Plot covariance ellipses in MATLAB

release/4.3a0
Frank Dellaert 2012-05-23 12:35:48 +00:00
parent 8a69bb8bcb
commit 69e8923690
2 changed files with 55 additions and 3 deletions

View File

@ -45,6 +45,24 @@ result.print(sprintf('\nFinal result:\n '));
%% Query the marginals %% Query the marginals
marginals = graph.marginals(result); marginals = graph.marginals(result);
x1=gtsamSymbol('x',1); marginals.marginalCovariance(x1.key) x{1}=gtsamSymbol('x',1); P{1}=marginals.marginalCovariance(x{1}.key)
x2=gtsamSymbol('x',2); marginals.marginalCovariance(x2.key) x{2}=gtsamSymbol('x',2); P{2}=marginals.marginalCovariance(x{2}.key)
x3=gtsamSymbol('x',3); marginals.marginalCovariance(x3.key) x{3}=gtsamSymbol('x',3); P{3}=marginals.marginalCovariance(x{3}.key)
%% Plot Trajectory
figure(1)
clf
X=[];Y=[];
for i=1:3
pose_i = result.pose(i);
X=[X;pose_i.x];
Y=[Y;pose_i.y];
end
plot(X,Y,'b*-');
%% Plot Covariance Ellipses
hold on
for i=1:3
pose_i = result.pose(i);
covarianceEllipse([pose_i.x;pose_i.y],P{i},'g')
end

View File

@ -0,0 +1,34 @@
function covarianceEllipse(x,P,color)
% covarianceEllipse: plot a Gaussian as an uncertainty ellipse
% Based on Maybeck Vol 1, page 366
% k=2.296 corresponds to 1 std, 68.26% of all probability
% k=11.82 corresponds to 3 std, 99.74% of all probability
%
% covarianceEllipse(x,P,color)
% it is assumed x and y are the first two components of state x
[e,s] = eig(P(1:2,1:2));
s1 = s(1,1);
s2 = s(2,2);
k = 2.296;
[ex,ey] = ellipse( sqrt(s1*k)*e(:,1), sqrt(s2*k)*e(:,2), x(1:2) );
line(ex,ey,'color',color);
function [x,y] = ellipse(a,b,c);
% ellipse: return the x and y coordinates for an ellipse
% [x,y] = ellipse(a,b,c);
% a, and b are the axes. c is the center
global ellipse_x ellipse_y
if ~exist('elipse_x')
q =0:2*pi/25:2*pi;
ellipse_x = cos(q);
ellipse_y = sin(q);
end
points = a*ellipse_x + b*ellipse_y;
x = c(1) + points(1,:);
y = c(2) + points(2,:);
end
end