Added range ISAM example from Djugash08iser and Boots13icml
parent
6f2cbbb709
commit
6c2a20cee4
|
|
@ -0,0 +1,173 @@
|
|||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
% Atlanta, Georgia 30332-0415
|
||||
% All Rights Reserved
|
||||
% Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
%
|
||||
% See LICENSE for the license information
|
||||
%
|
||||
% @brief Read Robotics Institute range-only Plaza2 dataset and do iSAM
|
||||
% @author Frank Dellaert
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
%% preliminaries
|
||||
clear
|
||||
import gtsam.*
|
||||
|
||||
%% Find and load data file
|
||||
% data available at http://www.frc.ri.cmu.edu/projects/emergencyresponse/RangeData/
|
||||
% Datafile format (from http://www.frc.ri.cmu.edu/projects/emergencyresponse/RangeData/log.html)
|
||||
% GT: Groundtruth path from GPS
|
||||
% Time (sec) X_pose (m) Y_pose (m) Heading (rad)
|
||||
% DR: Odometry Input (delta distance traveled and delta heading change)
|
||||
% Time (sec) Delta Dist. Trav. (m) Delta Heading (rad)
|
||||
% DRp: Dead Reckoned Path from Odometry
|
||||
% Time (sec) X_pose (m) Y_pose (m) Heading (rad)
|
||||
% TL: Surveyed Node Locations
|
||||
% Time (sec) X_pose (m) Y_pose (m)
|
||||
% TD
|
||||
% Time (sec) Sender / Antenna ID Receiver Node ID Range (m)
|
||||
datafile = findExampleDataFile('Plaza2_.mat');
|
||||
load(datafile)
|
||||
M=size(DR,1);
|
||||
K=size(TD,1);
|
||||
minK=100; % minimum number of range measurements to process initially
|
||||
incK=5; % minimum number of range measurements to process after
|
||||
sigmaR = 100; % range standard deviation
|
||||
sigmaInitial = 1; % draw initial landmark guess from Gaussian
|
||||
useGroundTruth = false;
|
||||
useRobust=true;
|
||||
addRange=true;
|
||||
useResult=true;
|
||||
batchInitialization=true;
|
||||
|
||||
%% Set Noise parameters
|
||||
noiseModels.prior = noiseModel.Diagonal.Sigmas([1 1 pi]');
|
||||
noiseModels.pointPrior = noiseModel.Diagonal.Sigmas([1 1]');
|
||||
noiseModels.odometry = noiseModel.Diagonal.Sigmas([0.05 0.01 0.2]');
|
||||
if useRobust
|
||||
base = noiseModel.mEstimator.Tukey(15);
|
||||
noiseModels.range = noiseModel.Robust(base,noiseModel.Isotropic.Sigma(1, sigmaR));
|
||||
else
|
||||
noiseModels.range = noiseModel.Isotropic.Sigma(1, sigmaR);
|
||||
end
|
||||
|
||||
%% Initialize iSAM
|
||||
params = gtsam.ISAM2Params;
|
||||
params.setRelinearizeSkip(1);
|
||||
% gnParams = ISAM2GaussNewtonParams;
|
||||
% dlParams = ISAM2DoglegParams;
|
||||
% params.setOptimizationParams(gnParams);
|
||||
isam = ISAM2(params);
|
||||
|
||||
%% Add prior on first pose
|
||||
pose0 = Pose2(GT(1,2),GT(1,3),pi+GT(1,4));
|
||||
newFactors = NonlinearFactorGraph;
|
||||
if ~addRange | ~useGroundTruth
|
||||
newFactors.add(PriorFactorPose2(0,pose0,noiseModels.prior));
|
||||
end
|
||||
initial = Values;
|
||||
initial.insert(0,pose0);
|
||||
odo = Values;
|
||||
odo.insert(0,pose0);
|
||||
|
||||
if addRange
|
||||
for i=1:size(TL,1)
|
||||
j=TL(i,1);
|
||||
if useGroundTruth
|
||||
Lj = Point2(TL(i,2),TL(i,3));
|
||||
initial.insert(symbol('L',j),Lj);
|
||||
newFactors.add(PriorFactorPoint2(symbol('L',j),Lj,noiseModels.pointPrior));
|
||||
else
|
||||
initial.insert(symbol('L',j),Point2(sigmaInitial*randn,sigmaInitial*randn));
|
||||
end
|
||||
end
|
||||
XY = utilities.extractPoint2(initial);
|
||||
plot(XY(:,1),XY(:,2),'g*');
|
||||
end
|
||||
|
||||
%% Loop over odometry
|
||||
tic
|
||||
k = 1; % range measurement counter
|
||||
update = false;
|
||||
lastPose = pose0;
|
||||
odoPose = pose0;
|
||||
countK = 0;
|
||||
for i=1:M % M
|
||||
|
||||
% get odometry measurement
|
||||
t = DR(i,1);
|
||||
distance_traveled = DR(i,2);
|
||||
delta_heading = DR(i,3);
|
||||
|
||||
% add odometry factor
|
||||
odometry = Pose2(distance_traveled,0,delta_heading);
|
||||
newFactors.add(BetweenFactorPose2(i-1, i, odometry, noiseModels.odometry));
|
||||
|
||||
% predict pose and update odometry
|
||||
predictedOdo = odoPose.compose(odometry);
|
||||
odoPose = predictedOdo;
|
||||
odo.insert(i,predictedOdo);
|
||||
|
||||
% predict pose and add as initial estimate
|
||||
predictedPose = lastPose.compose(odometry);
|
||||
lastPose = predictedPose;
|
||||
initial.insert(i,predictedPose);
|
||||
|
||||
while k<=K & t>=TD(k,1)
|
||||
j = TD(k,3);
|
||||
range = TD(k,4);
|
||||
% fprintf(1,'%7g %7g %5d %5d %d %0.2f\n', t,TD(k,1),k, i, j, range);
|
||||
if addRange
|
||||
newFactors.add(RangeFactorPosePoint2(i, symbol('L',j), range, noiseModels.range));
|
||||
end
|
||||
k=k+1; countK=countK+1; update = true;
|
||||
end
|
||||
|
||||
if update & k>minK & countK>incK
|
||||
if batchInitialization % Do a full optimize for first minK ranges
|
||||
tic
|
||||
batchOptimizer = LevenbergMarquardtOptimizer(newFactors, initial);
|
||||
toc
|
||||
initial = batchOptimizer.optimize();
|
||||
batchInitialization = false; % only once
|
||||
end
|
||||
isam.update(newFactors, initial);
|
||||
if useResult
|
||||
result = isam.calculateEstimate();
|
||||
lastPose = result.at(i);
|
||||
else
|
||||
lin = isam.getLinearizationPoint();
|
||||
lastPose = lin.at(i);
|
||||
end
|
||||
newFactors = NonlinearFactorGraph;
|
||||
initial = Values;
|
||||
countK = 0;
|
||||
end
|
||||
|
||||
% visualize
|
||||
if mod(i,50)==0 & k>minK
|
||||
figure(1);clf;hold on
|
||||
|
||||
% odometry
|
||||
XYT = utilities.extractPose2(odo);
|
||||
plot(XYT(:,1),XYT(:,2),'y-');
|
||||
|
||||
% lin point
|
||||
lin = isam.getLinearizationPoint();
|
||||
XYT = utilities.extractPose2(lin);
|
||||
plot(XYT(:,1),XYT(:,2),'r.');
|
||||
XY = utilities.extractPoint2(lin);
|
||||
plot(XY(:,1),XY(:,2),'r*');
|
||||
|
||||
% result
|
||||
result = isam.calculateEstimate();
|
||||
XYT = utilities.extractPose2(result);
|
||||
plot(XYT(:,1),XYT(:,2),'k-');
|
||||
XY = utilities.extractPoint2(result);
|
||||
plot(XY(:,1),XY(:,2),'k*');
|
||||
axis equal
|
||||
% pause
|
||||
end
|
||||
end
|
||||
toc
|
||||
Loading…
Reference in New Issue