Plot covariance ellipses in MATLAB
parent
8a69bb8bcb
commit
69e8923690
|
@ -45,6 +45,24 @@ result.print(sprintf('\nFinal result:\n '));
|
||||||
|
|
||||||
%% Query the marginals
|
%% Query the marginals
|
||||||
marginals = graph.marginals(result);
|
marginals = graph.marginals(result);
|
||||||
x1=gtsamSymbol('x',1); marginals.marginalCovariance(x1.key)
|
x{1}=gtsamSymbol('x',1); P{1}=marginals.marginalCovariance(x{1}.key)
|
||||||
x2=gtsamSymbol('x',2); marginals.marginalCovariance(x2.key)
|
x{2}=gtsamSymbol('x',2); P{2}=marginals.marginalCovariance(x{2}.key)
|
||||||
x3=gtsamSymbol('x',3); marginals.marginalCovariance(x3.key)
|
x{3}=gtsamSymbol('x',3); P{3}=marginals.marginalCovariance(x{3}.key)
|
||||||
|
|
||||||
|
%% Plot Trajectory
|
||||||
|
figure(1)
|
||||||
|
clf
|
||||||
|
X=[];Y=[];
|
||||||
|
for i=1:3
|
||||||
|
pose_i = result.pose(i);
|
||||||
|
X=[X;pose_i.x];
|
||||||
|
Y=[Y;pose_i.y];
|
||||||
|
end
|
||||||
|
plot(X,Y,'b*-');
|
||||||
|
|
||||||
|
%% Plot Covariance Ellipses
|
||||||
|
hold on
|
||||||
|
for i=1:3
|
||||||
|
pose_i = result.pose(i);
|
||||||
|
covarianceEllipse([pose_i.x;pose_i.y],P{i},'g')
|
||||||
|
end
|
||||||
|
|
|
@ -0,0 +1,34 @@
|
||||||
|
function covarianceEllipse(x,P,color)
|
||||||
|
% covarianceEllipse: plot a Gaussian as an uncertainty ellipse
|
||||||
|
% Based on Maybeck Vol 1, page 366
|
||||||
|
% k=2.296 corresponds to 1 std, 68.26% of all probability
|
||||||
|
% k=11.82 corresponds to 3 std, 99.74% of all probability
|
||||||
|
%
|
||||||
|
% covarianceEllipse(x,P,color)
|
||||||
|
% it is assumed x and y are the first two components of state x
|
||||||
|
|
||||||
|
[e,s] = eig(P(1:2,1:2));
|
||||||
|
s1 = s(1,1);
|
||||||
|
s2 = s(2,2);
|
||||||
|
k = 2.296;
|
||||||
|
[ex,ey] = ellipse( sqrt(s1*k)*e(:,1), sqrt(s2*k)*e(:,2), x(1:2) );
|
||||||
|
line(ex,ey,'color',color);
|
||||||
|
|
||||||
|
function [x,y] = ellipse(a,b,c);
|
||||||
|
% ellipse: return the x and y coordinates for an ellipse
|
||||||
|
% [x,y] = ellipse(a,b,c);
|
||||||
|
% a, and b are the axes. c is the center
|
||||||
|
|
||||||
|
global ellipse_x ellipse_y
|
||||||
|
if ~exist('elipse_x')
|
||||||
|
q =0:2*pi/25:2*pi;
|
||||||
|
ellipse_x = cos(q);
|
||||||
|
ellipse_y = sin(q);
|
||||||
|
end
|
||||||
|
|
||||||
|
points = a*ellipse_x + b*ellipse_y;
|
||||||
|
x = c(1) + points(1,:);
|
||||||
|
y = c(2) + points(2,:);
|
||||||
|
end
|
||||||
|
|
||||||
|
end
|
Loading…
Reference in New Issue