Format using BORG conventions

release/4.3a0
dellaert 2014-02-15 11:47:25 -05:00
parent 9af77a9d93
commit 6a8084ee02
1 changed files with 349 additions and 293 deletions

View File

@ -1,20 +1,20 @@
/* ---------------------------------------------------------------------------- /* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation, * GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415 * Atlanta, Georgia 30332-0415
* All Rights Reserved * All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list) * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information * See LICENSE for the license information
* -------------------------------------------------------------------------- */ * -------------------------------------------------------------------------- */
/** /**
* @file SymmetricBlockMatrix.h * @file SymmetricBlockMatrix.h
* @brief Access to matrices via blocks of pre-defined sizes. Used in GaussianFactor and GaussianConditional. * @brief Access to matrices via blocks of pre-defined sizes. Used in GaussianFactor and GaussianConditional.
* @author Richard Roberts * @author Richard Roberts
* @date Sep 18, 2010 * @date Sep 18, 2010
*/ */
#pragma once #pragma once
#include <gtsam/base/Matrix.h> #include <gtsam/base/Matrix.h>
@ -23,296 +23,352 @@
namespace gtsam { namespace gtsam {
// Forward declarations // Forward declarations
class VerticalBlockMatrix; class VerticalBlockMatrix;
/**
* This class stores a dense matrix and allows it to be accessed as a
* collection of blocks. When constructed, the caller must provide the
* dimensions of the blocks.
*
* The block structure is symmetric, but the underlying matrix does not
* necessarily need to be.
*
* This class also has a parameter that can be changed after construction to
* change the apparent matrix view. firstBlock() determines the block that
* appears to have index 0 for all operations (except re-setting firstBlock).
*
* @addtogroup base */
class GTSAM_EXPORT SymmetricBlockMatrix {
public:
typedef SymmetricBlockMatrix This;
typedef SymmetricBlockMatrixBlockExpr<This> Block;
typedef SymmetricBlockMatrixBlockExpr<const This> constBlock;
protected:
Matrix matrix_; ///< The full matrix
/// the starting columns of each block (0-based)
FastVector<DenseIndex> variableColOffsets_;
/// Changes apparent matrix view, see main class comment.
DenseIndex blockStart_;
public:
/// Construct from an empty matrix (asserts that the matrix is empty)
SymmetricBlockMatrix() :
blockStart_(0) {
variableColOffsets_.push_back(0);
assertInvariants();
}
/// Construct from a container of the sizes of each block.
template<typename CONTAINER>
SymmetricBlockMatrix(const CONTAINER& dimensions) :
blockStart_(0) {
fillOffsets(dimensions.begin(), dimensions.end());
matrix_.resize(variableColOffsets_.back(), variableColOffsets_.back());
assertInvariants();
}
/// Construct from iterator over the sizes of each vertical block.
template<typename ITERATOR>
SymmetricBlockMatrix(ITERATOR firstBlockDim, ITERATOR lastBlockDim) :
blockStart_(0) {
fillOffsets(firstBlockDim, lastBlockDim);
matrix_.resize(variableColOffsets_.back(), variableColOffsets_.back());
assertInvariants();
}
/** /**
* This class stores a dense matrix and allows it to be accessed as a collection of blocks. When * @brief Construct from a container of the sizes of each vertical block
* constructed, the caller must provide the dimensions of the blocks. * and a pre-prepared matrix.
* */
* The block structure is symmetric, but the underlying matrix does not necessarily need to be. template<typename CONTAINER>
* SymmetricBlockMatrix(const CONTAINER& dimensions, const Matrix& matrix) :
* This class also has a parameter that can be changed after construction to change the apparent blockStart_(0) {
* matrix view. firstBlock() determines the block that appears to have index 0 for all operations matrix_.resize(matrix.rows(), matrix.cols());
* (except re-setting firstBlock()). matrix_.triangularView<Eigen::Upper>() =
* matrix.triangularView<Eigen::Upper>();
* @addtogroup base */ fillOffsets(dimensions.begin(), dimensions.end());
class GTSAM_EXPORT SymmetricBlockMatrix if (matrix_.rows() != matrix_.cols())
{ throw std::invalid_argument("Requested to create a SymmetricBlockMatrix"
public: " from a non-square matrix.");
typedef SymmetricBlockMatrix This; if (variableColOffsets_.back() != matrix_.cols())
typedef SymmetricBlockMatrixBlockExpr<This> Block; throw std::invalid_argument(
typedef SymmetricBlockMatrixBlockExpr<const This> constBlock; "Requested to create a SymmetricBlockMatrix with dimensions "
"that do not sum to the total size of the provided matrix.");
assertInvariants();
}
protected: /**
Matrix matrix_; ///< The full matrix * Copy the block structure, but do not copy the matrix data. If blockStart()
FastVector<DenseIndex> variableColOffsets_; ///< the starting columns of each block (0-based) * has been modified, this copies the structure of the corresponding matrix.
* In the destination SymmetricBlockMatrix, blockStart() will be 0.
*/
static SymmetricBlockMatrix LikeActiveViewOf(
const SymmetricBlockMatrix& other);
DenseIndex blockStart_; ///< Changes apparent matrix view, see main class comment. /**
* Copy the block structure, but do not copy the matrix data. If blockStart()
* has been modified, this copies the structure of the corresponding matrix.
* In the destination SymmetricBlockMatrix, blockStart() will be 0.
*/
static SymmetricBlockMatrix LikeActiveViewOf(
const VerticalBlockMatrix& other);
public: /// Row size
/// Construct from an empty matrix (asserts that the matrix is empty) DenseIndex rows() const {
SymmetricBlockMatrix() : assertInvariants();
blockStart_(0) return variableColOffsets_.back() - variableColOffsets_[blockStart_];
{ }
variableColOffsets_.push_back(0);
assertInvariants(); /// Column size
DenseIndex cols() const {
return rows();
}
/// Block count
DenseIndex nBlocks() const {
assertInvariants();
return variableColOffsets_.size() - 1 - blockStart_;
}
/**
* Access the block with vertical block index \c i_block and horizontal block
* index \c j_block. Note that the actual block accessed in the underlying
* matrix is relative to blockStart().
*/
Block operator()(DenseIndex i_block, DenseIndex j_block) {
return Block(*this, i_block, j_block);
}
/**
* Access the block with vertical block index \c i_block and horizontal block
* index \c j_block. Note that the actual block accessed in the underlying
* matrix is relative to blockStart().
*/
constBlock operator()(DenseIndex i_block, DenseIndex j_block) const {
return constBlock(*this, i_block, j_block);
}
/**
* Access the range of blocks starting with vertical block index
* \c i_startBlock, ending with vertical block index \c i_endBlock, starting
* with horizontal block index \c j_startBlock, and ending with horizontal
* block index \c j_endBlock. End block indices are exclusive. Note that the
* actual blocks accessed in the underlying matrix are relative to blockStart().
*/
Block range(DenseIndex i_startBlock, DenseIndex i_endBlock,
DenseIndex j_startBlock, DenseIndex j_endBlock) {
assertInvariants();
return Block(*this, i_startBlock, j_startBlock, i_endBlock - i_startBlock,
j_endBlock - j_startBlock);
}
/**
* Access the range of blocks starting with vertical block index
* \c i_startBlock, ending with vertical block index \c i_endBlock, starting
* with horizontal block index \c j_startBlock, and ending with horizontal
* block index \c j_endBlock. End block indices are exclusive. Note that the
* actual blocks accessed in the underlying matrix are relative to blockStart().
*/
constBlock range(DenseIndex i_startBlock, DenseIndex i_endBlock,
DenseIndex j_startBlock, DenseIndex j_endBlock) const {
assertInvariants();
return constBlock(*this, i_startBlock, j_startBlock,
i_endBlock - i_startBlock, j_endBlock - j_startBlock);
}
/**
* Return the full matrix, *not* including any portions excluded by
* firstBlock().
*/
Block full() {
return Block(*this, 0, nBlocks(), 0);
}
/**
* Return the full matrix, *not* including any portions excluded by
* firstBlock().
*/
constBlock full() const {
return constBlock(*this, 0, nBlocks(), 0);
}
/**
* Access to full matrix, including any portions excluded by firstBlock()
* to other operations.
*/
Eigen::SelfAdjointView<const Matrix, Eigen::Upper> matrix() const {
return matrix_;
}
/** Access to full matrix, including any portions excluded by firstBlock()
* to other operations.
*/
Eigen::SelfAdjointView<Matrix, Eigen::Upper> matrix() {
return matrix_;
}
/**
* Return the absolute offset in the underlying matrix
* of the start of the specified \c block.
*/
DenseIndex offset(DenseIndex block) const {
assertInvariants();
DenseIndex actualBlock = block + blockStart_;
checkBlock(actualBlock);
return variableColOffsets_[actualBlock];
}
/**
* Retrieve or modify the first logical block, i.e. the block referenced by
* block index 0. Blocks before it will be inaccessible, except by accessing
* the underlying matrix using matrix().
*/
DenseIndex& blockStart() {
return blockStart_;
}
/**
* Retrieve the first logical block, i.e. the block referenced by block index 0.
* Blocks before it will be inaccessible, except by accessing the underlying
* matrix using matrix().
*/
DenseIndex blockStart() const {
return blockStart_;
}
/**
* Do partial Cholesky in-place and return the eliminated block matrix,
* leaving the remaining symmetric matrix in place.
*/
VerticalBlockMatrix choleskyPartial(DenseIndex nFrontals);
protected:
void assertInvariants() const {
assert(matrix_.rows() == matrix_.cols());
assert(matrix_.cols() == variableColOffsets_.back());
assert(blockStart_ < (DenseIndex)variableColOffsets_.size());
}
void checkBlock(DenseIndex block) const {
assert(matrix_.rows() == matrix_.cols());
assert(matrix_.cols() == variableColOffsets_.back());
assert(block >= 0);
assert(block < (DenseIndex)variableColOffsets_.size()-1);
assert(
variableColOffsets_[block] < matrix_.cols() && variableColOffsets_[block+1] <= matrix_.cols());
}
DenseIndex offsetUnchecked(DenseIndex block) const {
return variableColOffsets_[block + blockStart_];
}
//void checkRange(DenseIndex i_startBlock, DenseIndex i_endBlock, DenseIndex j_startBlock, DenseIndex j_endBlock) const
//{
// const DenseIndex i_actualStartBlock = i_startBlock + blockStart_;
// const DenseIndex i_actualEndBlock = i_endBlock + blockStart_;
// const DenseIndex j_actualStartBlock = j_startBlock + blockStart_;
// const DenseIndex j_actualEndBlock = j_endBlock + blockStart_;
// checkBlock(i_actualStartBlock);
// checkBlock(j_actualStartBlock);
// if(i_startBlock != 0 || i_endBlock != 0) {
// checkBlock(i_actualStartBlock);
// assert(i_actualEndBlock < (DenseIndex)variableColOffsets_.size());
// }
// if(j_startBlock != 0 || j_endBlock != 0) {
// checkBlock(j_actualStartBlock);
// assert(j_actualEndBlock < (DenseIndex)variableColOffsets_.size());
// }
//}
//void checkRange(DenseIndex startBlock, DenseIndex endBlock) const
//{
// const DenseIndex actualStartBlock = startBlock + blockStart_;
// const DenseIndex actualEndBlock = endBlock + blockStart_;
// checkBlock(actualStartBlock);
// if(startBlock != 0 || endBlock != 0) {
// checkBlock(actualStartBlock);
// assert(actualEndBlock < (DenseIndex)variableColOffsets_.size());
// }
//}
//Block rangeUnchecked(DenseIndex i_startBlock, DenseIndex i_endBlock, DenseIndex j_startBlock, DenseIndex j_endBlock)
//{
// const DenseIndex i_actualStartBlock = i_startBlock + blockStart_;
// const DenseIndex i_actualEndBlock = i_endBlock + blockStart_;
// const DenseIndex j_actualStartBlock = j_startBlock + blockStart_;
// const DenseIndex j_actualEndBlock = j_endBlock + blockStart_;
// return Block(matrix(),
// variableColOffsets_[i_actualStartBlock],
// variableColOffsets_[j_actualStartBlock],
// variableColOffsets_[i_actualEndBlock] - variableColOffsets_[i_actualStartBlock],
// variableColOffsets_[j_actualEndBlock] - variableColOffsets_[j_actualStartBlock]);
//}
//constBlock rangeUnchecked(DenseIndex i_startBlock, DenseIndex i_endBlock, DenseIndex j_startBlock, DenseIndex j_endBlock) const
//{
// // Convert Block to constBlock
// const Block block = const_cast<This*>(this)->rangeUnchecked(i_startBlock, i_endBlock, j_startBlock, j_endBlock);
// return constBlock(matrix(), block.Base::Base::, block.startCol(), block.rows(), block.cols());
//}
//Block rangeUnchecked(DenseIndex startBlock, DenseIndex endBlock)
//{
// const DenseIndex actualStartBlock = startBlock + blockStart_;
// const DenseIndex actualEndBlock = endBlock + blockStart_;
// return Block(matrix(),
// variableColOffsets_[actualStartBlock],
// variableColOffsets_[actualStartBlock],
// variableColOffsets_[actualEndBlock] - variableColOffsets_[actualStartBlock],
// variableColOffsets_[actualEndBlock] - variableColOffsets_[actualStartBlock]);
//}
//constBlock rangeUnchecked(DenseIndex startBlock, DenseIndex endBlock) const
//{
// // Convert Block to constBlock
// const Block block = const_cast<This*>(this)->rangeUnchecked(startBlock, endBlock);
// return constBlock(matrix(), block.startRow(), block.startCol(), block.rows(), block.cols());
//}
template<typename ITERATOR>
void fillOffsets(ITERATOR firstBlockDim, ITERATOR lastBlockDim) {
variableColOffsets_.resize((lastBlockDim - firstBlockDim) + 1);
variableColOffsets_[0] = 0;
DenseIndex j = 0;
for (ITERATOR dim = firstBlockDim; dim != lastBlockDim; ++dim) {
variableColOffsets_[j + 1] = variableColOffsets_[j] + *dim;
++j;
} }
}
/// Construct from a container of the sizes of each block. friend class VerticalBlockMatrix;
template<typename CONTAINER> template<typename SymmetricBlockMatrixType> friend class SymmetricBlockMatrixBlockExpr;
SymmetricBlockMatrix(const CONTAINER& dimensions) :
blockStart_(0)
{
fillOffsets(dimensions.begin(), dimensions.end());
matrix_.resize(variableColOffsets_.back(), variableColOffsets_.back());
assertInvariants();
}
/// Construct from iterator over the sizes of each vertical block. private:
template<typename ITERATOR> /** Serialization function */
SymmetricBlockMatrix(ITERATOR firstBlockDim, ITERATOR lastBlockDim) : friend class boost::serialization::access;
blockStart_(0) template<class ARCHIVE>
{ void serialize(ARCHIVE & ar, const unsigned int version) {
fillOffsets(firstBlockDim, lastBlockDim); ar & BOOST_SERIALIZATION_NVP(matrix_);
matrix_.resize(variableColOffsets_.back(), variableColOffsets_.back()); ar & BOOST_SERIALIZATION_NVP(variableColOffsets_);
assertInvariants(); ar & BOOST_SERIALIZATION_NVP(blockStart_);
} }
};
/// Construct from a container of the sizes of each vertical block and a pre-prepared matrix. /* ************************************************************************* */
template<typename CONTAINER> class CholeskyFailed: public gtsam::ThreadsafeException<CholeskyFailed> {
SymmetricBlockMatrix(const CONTAINER& dimensions, const Matrix& matrix) : public:
blockStart_(0) CholeskyFailed() throw () {
{ }
matrix_.resize(matrix.rows(), matrix.cols()); virtual ~CholeskyFailed() throw () {
matrix_.triangularView<Eigen::Upper>() = matrix.triangularView<Eigen::Upper>(); }
fillOffsets(dimensions.begin(), dimensions.end()); };
if(matrix_.rows() != matrix_.cols())
throw std::invalid_argument("Requested to create a SymmetricBlockMatrix from a non-square matrix.");
if(variableColOffsets_.back() != matrix_.cols())
throw std::invalid_argument("Requested to create a SymmetricBlockMatrix with dimensions that do not sum to the total size of the provided matrix.");
assertInvariants();
}
/// Copy the block structure, but do not copy the matrix data. If blockStart() has been
/// modified, this copies the structure of the corresponding matrix view. In the destination
/// SymmetricBlockMatrix, blockStart() will be 0.
static SymmetricBlockMatrix LikeActiveViewOf(const SymmetricBlockMatrix& other);
/// Copy the block structure, but do not copy the matrix data. If blockStart() has been
/// modified, this copies the structure of the corresponding matrix view. In the destination
/// SymmetricBlockMatrix, blockStart() will be 0.
static SymmetricBlockMatrix LikeActiveViewOf(const VerticalBlockMatrix& other);
/// Row size } //\ namespace gtsam
DenseIndex rows() const { assertInvariants(); return variableColOffsets_.back() - variableColOffsets_[blockStart_]; }
/// Column size
DenseIndex cols() const { return rows(); }
/// Block count
DenseIndex nBlocks() const { assertInvariants(); return variableColOffsets_.size() - 1 - blockStart_; }
/// Access the block with vertical block index \c i_block and horizontal block index \c j_block.
/// Note that the actual block accessed in the underlying matrix is relative to blockStart().
Block operator()(DenseIndex i_block, DenseIndex j_block) {
return Block(*this, i_block, j_block);
}
/// Access the block with vertical block index \c i_block and horizontal block index \c j_block.
/// Note that the actual block accessed in the underlying matrix is relative to blockStart().
constBlock operator()(DenseIndex i_block, DenseIndex j_block) const {
return constBlock(*this, i_block, j_block);
}
/// Access the range of blocks starting with vertical block index \c i_startBlock, ending with
/// vertical block index \c i_endBlock, starting with horizontal block index \c j_startBlock,
/// and ending with horizontal block index \c j_endBlock. End block indices are exclusive. Note
/// that the actual blocks accessed in the underlying matrix are relative to blockStart().
Block range(DenseIndex i_startBlock, DenseIndex i_endBlock, DenseIndex j_startBlock, DenseIndex j_endBlock) {
assertInvariants();
return Block(*this, i_startBlock, j_startBlock, i_endBlock - i_startBlock, j_endBlock - j_startBlock);
}
/// Access the range of blocks starting with vertical block index \c i_startBlock, ending with
/// vertical block index \c i_endBlock, starting with horizontal block index \c j_startBlock,
/// and ending with horizontal block index \c j_endBlock. End block indices are exclusive. Note
/// that the actual blocks accessed in the underlying matrix are relative to blockStart().
constBlock range(DenseIndex i_startBlock, DenseIndex i_endBlock, DenseIndex j_startBlock, DenseIndex j_endBlock) const {
assertInvariants();
return constBlock(*this, i_startBlock, j_startBlock, i_endBlock - i_startBlock, j_endBlock - j_startBlock);
}
/** Return the full matrix, *not* including any portions excluded by firstBlock(). */
Block full()
{
return Block(*this, 0, nBlocks(), 0);
}
/** Return the full matrix, *not* including any portions excluded by firstBlock(). */
constBlock full() const
{
return constBlock(*this, 0, nBlocks(), 0);
}
/** Access to full matrix, including any portions excluded by firstBlock() to other operations. */
Eigen::SelfAdjointView<const Matrix, Eigen::Upper> matrix() const
{
return matrix_;
}
/** Access to full matrix, including any portions excluded by firstBlock() to other operations. */
Eigen::SelfAdjointView<Matrix, Eigen::Upper> matrix()
{
return matrix_;
}
/// Return the absolute offset in the underlying matrix of the start of the specified \c block.
DenseIndex offset(DenseIndex block) const
{
assertInvariants();
DenseIndex actualBlock = block + blockStart_;
checkBlock(actualBlock);
return variableColOffsets_[actualBlock];
}
/// Retrieve or modify the first logical block, i.e. the block referenced by block index 0.
/// Blocks before it will be inaccessible, except by accessing the underlying matrix using
/// matrix().
DenseIndex& blockStart() { return blockStart_; }
/// Retrieve the first logical block, i.e. the block referenced by block index 0. Blocks before
/// it will be inaccessible, except by accessing the underlying matrix using matrix().
DenseIndex blockStart() const { return blockStart_; }
/// Do partial Cholesky in-place and return the eliminated block matrix, leaving the remaining
/// symmetric matrix in place.
VerticalBlockMatrix choleskyPartial(DenseIndex nFrontals);
protected:
void assertInvariants() const
{
assert(matrix_.rows() == matrix_.cols());
assert(matrix_.cols() == variableColOffsets_.back());
assert(blockStart_ < (DenseIndex)variableColOffsets_.size());
}
void checkBlock(DenseIndex block) const
{
assert(matrix_.rows() == matrix_.cols());
assert(matrix_.cols() == variableColOffsets_.back());
assert(block >= 0);
assert(block < (DenseIndex)variableColOffsets_.size()-1);
assert(variableColOffsets_[block] < matrix_.cols() && variableColOffsets_[block+1] <= matrix_.cols());
}
DenseIndex offsetUnchecked(DenseIndex block) const
{
return variableColOffsets_[block + blockStart_];
}
//void checkRange(DenseIndex i_startBlock, DenseIndex i_endBlock, DenseIndex j_startBlock, DenseIndex j_endBlock) const
//{
// const DenseIndex i_actualStartBlock = i_startBlock + blockStart_;
// const DenseIndex i_actualEndBlock = i_endBlock + blockStart_;
// const DenseIndex j_actualStartBlock = j_startBlock + blockStart_;
// const DenseIndex j_actualEndBlock = j_endBlock + blockStart_;
// checkBlock(i_actualStartBlock);
// checkBlock(j_actualStartBlock);
// if(i_startBlock != 0 || i_endBlock != 0) {
// checkBlock(i_actualStartBlock);
// assert(i_actualEndBlock < (DenseIndex)variableColOffsets_.size());
// }
// if(j_startBlock != 0 || j_endBlock != 0) {
// checkBlock(j_actualStartBlock);
// assert(j_actualEndBlock < (DenseIndex)variableColOffsets_.size());
// }
//}
//void checkRange(DenseIndex startBlock, DenseIndex endBlock) const
//{
// const DenseIndex actualStartBlock = startBlock + blockStart_;
// const DenseIndex actualEndBlock = endBlock + blockStart_;
// checkBlock(actualStartBlock);
// if(startBlock != 0 || endBlock != 0) {
// checkBlock(actualStartBlock);
// assert(actualEndBlock < (DenseIndex)variableColOffsets_.size());
// }
//}
//Block rangeUnchecked(DenseIndex i_startBlock, DenseIndex i_endBlock, DenseIndex j_startBlock, DenseIndex j_endBlock)
//{
// const DenseIndex i_actualStartBlock = i_startBlock + blockStart_;
// const DenseIndex i_actualEndBlock = i_endBlock + blockStart_;
// const DenseIndex j_actualStartBlock = j_startBlock + blockStart_;
// const DenseIndex j_actualEndBlock = j_endBlock + blockStart_;
// return Block(matrix(),
// variableColOffsets_[i_actualStartBlock],
// variableColOffsets_[j_actualStartBlock],
// variableColOffsets_[i_actualEndBlock] - variableColOffsets_[i_actualStartBlock],
// variableColOffsets_[j_actualEndBlock] - variableColOffsets_[j_actualStartBlock]);
//}
//constBlock rangeUnchecked(DenseIndex i_startBlock, DenseIndex i_endBlock, DenseIndex j_startBlock, DenseIndex j_endBlock) const
//{
// // Convert Block to constBlock
// const Block block = const_cast<This*>(this)->rangeUnchecked(i_startBlock, i_endBlock, j_startBlock, j_endBlock);
// return constBlock(matrix(), block.Base::Base::, block.startCol(), block.rows(), block.cols());
//}
//Block rangeUnchecked(DenseIndex startBlock, DenseIndex endBlock)
//{
// const DenseIndex actualStartBlock = startBlock + blockStart_;
// const DenseIndex actualEndBlock = endBlock + blockStart_;
// return Block(matrix(),
// variableColOffsets_[actualStartBlock],
// variableColOffsets_[actualStartBlock],
// variableColOffsets_[actualEndBlock] - variableColOffsets_[actualStartBlock],
// variableColOffsets_[actualEndBlock] - variableColOffsets_[actualStartBlock]);
//}
//constBlock rangeUnchecked(DenseIndex startBlock, DenseIndex endBlock) const
//{
// // Convert Block to constBlock
// const Block block = const_cast<This*>(this)->rangeUnchecked(startBlock, endBlock);
// return constBlock(matrix(), block.startRow(), block.startCol(), block.rows(), block.cols());
//}
template<typename ITERATOR>
void fillOffsets(ITERATOR firstBlockDim, ITERATOR lastBlockDim)
{
variableColOffsets_.resize((lastBlockDim-firstBlockDim)+1);
variableColOffsets_[0] = 0;
DenseIndex j=0;
for(ITERATOR dim=firstBlockDim; dim!=lastBlockDim; ++dim) {
variableColOffsets_[j+1] = variableColOffsets_[j] + *dim;
++ j;
}
}
friend class VerticalBlockMatrix;
template<typename SymmetricBlockMatrixType> friend class SymmetricBlockMatrixBlockExpr;
private:
/** Serialization function */
friend class boost::serialization::access;
template<class ARCHIVE>
void serialize(ARCHIVE & ar, const unsigned int version) {
ar & BOOST_SERIALIZATION_NVP(matrix_);
ar & BOOST_SERIALIZATION_NVP(variableColOffsets_);
ar & BOOST_SERIALIZATION_NVP(blockStart_);
}
};
/* ************************************************************************* */
class CholeskyFailed : public gtsam::ThreadsafeException<CholeskyFailed>
{
public:
CholeskyFailed() throw() {}
virtual ~CholeskyFailed() throw() {}
};
}