Added Sim3
parent
a056086ea4
commit
6e1879a60d
|
@ -1,5 +1,5 @@
|
|||
#LyX 2.0 created this file. For more info see http://www.lyx.org/
|
||||
\lyxformat 413
|
||||
#LyX 2.1 created this file. For more info see http://www.lyx.org/
|
||||
\lyxformat 474
|
||||
\begin_document
|
||||
\begin_header
|
||||
\textclass article
|
||||
|
@ -15,13 +15,13 @@ theorems-std
|
|||
\font_roman times
|
||||
\font_sans default
|
||||
\font_typewriter default
|
||||
\font_math auto
|
||||
\font_default_family rmdefault
|
||||
\use_non_tex_fonts false
|
||||
\font_sc false
|
||||
\font_osf false
|
||||
\font_sf_scale 100
|
||||
\font_tt_scale 100
|
||||
|
||||
\graphics default
|
||||
\default_output_format default
|
||||
\output_sync 0
|
||||
|
@ -32,15 +32,24 @@ theorems-std
|
|||
\use_hyperref false
|
||||
\papersize default
|
||||
\use_geometry true
|
||||
\use_amsmath 1
|
||||
\use_esint 0
|
||||
\use_mhchem 1
|
||||
\use_mathdots 1
|
||||
\use_package amsmath 1
|
||||
\use_package amssymb 1
|
||||
\use_package cancel 1
|
||||
\use_package esint 0
|
||||
\use_package mathdots 1
|
||||
\use_package mathtools 1
|
||||
\use_package mhchem 1
|
||||
\use_package stackrel 1
|
||||
\use_package stmaryrd 1
|
||||
\use_package undertilde 1
|
||||
\cite_engine basic
|
||||
\cite_engine_type default
|
||||
\biblio_style plain
|
||||
\use_bibtopic false
|
||||
\use_indices false
|
||||
\paperorientation portrait
|
||||
\suppress_date false
|
||||
\justification true
|
||||
\use_refstyle 0
|
||||
\index Index
|
||||
\shortcut idx
|
||||
|
@ -175,7 +184,7 @@ status collapsed
|
|||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Caption
|
||||
\begin_inset Caption Standard
|
||||
|
||||
\begin_layout Plain Layout
|
||||
Robot moving along a circular trajectory.
|
||||
|
@ -255,7 +264,7 @@ status open
|
|||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Caption
|
||||
\begin_inset Caption Standard
|
||||
|
||||
\begin_layout Plain Layout
|
||||
\begin_inset CommandInset label
|
||||
|
@ -2944,6 +2953,218 @@ p\\
|
|||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Section
|
||||
3D Similarity Transformations
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
The group of 3D similarity transformations
|
||||
\begin_inset Formula $Sim(3)$
|
||||
\end_inset
|
||||
|
||||
is the set of
|
||||
\begin_inset Formula $4\times4$
|
||||
\end_inset
|
||||
|
||||
invertible matrices of the form
|
||||
\begin_inset Formula
|
||||
\[
|
||||
T\define\left[\begin{array}{cc}
|
||||
R & t\\
|
||||
0 & s^{-1}
|
||||
\end{array}\right]
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
where
|
||||
\begin_inset Formula $s$
|
||||
\end_inset
|
||||
|
||||
is a scalar.
|
||||
There are several different conventions in use for the Lie algebra generators,
|
||||
but we use
|
||||
\begin_inset Formula
|
||||
\[
|
||||
G^{1}=\left(\begin{array}{cccc}
|
||||
0 & 0 & 0 & 0\\
|
||||
0 & 0 & -1 & 0\\
|
||||
0 & 1 & 0 & 0\\
|
||||
0 & 0 & 0 & 0
|
||||
\end{array}\right)\mbox{}G^{2}=\left(\begin{array}{cccc}
|
||||
0 & 0 & 1 & 0\\
|
||||
0 & 0 & 0 & 0\\
|
||||
-1 & 0 & 0 & 0\\
|
||||
0 & 0 & 0 & 0
|
||||
\end{array}\right)\mbox{ }G^{3}=\left(\begin{array}{cccc}
|
||||
0 & -1 & 0 & 0\\
|
||||
1 & 0 & 0 & 0\\
|
||||
0 & 0 & 0 & 0\\
|
||||
0 & 0 & 0 & 0
|
||||
\end{array}\right)
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\begin_inset Formula
|
||||
\[
|
||||
G^{4}=\left(\begin{array}{cccc}
|
||||
0 & 0 & 0 & 1\\
|
||||
0 & 0 & 0 & 0\\
|
||||
0 & 0 & 0 & 0\\
|
||||
0 & 0 & 0 & 0
|
||||
\end{array}\right)\mbox{}G^{5}=\left(\begin{array}{cccc}
|
||||
0 & 0 & 0 & 0\\
|
||||
0 & 0 & 0 & 1\\
|
||||
0 & 0 & 0 & 0\\
|
||||
0 & 0 & 0 & 0
|
||||
\end{array}\right)\mbox{ }G^{6}=\left(\begin{array}{cccc}
|
||||
0 & 0 & 0 & 0\\
|
||||
0 & 0 & 0 & 0\\
|
||||
0 & 0 & 0 & 1\\
|
||||
0 & 0 & 0 & 0
|
||||
\end{array}\right)\mbox{ }G^{7}=\left(\begin{array}{cccc}
|
||||
0 & 0 & 0 & 0\\
|
||||
0 & 0 & 0 & 0\\
|
||||
0 & 0 & 0 & 0\\
|
||||
0 & 0 & 0 & -1
|
||||
\end{array}\right)
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsection
|
||||
Actions
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
The action of
|
||||
\begin_inset Formula $\SEthree$
|
||||
\end_inset
|
||||
|
||||
on 3D points is done by embedding the points in
|
||||
\begin_inset Formula $\mathbb{R}^{4}$
|
||||
\end_inset
|
||||
|
||||
by using homogeneous coordinates
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\hat{q}=\left[\begin{array}{c}
|
||||
q\\
|
||||
s^{-1}
|
||||
\end{array}\right]=\left[\begin{array}{c}
|
||||
Rp+t\\
|
||||
s^{-1}
|
||||
\end{array}\right]=\left[\begin{array}{cc}
|
||||
R & t\\
|
||||
0 & s^{-1}
|
||||
\end{array}\right]\left[\begin{array}{c}
|
||||
p\\
|
||||
1
|
||||
\end{array}\right]=T\hat{p}
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
The derivative
|
||||
\begin_inset Formula $D_{1}f(\xi)$
|
||||
\end_inset
|
||||
|
||||
in an incremental change
|
||||
\begin_inset Formula $\xi$
|
||||
\end_inset
|
||||
|
||||
to
|
||||
\begin_inset Formula $T$
|
||||
\end_inset
|
||||
|
||||
is given by
|
||||
\begin_inset Formula $TH(p)$
|
||||
\end_inset
|
||||
|
||||
where
|
||||
\begin_inset Formula
|
||||
\[
|
||||
H(p)=G_{jk}^{i}p^{j}=\left(\begin{array}{ccccccc}
|
||||
0 & z & -y & 1 & 0 & 0 & 0\\
|
||||
-z & 0 & x & 0 & 1 & 0 & 0\\
|
||||
y & -x & 0 & 0 & 0 & 1 & 0\\
|
||||
0 & 0 & 0 & 0 & 0 & 0 & -1
|
||||
\end{array}\right)
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
In other words
|
||||
\begin_inset Formula
|
||||
\[
|
||||
D_{1}f(\xi)=\left[\begin{array}{cc}
|
||||
R & t\\
|
||||
0 & s^{-1}
|
||||
\end{array}\right]\left[\begin{array}{ccc}
|
||||
-\left[p\right]_{x} & I_{3} & 0\\
|
||||
0 & 0 & -1
|
||||
\end{array}\right]=\left[\begin{array}{ccc}
|
||||
-R\left[p\right]_{x} & R & -t\\
|
||||
0 & 0 & -s^{-1}
|
||||
\end{array}\right]
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
This is the derivative for the action on homogeneous coordinates.
|
||||
Switching back to non-homogeneous coordinates is done by
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\left[\begin{array}{c}
|
||||
q\\
|
||||
a
|
||||
\end{array}\right]\rightarrow q/a
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
with derivative
|
||||
\begin_inset Formula
|
||||
\[
|
||||
\left[\begin{array}{cc}
|
||||
a^{-1}I_{3} & -qa^{-2}\end{array}\right]
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
For
|
||||
\begin_inset Formula $a=s^{-1}$
|
||||
\end_inset
|
||||
|
||||
we obtain
|
||||
\begin_inset Formula
|
||||
\[
|
||||
D_{1}f(\xi)=\left[\begin{array}{cc}
|
||||
sI_{3} & -qs^{2}\end{array}\right]\left[\begin{array}{ccc}
|
||||
-R\left[p\right]_{x} & R & -t\\
|
||||
0 & 0 & -s^{-1}
|
||||
\end{array}\right]=\left[\begin{array}{ccc}
|
||||
-sR\left[p\right]_{x} & sR & -st+qs\end{array}\right]=\left[\begin{array}{ccc}
|
||||
-sR\left[p\right]_{x} & sR & sRp\end{array}\right]
|
||||
\]
|
||||
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset Newpage pagebreak
|
||||
\end_inset
|
||||
|
||||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Section
|
||||
|
|
Binary file not shown.
Loading…
Reference in New Issue