Create Similarity2.cpp

release/4.3a0
John Lambert 2021-11-06 15:32:52 -04:00 committed by GitHub
parent d5918dcb81
commit 6b7b31a912
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 203 additions and 0 deletions

View File

@ -0,0 +1,203 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file Similarity2.cpp
* @brief Implementation of Similarity2 transform
* @author John Lambert
*/
#include <gtsam/geometry/Similarity2.h>
#include <gtsam/geometry/Pose2.h>
#include <gtsam/base/Manifold.h>
#include <gtsam/slam/KarcherMeanFactor-inl.h>
namespace gtsam {
using std::vector;
namespace {
/// Subtract centroids from point pairs.
static Point2Pairs subtractCentroids(const Point2Pairs &abPointPairs,
const Point2Pair &centroids) {
Point2Pairs d_abPointPairs;
for (const Point2Pair& abPair : abPointPairs) {
Point2 da = abPair.first - centroids.first;
Point2 db = abPair.second - centroids.second;
d_abPointPairs.emplace_back(da, db);
}
return d_abPointPairs;
}
/// Form inner products x and y and calculate scale.
static const double calculateScale(const Point2Pairs &d_abPointPairs,
const Rot2 &aRb) {
double x = 0, y = 0;
Point2 da, db;
for (const Point2Pair& d_abPair : d_abPointPairs) {
std::tie(da, db) = d_abPair;
const Vector2 da_prime = aRb * db;
y += da.transpose() * da_prime;
x += da_prime.transpose() * da_prime;
}
const double s = y / x;
return s;
}
/// Form outer product H.
static Matrix2 calculateH(const Point2Pairs &d_abPointPairs) {
Matrix2 H = Z_2x2;
for (const Point2Pair& d_abPair : d_abPointPairs) {
H += d_abPair.first * d_abPair.second.transpose();
}
return H;
}
/// This method estimates the similarity transform from differences point pairs,
// given a known or estimated rotation and point centroids.
static Similarity2 align(const Point2Pairs &d_abPointPairs, const Rot2 &aRb,
const Point2Pair &centroids) {
const double s = calculateScale(d_abPointPairs, aRb);
// dividing aTb by s is required because the registration cost function
// minimizes ||a - sRb - t||, whereas Sim(2) computes s(Rb + t)
const Point2 aTb = (centroids.first - s * (aRb * centroids.second)) / s;
return Similarity2(aRb, aTb, s);
}
/// This method estimates the similarity transform from point pairs, given a known or estimated rotation.
// Refer to: http://www5.informatik.uni-erlangen.de/Forschung/Publikationen/2005/Zinsser05-PSR.pdf Chapter 3
static Similarity2 alignGivenR(const Point2Pairs &abPointPairs,
const Rot2 &aRb) {
auto centroids = means(abPointPairs);
auto d_abPointPairs = subtractCentroids(abPointPairs, centroids);
return align(d_abPointPairs, aRb, centroids);
}
} // namespace
Similarity2::Similarity2() :
t_(0,0), s_(1) {
}
Similarity2::Similarity2(double s) :
t_(0,0), s_(s) {
}
Similarity2::Similarity2(const Rot2& R, const Point2& t, double s) :
R_(R), t_(t), s_(s) {
}
Similarity2::Similarity2(const Matrix2& R, const Vector2& t, double s) :
R_(R), t_(t), s_(s) {
}
Similarity2::Similarity2(const Matrix3& T) :
R_(T.topLeftCorner<2, 2>()), t_(T.topRightCorner<2, 1>()), s_(1.0 / T(2, 2)) {
}
bool Similarity2::equals(const Similarity2& other, double tol) const {
return R_.equals(other.R_, tol) && traits<Point3>::Equals(t_, other.t_, tol)
&& s_ < (other.s_ + tol) && s_ > (other.s_ - tol);
}
bool Similarity2::operator==(const Similarity2& other) const {
return R_.matrix() == other.R_.matrix() && t_ == other.t_ && s_ == other.s_;
}
void Similarity2::print(const std::string& s) const {
std::cout << std::endl;
std::cout << s;
rotation().print("\nR:\n");
std::cout << "t: " << translation().transpose() << " s: " << scale() << std::endl;
}
Similarity2 Similarity2::identity() {
return Similarity2();
}
Similarity2 Similarity2::operator*(const Similarity2& S) const {
return Similarity2(R_ * S.R_, ((1.0 / S.s_) * t_) + R_ * S.t_, s_ * S.s_);
}
Similarity2 Similarity2::inverse() const {
const Rot2 Rt = R_.inverse();
const Point2 sRt = Rt * (-s_ * t_);
return Similarity2(Rt, sRt, 1.0 / s_);
}
Point3 Similarity2::transformFrom(const Point2& p) const {
const Point2 q = R_ * p + t_;
return s_ * q;
}
Pose2 Similarity2::transformFrom(const Pose2& T) const {
Rot2 R = R_.compose(T.rotation());
Point2 t = Point2(s_ * (R_ * T.translation() + t_));
return Pose2(R, t);
}
Point2 Similarity2::operator*(const Point2& p) const {
return transformFrom(p);
}
Similarity2 Similarity2::Align(const Point2Pairs &abPointPairs) {
// Refer to Chapter 3 of
// http://www5.informatik.uni-erlangen.de/Forschung/Publikationen/2005/Zinsser05-PSR.pdf
if (abPointPairs.size() < 2)
throw std::runtime_error("input should have at least 2 pairs of points");
auto centroids = means(abPointPairs);
auto d_abPointPairs = subtractCentroids(abPointPairs, centroids);
Matrix3 H = calculateH(d_abPointPairs);
// ClosestTo finds rotation matrix closest to H in Frobenius sense
Rot2 aRb = Rot2::ClosestTo(H);
return align(d_abPointPairs, aRb, centroids);
}
Similarity2 Similarity2::Align(const vector<Pose3Pair> &abPosePairs) {
const size_t n = abPosePairs.size();
if (n < 2)
throw std::runtime_error("input should have at least 2 pairs of poses");
// calculate rotation
vector<Rot2> rotations;
Point2Pairs abPointPairs;
rotations.reserve(n);
abPointPairs.reserve(n);
// Below denotes the pose of the i'th object/camera/etc in frame "a" or frame "b"
Pose2 aTi, bTi;
for (const Pose2Pair &abPair : abPosePairs) {
std::tie(aTi, bTi) = abPair;
const Rot2 aRb = aTi.rotation().compose(bTi.rotation().inverse());
rotations.emplace_back(aRb);
abPointPairs.emplace_back(aTi.translation(), bTi.translation());
}
const Rot2 aRb_estimate = FindKarcherMean<Rot2>(rotations);
return alignGivenR(abPointPairs, aRb_estimate);
}
std::ostream &operator<<(std::ostream &os, const Similarity2& p) {
os << "[" << p.rotation().xyz().transpose() << " "
<< p.translation().transpose() << " " << p.scale() << "]\';";
return os;
}
const Matrix3 Similarity2::matrix() const {
Matrix3 T;
T.topRows<2>() << R_.matrix(), t_;
T.bottomRows<1>() << 0, 0, 1.0 / s_;
return T;
}
Similarity2::operator Pose2() const {
return Pose2(R_, s_ * t_);
}
} // namespace gtsam