add separate Hybrid ISAM and Smoother tests

release/4.3a0
Varun Agrawal 2023-07-05 11:09:14 -04:00
parent 53d00864bb
commit 6d69ca16da
1 changed files with 55 additions and 0 deletions

View File

@ -140,6 +140,61 @@ TEST(HybridEstimation, IncrementalSmoother) {
EXPECT(assert_equal(expected_continuous, result));
}
/****************************************************************************/
// Test approximate inference with an additional pruning step.
TEST(HybridEstimation, ISAM) {
size_t K = 15;
std::vector<double> measurements = {0, 1, 2, 2, 2, 2, 3, 4, 5, 6, 6,
7, 8, 9, 9, 9, 10, 11, 11, 11, 11};
// Ground truth discrete seq
std::vector<size_t> discrete_seq = {1, 1, 0, 0, 0, 1, 1, 1, 1, 0,
1, 1, 1, 0, 0, 1, 1, 0, 0, 0};
// Switching example of robot moving in 1D
// with given measurements and equal mode priors.
Switching switching(K, 1.0, 0.1, measurements, "1/1 1/1");
HybridNonlinearISAM isam;
HybridNonlinearFactorGraph graph;
Values initial;
// gttic_(Estimation);
// Add the X(0) prior
graph.push_back(switching.nonlinearFactorGraph.at(0));
initial.insert(X(0), switching.linearizationPoint.at<double>(X(0)));
HybridGaussianFactorGraph linearized;
for (size_t k = 1; k < K; k++) {
// Motion Model
graph.push_back(switching.nonlinearFactorGraph.at(k));
// Measurement
graph.push_back(switching.nonlinearFactorGraph.at(k + K - 1));
initial.insert(X(k), switching.linearizationPoint.at<double>(X(k)));
isam.update(graph, initial, 3);
// isam.bayesTree().print("\n\n");
graph.resize(0);
initial.clear();
}
Values result = isam.estimate();
DiscreteValues assignment = isam.assignment();
DiscreteValues expected_discrete;
for (size_t k = 0; k < K - 1; k++) {
expected_discrete[M(k)] = discrete_seq[k];
}
EXPECT(assert_equal(expected_discrete, assignment));
Values expected_continuous;
for (size_t k = 0; k < K; k++) {
expected_continuous.insert(X(k), measurements[k]);
}
EXPECT(assert_equal(expected_continuous, result));
}
/**
* @brief A function to get a specific 1D robot motion problem as a linearized
* factor graph. This is the problem P(X|Z, M), i.e. estimating the continuous