1}
|
||||
\end{array}\right]=\left[\begin{array}{cc}
|
||||
R & t\\
|
||||
0 & s^{-1}
|
||||
\end{array}\right]\left[\begin{array}{c}
|
||||
p\\
|
||||
1
|
||||
\end{array}\right]=T\hat{p}
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
The derivative
|
||||
\begin_inset Formula $D_{1}f(\xi)$
|
||||
\end_inset
|
||||
|
||||
in an incremental change
|
||||
\begin_inset Formula $\xi$
|
||||
\end_inset
|
||||
|
||||
to
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
is given by
|
||||
\begin_inset Formula $TH(p)$
|
||||
\end_inset
|
||||
|
||||
where
|
||||
\begin_inset Formula
|
||||
\[
|
||||
H(p)=G_{jk}^{i}p^{j}=\left(\begin{array}{ccccccc}
|
||||
0 & z & -y & 1 & 0 & 0 & 0\\
|
||||
-z & 0 & x & 0 & 1 & 0 & 0\\
|
||||
y & -x & 0 & 0 & 0 & 1 & 0\\
|
||||
0 & 0 & 0 & 0 & 0 & 0 & -1
|
||||
\end{array}\right)
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
In other words
|
||||
\begin_inset Formula
|
||||
\[
|
||||
D_{1}f(\xi)=\left[\begin{array}{cc}
|
||||
R & t\\
|
||||
0 & s^{-1}
|
||||
\end{array}\right]\left[\begin{array}{ccc}
|
||||
-\left[p\right]_{x} & I_{3} & 0\\
|
||||
0 & 0 & -1
|
||||
\end{array}\right]=\left[\begin{array}{ccc}
|
||||
-R\left[p\right]_{x} & R & -t\\
|
||||
0 & 0 & -s^{-1}
|
||||
\end{array}\right]
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
This is the derivative for the action on homogeneous coordinates.
|
||||
Switching back to non-homogeneous coordinates is done by
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\left[\begin{array}{c}
|
||||
q\\
|
||||
a
|
||||
\end{array}\right]\rightarrow q/a
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
with derivative
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\left[\begin{array}{cc}
|
||||
a^{-1}I_{3} & -qa^{-2}\end{array}\right]
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
For
|
||||
\begin_inset Formula $a=s^{-1}$
|
||||
\end_inset
|
||||
|
||||
we obtain
|
||||
\begin_inset Formula
|
||||
\[
|
||||
D_{1}f(\xi)=\left[\begin{array}{cc}
|
||||
sI_{3} & -qs^{2}\end{array}\right]\left[\begin{array}{ccc}
|
||||
-R\left[p\right]_{x} & R & -t\\
|
||||
0 & 0 & -s^{-1}
|
||||
\end{array}\right]=\left[\begin{array}{ccc}
|
||||
-sR\left[p\right]_{x} & sR & -st+qs\end{array}\right]=\left[\begin{array}{ccc}
|
||||
-sR\left[p\right]_{x} & sR & sRp\end{array}\right]
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Newpage pagebreak
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Section
|
||||
|
|
Binary file not shown.
Loading…
Reference in New Issue