* cleaned up and optimized a bit the Eigen matrices' DefaultChart
* also added a few unit tests more for those charsrelease/4.3a0
parent
9f765c7496
commit
6d04309dfb
|
@ -242,21 +242,56 @@ struct DefaultChart<double> {
|
|||
|
||||
// Fixed size Eigen::Matrix type
|
||||
|
||||
namespace internal {
|
||||
|
||||
template <int OutM, int OutN, int InM, int InN, int InOptions>
|
||||
struct Reshape {
|
||||
//TODO replace this with Eigen's reshape function as soon as available. (There is a PR already pending : https://bitbucket.org/eigen/eigen/pull-request/41/reshape/diff)
|
||||
typedef Eigen::Map<const Eigen::Matrix<double, OutM, OutN> > ReshapedType;
|
||||
static inline ReshapedType reshape(const Eigen::Matrix<double, InM, InN, InOptions> & in) {
|
||||
return in.data();
|
||||
}
|
||||
};
|
||||
|
||||
template <int M, int N, int InOptions>
|
||||
struct Reshape<M, N, M, N, InOptions> {
|
||||
typedef const Eigen::Matrix<double, M, N, InOptions> & ReshapedType;
|
||||
static inline ReshapedType reshape(const Eigen::Matrix<double, M, N, InOptions> & in) {
|
||||
return in;
|
||||
}
|
||||
};
|
||||
|
||||
template <int M, int N, int InOptions>
|
||||
struct Reshape<N, M, M, N, InOptions> {
|
||||
typedef typename Eigen::Matrix<double, M, N, InOptions>::ConstTransposeReturnType ReshapedType;
|
||||
static inline ReshapedType reshape(const Eigen::Matrix<double, M, N, InOptions> & in) {
|
||||
return in.transpose();
|
||||
}
|
||||
};
|
||||
|
||||
template <int OutM, int OutN, int InM, int InN, int InOptions>
|
||||
inline typename Reshape<OutM, OutN, InM, InN, InOptions>::ReshapedType reshape(const Eigen::Matrix<double, InM, InN, InOptions> & m){
|
||||
BOOST_STATIC_ASSERT(InM * InN == OutM * OutN);
|
||||
return Reshape<OutM, OutN, InM, InN, InOptions>::reshape(m);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
template<int M, int N, int Options>
|
||||
struct DefaultChart<Eigen::Matrix<double, M, N, Options> > {
|
||||
/**
|
||||
* This chart for the vector space of M x N matrices (represented by Eigen matrices) chooses as basis the one with respect to which the coordinates are exactly the matrix entries as laid out in memory (as determined by Options).
|
||||
* Computing coordinates for a matrix is then simply a reshape to the row vector of appropriate size.
|
||||
*/
|
||||
typedef Eigen::Matrix<double, M, N, Options> type;
|
||||
typedef type T;
|
||||
typedef Eigen::Matrix<double, traits::dimension<T>::value, 1> vector;BOOST_STATIC_ASSERT_MSG((M!=Eigen::Dynamic && N!=Eigen::Dynamic),
|
||||
"DefaultChart has not been implemented yet for dynamically sized matrices");
|
||||
static vector local(const T& origin, const T& other) {
|
||||
T diff = other - origin;
|
||||
Eigen::Map<vector> map(diff.data());
|
||||
return vector(map);
|
||||
// Why is this function not : return other - origin; ?? what is the Eigen::Map used for?
|
||||
return internal::reshape<vector::RowsAtCompileTime, 1>(other) - internal::reshape<vector::RowsAtCompileTime, 1>(origin);
|
||||
}
|
||||
static T retract(const T& origin, const vector& d) {
|
||||
Eigen::Map<const T> map(d.data());
|
||||
return origin + map;
|
||||
return origin + internal::reshape<M, N>(d);
|
||||
}
|
||||
static int getDimension(const T&origin) {
|
||||
return origin.rows() * origin.cols();
|
||||
|
|
|
@ -76,6 +76,26 @@ TEST(Manifold, DefaultChart) {
|
|||
EXPECT(assert_equal(v2, chart2.local(Vector2(0, 0), Vector2(1, 0))));
|
||||
EXPECT(chart2.retract(Vector2(0, 0), v2) == Vector2(1, 0));
|
||||
|
||||
{
|
||||
typedef Matrix2 ManifoldPoint;
|
||||
ManifoldPoint m;
|
||||
DefaultChart<ManifoldPoint> chart;
|
||||
m << 1, 3,
|
||||
2, 4;
|
||||
// m as per default is in column-major storage mode. So this yields a linear representation of (1, 2, 3, 4)!
|
||||
EXPECT(assert_equal(Vector(Vector4(1, 2, 3, 4)), Vector(chart.local(ManifoldPoint::Zero(), m))));
|
||||
EXPECT(chart.retract(m, Vector4(1, 2, 3, 4)) == 2 * m);
|
||||
}
|
||||
|
||||
{
|
||||
typedef Eigen::Matrix<double, 1, 2> ManifoldPoint;
|
||||
ManifoldPoint m;
|
||||
DefaultChart<ManifoldPoint> chart;
|
||||
m << 1, 2;
|
||||
EXPECT(assert_equal(Vector(Vector2(1, 2)), Vector(chart.local(ManifoldPoint::Zero(), m))));
|
||||
EXPECT(chart.retract(m, Vector2(1, 2)) == 2 * m);
|
||||
}
|
||||
|
||||
DefaultChart<double> chart3;
|
||||
Vector v1(1);
|
||||
v1 << 1;
|
||||
|
|
Loading…
Reference in New Issue