compose_pow and DirectProduct
parent
b8e980258c
commit
6c6abe0b6c
|
|
@ -95,6 +95,16 @@ struct GroupTraits {
|
|||
static Class Identity() { return Class(); }
|
||||
};
|
||||
|
||||
/// A helper class that implements the traits interface for multiplicative groups.
|
||||
/// Assumes existence of operator* and inverse method
|
||||
template<class Class>
|
||||
struct MultiplicativeGroupTraits : GroupTraits<Class> {
|
||||
typedef multiplicative_group_tag group_flavor; \
|
||||
static Class Compose(const Class &g, const Class & h) { return g * h;} \
|
||||
static Class Between(const Class &g, const Class & h) { return g.inverse() * h;} \
|
||||
static Class Inverse(const Class &g) { return g.inverse();}
|
||||
};
|
||||
|
||||
/// A helper class that implements the traits interface for additive groups.
|
||||
/// Assumes existence of three additive operators
|
||||
template<class Class>
|
||||
|
|
@ -105,17 +115,54 @@ struct AdditiveGroupTraits : GroupTraits<Class> {
|
|||
static Class Inverse(const Class &g) { return -g;}
|
||||
};
|
||||
|
||||
/// A helper class that implements the traits interface for multiplicative groups.
|
||||
/// Assumes existence of operators * and /, as well as inverse method
|
||||
template<class Class>
|
||||
struct MultiplicativeGroupTraits : GroupTraits<Class> {
|
||||
typedef multiplicative_group_tag group_flavor; \
|
||||
static Class Compose(const Class &g, const Class & h) { return g * h;} \
|
||||
static Class Between(const Class &g, const Class & h) { return g.inverse() * h;} \
|
||||
static Class Inverse(const Class &g) { return g.inverse();}
|
||||
};
|
||||
} // namespace internal
|
||||
|
||||
/// compose multiple times
|
||||
template<typename G>
|
||||
BOOST_CONCEPT_REQUIRES(((IsGroup<G>)),(G)) //
|
||||
compose_pow(const G& g, size_t n) {
|
||||
if (n == 0)
|
||||
return traits<G>::Identity();
|
||||
else if (n == 1)
|
||||
return g;
|
||||
else
|
||||
return traits<G>::Compose(compose_pow(g, n - 1), g);
|
||||
}
|
||||
|
||||
/// Template to construct the direct product of two arbitrary groups
|
||||
/// Assumes nothing except group structure from G and H
|
||||
template<typename G, typename H>
|
||||
class DirectProduct: public std::pair<G, H> {
|
||||
BOOST_CONCEPT_ASSERT((IsGroup<G>));
|
||||
BOOST_CONCEPT_ASSERT((IsGroup<H>));
|
||||
|
||||
const G& g() const {return this->first;}
|
||||
const H& h() const {return this->second;}
|
||||
|
||||
public:
|
||||
// Construct from two subgroup elements
|
||||
DirectProduct(const G& g, const H& h):std::pair<G,H>(g,h) {
|
||||
}
|
||||
/// Default constructor yields identity
|
||||
DirectProduct():std::pair<G,H>(traits<G>::Identity(),traits<H>::Identity()) {
|
||||
}
|
||||
static DirectProduct Identity() {
|
||||
return DirectProduct();
|
||||
}
|
||||
DirectProduct operator*(const DirectProduct& other) const {
|
||||
return DirectProduct(traits<G>::Compose(g(),other.g()), traits<H>::Compose(h(),other.h()));
|
||||
}
|
||||
DirectProduct inverse() const {
|
||||
return DirectProduct(g().inverse(), h().inverse());
|
||||
}
|
||||
};
|
||||
|
||||
// Define any direct product group to be a model of the multiplicative Group concept
|
||||
template<typename G, typename H>
|
||||
struct traits<DirectProduct<G, H> > : internal::MultiplicativeGroupTraits<
|
||||
DirectProduct<G, H> > {
|
||||
};
|
||||
|
||||
/// Template to construct the direct sum of two additive groups
|
||||
/// Assumes existence of three additive operators for both groups
|
||||
template<typename G, typename H>
|
||||
|
|
|
|||
Loading…
Reference in New Issue