add separate Hybrid ISAM and Smoother tests
parent
53d00864bb
commit
6d69ca16da
|
|
@ -140,6 +140,61 @@ TEST(HybridEstimation, IncrementalSmoother) {
|
|||
EXPECT(assert_equal(expected_continuous, result));
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
// Test approximate inference with an additional pruning step.
|
||||
TEST(HybridEstimation, ISAM) {
|
||||
size_t K = 15;
|
||||
std::vector<double> measurements = {0, 1, 2, 2, 2, 2, 3, 4, 5, 6, 6,
|
||||
7, 8, 9, 9, 9, 10, 11, 11, 11, 11};
|
||||
// Ground truth discrete seq
|
||||
std::vector<size_t> discrete_seq = {1, 1, 0, 0, 0, 1, 1, 1, 1, 0,
|
||||
1, 1, 1, 0, 0, 1, 1, 0, 0, 0};
|
||||
// Switching example of robot moving in 1D
|
||||
// with given measurements and equal mode priors.
|
||||
Switching switching(K, 1.0, 0.1, measurements, "1/1 1/1");
|
||||
HybridNonlinearISAM isam;
|
||||
HybridNonlinearFactorGraph graph;
|
||||
Values initial;
|
||||
|
||||
// gttic_(Estimation);
|
||||
|
||||
// Add the X(0) prior
|
||||
graph.push_back(switching.nonlinearFactorGraph.at(0));
|
||||
initial.insert(X(0), switching.linearizationPoint.at<double>(X(0)));
|
||||
|
||||
HybridGaussianFactorGraph linearized;
|
||||
|
||||
for (size_t k = 1; k < K; k++) {
|
||||
// Motion Model
|
||||
graph.push_back(switching.nonlinearFactorGraph.at(k));
|
||||
// Measurement
|
||||
graph.push_back(switching.nonlinearFactorGraph.at(k + K - 1));
|
||||
|
||||
initial.insert(X(k), switching.linearizationPoint.at<double>(X(k)));
|
||||
|
||||
isam.update(graph, initial, 3);
|
||||
// isam.bayesTree().print("\n\n");
|
||||
|
||||
graph.resize(0);
|
||||
initial.clear();
|
||||
}
|
||||
|
||||
Values result = isam.estimate();
|
||||
DiscreteValues assignment = isam.assignment();
|
||||
|
||||
DiscreteValues expected_discrete;
|
||||
for (size_t k = 0; k < K - 1; k++) {
|
||||
expected_discrete[M(k)] = discrete_seq[k];
|
||||
}
|
||||
EXPECT(assert_equal(expected_discrete, assignment));
|
||||
|
||||
Values expected_continuous;
|
||||
for (size_t k = 0; k < K; k++) {
|
||||
expected_continuous.insert(X(k), measurements[k]);
|
||||
}
|
||||
EXPECT(assert_equal(expected_continuous, result));
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief A function to get a specific 1D robot motion problem as a linearized
|
||||
* factor graph. This is the problem P(X|Z, M), i.e. estimating the continuous
|
||||
|
|
|
|||
Loading…
Reference in New Issue