Moved from Vector3/LieVector to Point3. I have mixed feelings about this. Wondering (again) whether Point3 ought to *be* a Vector3 after all.

release/4.3a0
dellaert 2014-02-01 09:31:22 -05:00
parent d555c017d6
commit 6d16ebf68d
3 changed files with 48 additions and 60 deletions

View File

@ -105,17 +105,15 @@ public:
Matrix skew() const;
/// Return unit-norm Point3
Point3 point3(boost::optional<Matrix&> H = boost::none) const {
const Point3& point3(boost::optional<Matrix&> H = boost::none) const {
if (H)
*H = basis();
return p_;
}
/// Return unit-norm Vector
Vector unitVector(boost::optional<Matrix&> H = boost::none) const {
if (H)
*H = basis();
return (p_.vector ());
/// Return scaled direction as Point3
friend Point3 operator*(double s, const Sphere2& d) {
return s*d.p_;
}
/// Signed, vector-valued error between two directions

View File

@ -19,7 +19,6 @@
#include <gtsam/nonlinear/NonlinearFactor.h>
#include <gtsam/geometry/Rot2.h>
#include <gtsam/geometry/Rot3.h>
#include <gtsam/base/LieVector.h>
#include <gtsam/base/LieScalar.h>
namespace gtsam {
@ -31,16 +30,16 @@ namespace gtsam {
*/
class MagFactor: public NoiseModelFactor1<Rot2> {
const Vector3 measured_; ///< The measured magnetometer values
const Point3 measured_; ///< The measured magnetometer values
const double scale_; ///< Scale factor from direction to magnetometer readings
const Sphere2 direction_; ///< Local magnetic field direction
const Vector3 bias_; ///< bias
const Point3 bias_; ///< bias
public:
/** Constructor */
MagFactor(Key key, const Vector3& measured, const LieScalar& scale,
const Sphere2& direction, const LieVector& bias,
MagFactor(Key key, const Point3& measured, const LieScalar& scale,
const Sphere2& direction, const Point3& bias,
const SharedNoiseModel& model) :
NoiseModelFactor1<Rot2>(model, key), //
measured_(measured), scale_(scale), direction_(direction), bias_(bias) {
@ -57,7 +56,7 @@ public:
Sphere2 q = Rot3::yaw(R.theta()) * p;
if (HR) {
HR->resize(2, 1);
Point3 Q = q.unitVector();
Point3 Q = q.point3();
Matrix B = q.basis().transpose();
(*HR) = Q.x() * B.col(1) - Q.y() * B.col(0);
}
@ -71,13 +70,13 @@ public:
boost::optional<Matrix&> H = boost::none) const {
// measured bM = nRbÕ * nM + b, where b is unknown bias
Sphere2 rotated = unrotate(nRb, direction_, H);
Vector3 hx = scale_ * rotated.unitVector() + bias_;
Point3 hx = scale_ * rotated.point3() + bias_;
if (H) {
Matrix U;
rotated.unitVector(U);
rotated.point3(U);
*H = scale_ * U * (*H);
}
return hx - measured_;
return (hx - measured_).vector();
}
};
@ -88,19 +87,18 @@ public:
*/
class MagFactor1: public NoiseModelFactor1<Rot3> {
const Vector3 measured_; ///< The measured magnetometer values
const double scale_; ///< Scale factor from direction to magnetometer readings
const Sphere2 direction_; ///< Local magnetic field direction
const Vector3 bias_; ///< bias
const Point3 measured_; ///< The measured magnetometer values
const Point3 nM_; ///< Local magnetic field (mag output units)
const Point3 bias_; ///< bias
public:
/** Constructor */
MagFactor1(Key key, const Vector3& measured, const LieScalar& scale,
const Sphere2& direction, const LieVector& bias,
MagFactor1(Key key, const Point3& measured, const LieScalar& scale,
const Sphere2& direction, const Point3& bias,
const SharedNoiseModel& model) :
NoiseModelFactor1<Rot3>(model, key), //
measured_(measured), scale_(scale), direction_(direction), bias_(bias) {
measured_(measured), nM_(scale * direction), bias_(bias) {
}
/// @return a deep copy of this factor
@ -115,15 +113,9 @@ public:
Vector evaluateError(const Rot3& nRb,
boost::optional<Matrix&> H = boost::none) const {
// measured bM = nRbÕ * nM + b, where b is unknown bias
Sphere2 rotated = nRb.unrotate(direction_, H);
Vector3 hx = scale_ * rotated.unitVector() + bias_;
if (H) // I think H2 is 2*2, but we need 3*2
{
Matrix U;
rotated.unitVector(U);
*H = scale_ * U * (*H);
}
return hx - measured_;
Point3 q = nRb.unrotate(nM_, H);
Point3 hx = q + bias_;
return (hx - measured_).vector();
}
};
@ -132,18 +124,18 @@ public:
* This version uses model measured bM = bRn * nM + bias
* and optimizes for both nM and the bias, where nM is in units defined by magnetometer
*/
class MagFactor2: public NoiseModelFactor2<LieVector, LieVector> {
class MagFactor2: public NoiseModelFactor2<Point3, Point3> {
const Vector3 measured_; ///< The measured magnetometer values
const Matrix3 bRn_; ///< The assumed known rotation from nav to body
const Point3 measured_; ///< The measured magnetometer values
const Rot3 bRn_; ///< The assumed known rotation from nav to body
public:
/** Constructor */
MagFactor2(Key key1, Key key2, const Vector3& measured, const Rot3& nRb,
MagFactor2(Key key1, Key key2, const Point3& measured, const Rot3& nRb,
const SharedNoiseModel& model) :
NoiseModelFactor2<LieVector, LieVector>(model, key1, key2), //
measured_(measured), bRn_(nRb.transpose()) {
NoiseModelFactor2<Point3, Point3>(model, key1, key2), //
measured_(measured), bRn_(nRb.inverse()) {
}
/// @return a deep copy of this factor
@ -157,16 +149,14 @@ public:
* @param nM (unknown) local earth magnetic field vector, in nav frame
* @param bias (unknown) 3D bias
*/
Vector evaluateError(const LieVector& nM, const LieVector& bias,
Vector evaluateError(const Point3& nM, const Point3& bias,
boost::optional<Matrix&> H1 = boost::none, boost::optional<Matrix&> H2 =
boost::none) const {
// measured bM = nRbÕ * nM + b, where b is unknown bias
Vector3 hx = bRn_ * nM + bias;
if (H1)
*H1 = bRn_;
Point3 hx = bRn_.rotate(nM, boost::none, H1) + bias;
if (H2)
*H2 = eye(3);
return hx - measured_;
return (hx - measured_).vector();
}
};
@ -175,17 +165,17 @@ public:
* This version uses model measured bM = scale * bRn * direction + bias
* and optimizes for both scale, direction, and the bias.
*/
class MagFactor3: public NoiseModelFactor3<LieScalar, Sphere2, LieVector> {
class MagFactor3: public NoiseModelFactor3<LieScalar, Sphere2, Point3> {
const Vector3 measured_; ///< The measured magnetometer values
const Point3 measured_; ///< The measured magnetometer values
const Rot3 bRn_; ///< The assumed known rotation from nav to body
public:
/** Constructor */
MagFactor3(Key key1, Key key2, Key key3, const Vector3& measured,
MagFactor3(Key key1, Key key2, Key key3, const Point3& measured,
const Rot3& nRb, const SharedNoiseModel& model) :
NoiseModelFactor3<LieScalar, Sphere2, LieVector>(model, key1, key2, key3), //
NoiseModelFactor3<LieScalar, Sphere2, Point3>(model, key1, key2, key3), //
measured_(measured), bRn_(nRb.inverse()) {
}
@ -201,23 +191,23 @@ public:
* @param bias (unknown) 3D bias
*/
Vector evaluateError(const LieScalar& scale, const Sphere2& direction,
const LieVector& bias, boost::optional<Matrix&> H1 = boost::none,
const Point3& bias, boost::optional<Matrix&> H1 = boost::none,
boost::optional<Matrix&> H2 = boost::none, boost::optional<Matrix&> H3 =
boost::none) const {
// measured bM = nRbÕ * nM + b, where b is unknown bias
Sphere2 rotated = bRn_.rotate(direction, boost::none, H2);
Vector3 hx = scale * rotated.unitVector() + bias;
Point3 hx = scale * rotated.point3() + bias;
if (H1)
*H1 = rotated.unitVector();
if (H2) // I think H2 is 2*2, but we need 3*2
*H1 = rotated.point3().vector();
if (H2) // H2 is 2*2, but we need 3*2
{
Matrix H;
rotated.unitVector(H);
rotated.point3(H);
*H2 = scale * H * (*H2);
}
if (H3)
*H3 = eye(3);
return hx - measured_;
return (hx - measured_).vector();
}
};

View File

@ -36,20 +36,20 @@ using namespace GeographicLib;
// Get field from http://www.ngdc.noaa.gov/geomag-web/#igrfwmm
// Declination = -4.94 degrees (West), Inclination = 62.78 degrees Down
// As NED vector, in nT:
Vector3 nM(22653.29982, -1956.83010, 44202.47862);
Point3 nM(22653.29982, -1956.83010, 44202.47862);
// Let's assume scale factor,
double scale = 255.0 / 50000.0;
// ...ground truth orientation,
Rot3 nRb = Rot3::yaw(-0.1);
Rot2 theta = -nRb.yaw();
// ...and bias
Vector3 bias(10, -10, 50);
Point3 bias(10, -10, 50);
// ... then we measure
Vector3 scaled = scale * nM;
Vector3 measured = scale * nRb.transpose() * nM + bias;
Point3 scaled = scale * nM;
Point3 measured = nRb.inverse() * (scale * nM) + bias;
LieScalar s(scale * nM.norm());
Sphere2 dir(nM[0], nM[1], nM[2]);
Sphere2 dir(nM);
SharedNoiseModel model = noiseModel::Isotropic::Sigma(3, 0.25);
@ -84,10 +84,10 @@ TEST( MagFactor, Factors ) {
// MagFactor2
MagFactor2 f2(1, 2, measured, nRb, model);
EXPECT( assert_equal(zero(3),f2.evaluateError(scaled,bias,H1,H2),1e-5));
EXPECT( assert_equal(numericalDerivative11<LieVector> //
EXPECT( assert_equal(numericalDerivative11<Point3> //
(boost::bind(&MagFactor2::evaluateError, &f2, _1, bias, none, none), scaled),//
H1, 1e-7));
EXPECT( assert_equal(numericalDerivative11<LieVector> //
EXPECT( assert_equal(numericalDerivative11<Point3> //
(boost::bind(&MagFactor2::evaluateError, &f2, scaled, _1, none, none), bias),//
H2, 1e-7));
@ -100,7 +100,7 @@ TEST( MagFactor, Factors ) {
EXPECT(assert_equal(numericalDerivative11<Sphere2> //
(boost::bind(&MagFactor3::evaluateError, &f3, s, _1, bias, none, none, none), dir),//
H2, 1e-7));
EXPECT(assert_equal(numericalDerivative11<LieVector> //
EXPECT(assert_equal(numericalDerivative11<Point3> //
(boost::bind(&MagFactor3::evaluateError, &f3, s, dir, _1, none, none, none), bias),//
H3, 1e-7));
}