Coding convention: convert tabs to two spaces

release/4.3a0
cbeall3 2014-10-30 12:44:46 -04:00
parent 57b4c79cad
commit 699153ece9
21 changed files with 1905 additions and 1905 deletions

View File

@ -157,7 +157,7 @@ struct LieMatrix : public Matrix, public DerivedValue<LieMatrix> {
result.data(), p.rows(), p.cols()) = p; result.data(), p.rows(), p.cols()) = p;
return result; return result;
} }
/// @} /// @}
private: private:

View File

@ -85,7 +85,7 @@ namespace gtsam {
dims_accumulated.resize(dims.size()+1,0); dims_accumulated.resize(dims.size()+1,0);
dims_accumulated[0]=0; dims_accumulated[0]=0;
for (size_t i=1; i<dims_accumulated.size(); i++) for (size_t i=1; i<dims_accumulated.size(); i++)
dims_accumulated[i] = dims_accumulated[i-1]+dims[i-1]; dims_accumulated[i] = dims_accumulated[i-1]+dims[i-1];
return dims_accumulated; return dims_accumulated;
} }
@ -358,8 +358,8 @@ namespace gtsam {
/* ************************************************************************* */ /* ************************************************************************* */
void GaussianFactorGraph::multiplyHessianAdd(double alpha, void GaussianFactorGraph::multiplyHessianAdd(double alpha,
const double* x, double* y) const { const double* x, double* y) const {
vector<size_t> FactorKeys = getkeydim(); vector<size_t> FactorKeys = getkeydim();
BOOST_FOREACH(const GaussianFactor::shared_ptr& f, *this) BOOST_FOREACH(const GaussianFactor::shared_ptr& f, *this)
f->multiplyHessianAdd(alpha, x, y, FactorKeys); f->multiplyHessianAdd(alpha, x, y, FactorKeys);
} }

View File

@ -538,7 +538,7 @@ void HessianFactor::multiplyHessianAdd(double alpha, const VectorValues& x,
// copy to yvalues // copy to yvalues
for(DenseIndex i = 0; i < (DenseIndex)size(); ++i) { for(DenseIndex i = 0; i < (DenseIndex)size(); ++i) {
bool didNotExist; bool didNotExist;
VectorValues::iterator it; VectorValues::iterator it;
boost::tie(it, didNotExist) = yvalues.tryInsert(keys_[i], Vector()); boost::tie(it, didNotExist) = yvalues.tryInsert(keys_[i], Vector());
if (didNotExist) if (didNotExist)

View File

@ -345,12 +345,12 @@ namespace gtsam {
/** Constructor */ /** Constructor */
CombinedImuFactor( CombinedImuFactor(
Key pose_i, ///< previous pose key Key pose_i, ///< previous pose key
Key vel_i, ///< previous velocity key Key vel_i, ///< previous velocity key
Key pose_j, ///< current pose key Key pose_j, ///< current pose key
Key vel_j, ///< current velocity key Key vel_j, ///< current velocity key
Key bias_i, ///< previous bias key Key bias_i, ///< previous bias key
Key bias_j, ///< current bias key Key bias_j, ///< current bias key
const CombinedPreintegratedMeasurements& preintegratedMeasurements, ///< Preintegrated IMU measurements const CombinedPreintegratedMeasurements& preintegratedMeasurements, ///< Preintegrated IMU measurements
const Vector3& gravity, ///< gravity vector const Vector3& gravity, ///< gravity vector
const Vector3& omegaCoriolis, ///< rotation rate of inertial frame const Vector3& omegaCoriolis, ///< rotation rate of inertial frame
@ -480,33 +480,33 @@ namespace gtsam {
Matrix3 dfPdPi; Matrix3 dfPdPi;
Matrix3 dfVdPi; Matrix3 dfVdPi;
if(use2ndOrderCoriolis_){ if(use2ndOrderCoriolis_){
dfPdPi = - Rot_i.matrix() + 0.5 * skewSymmetric(omegaCoriolis_) * skewSymmetric(omegaCoriolis_) * Rot_i.matrix() * deltaTij*deltaTij; dfPdPi = - Rot_i.matrix() + 0.5 * skewSymmetric(omegaCoriolis_) * skewSymmetric(omegaCoriolis_) * Rot_i.matrix() * deltaTij*deltaTij;
dfVdPi = skewSymmetric(omegaCoriolis_) * skewSymmetric(omegaCoriolis_) * Rot_i.matrix() * deltaTij; dfVdPi = skewSymmetric(omegaCoriolis_) * skewSymmetric(omegaCoriolis_) * Rot_i.matrix() * deltaTij;
} }
else{ else{
dfPdPi = - Rot_i.matrix(); dfPdPi = - Rot_i.matrix();
dfVdPi = Matrix3::Zero(); dfVdPi = Matrix3::Zero();
} }
(*H1) << (*H1) <<
// dfP/dRi // dfP/dRi
Rot_i.matrix() * skewSymmetric(preintegratedMeasurements_.deltaPij Rot_i.matrix() * skewSymmetric(preintegratedMeasurements_.deltaPij
+ preintegratedMeasurements_.delPdelBiasOmega * biasOmegaIncr + preintegratedMeasurements_.delPdelBiasAcc * biasAccIncr), + preintegratedMeasurements_.delPdelBiasOmega * biasOmegaIncr + preintegratedMeasurements_.delPdelBiasAcc * biasAccIncr),
// dfP/dPi // dfP/dPi
dfPdPi, dfPdPi,
// dfV/dRi // dfV/dRi
Rot_i.matrix() * skewSymmetric(preintegratedMeasurements_.deltaVij Rot_i.matrix() * skewSymmetric(preintegratedMeasurements_.deltaVij
+ preintegratedMeasurements_.delVdelBiasOmega * biasOmegaIncr + preintegratedMeasurements_.delVdelBiasAcc * biasAccIncr), + preintegratedMeasurements_.delVdelBiasOmega * biasOmegaIncr + preintegratedMeasurements_.delVdelBiasAcc * biasAccIncr),
// dfV/dPi // dfV/dPi
dfVdPi, dfVdPi,
// dfR/dRi // dfR/dRi
Jrinv_fRhat * (- Rot_j.between(Rot_i).matrix() - fRhat.inverse().matrix() * Jtheta), Jrinv_fRhat * (- Rot_j.between(Rot_i).matrix() - fRhat.inverse().matrix() * Jtheta),
// dfR/dPi // dfR/dPi
Matrix3::Zero(), Matrix3::Zero(),
//dBiasAcc/dPi //dBiasAcc/dPi
Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(),
//dBiasOmega/dPi //dBiasOmega/dPi
Matrix3::Zero(), Matrix3::Zero(); Matrix3::Zero(), Matrix3::Zero();
} }
if(H2) { if(H2) {
@ -517,13 +517,13 @@ namespace gtsam {
+ skewSymmetric(omegaCoriolis_) * deltaTij * deltaTij, // Coriolis term - we got rid of the 2 wrt ins paper + skewSymmetric(omegaCoriolis_) * deltaTij * deltaTij, // Coriolis term - we got rid of the 2 wrt ins paper
// dfV/dVi // dfV/dVi
- Matrix3::Identity() - Matrix3::Identity()
+ 2 * skewSymmetric(omegaCoriolis_) * deltaTij, // Coriolis term + 2 * skewSymmetric(omegaCoriolis_) * deltaTij, // Coriolis term
// dfR/dVi // dfR/dVi
Matrix3::Zero(), Matrix3::Zero(),
//dBiasAcc/dVi //dBiasAcc/dVi
Matrix3::Zero(), Matrix3::Zero(),
//dBiasOmega/dVi //dBiasOmega/dVi
Matrix3::Zero(); Matrix3::Zero();
} }
if(H3) { if(H3) {
@ -643,21 +643,21 @@ namespace gtsam {
// Predict state at time j // Predict state at time j
/* ---------------------------------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------------------------------------- */
Vector3 pos_j = pos_i + Rot_i.matrix() * (preintegratedMeasurements.deltaPij Vector3 pos_j = pos_i + Rot_i.matrix() * (preintegratedMeasurements.deltaPij
+ preintegratedMeasurements.delPdelBiasAcc * biasAccIncr + preintegratedMeasurements.delPdelBiasAcc * biasAccIncr
+ preintegratedMeasurements.delPdelBiasOmega * biasOmegaIncr) + preintegratedMeasurements.delPdelBiasOmega * biasOmegaIncr)
+ vel_i * deltaTij + vel_i * deltaTij
- skewSymmetric(omegaCoriolis) * vel_i * deltaTij*deltaTij // Coriolis term - we got rid of the 2 wrt ins paper - skewSymmetric(omegaCoriolis) * vel_i * deltaTij*deltaTij // Coriolis term - we got rid of the 2 wrt ins paper
+ 0.5 * gravity * deltaTij*deltaTij; + 0.5 * gravity * deltaTij*deltaTij;
vel_j = LieVector(vel_i + Rot_i.matrix() * (preintegratedMeasurements.deltaVij vel_j = LieVector(vel_i + Rot_i.matrix() * (preintegratedMeasurements.deltaVij
+ preintegratedMeasurements.delVdelBiasAcc * biasAccIncr + preintegratedMeasurements.delVdelBiasAcc * biasAccIncr
+ preintegratedMeasurements.delVdelBiasOmega * biasOmegaIncr) + preintegratedMeasurements.delVdelBiasOmega * biasOmegaIncr)
- 2 * skewSymmetric(omegaCoriolis) * vel_i * deltaTij // Coriolis term - 2 * skewSymmetric(omegaCoriolis) * vel_i * deltaTij // Coriolis term
+ gravity * deltaTij); + gravity * deltaTij);
if(use2ndOrderCoriolis){ if(use2ndOrderCoriolis){
pos_j += - 0.5 * skewSymmetric(omegaCoriolis) * skewSymmetric(omegaCoriolis) * pos_i * deltaTij*deltaTij; // 2nd order coriolis term for position pos_j += - 0.5 * skewSymmetric(omegaCoriolis) * skewSymmetric(omegaCoriolis) * pos_i * deltaTij*deltaTij; // 2nd order coriolis term for position
vel_j += - skewSymmetric(omegaCoriolis) * skewSymmetric(omegaCoriolis) * pos_i * deltaTij; // 2nd order term for velocity vel_j += - skewSymmetric(omegaCoriolis) * skewSymmetric(omegaCoriolis) * pos_i * deltaTij; // 2nd order term for velocity
} }
const Rot3 deltaRij_biascorrected = preintegratedMeasurements.deltaRij.retract(preintegratedMeasurements.delRdelBiasOmega * biasOmegaIncr, Rot3::EXPMAP); const Rot3 deltaRij_biascorrected = preintegratedMeasurements.deltaRij.retract(preintegratedMeasurements.delRdelBiasOmega * biasOmegaIncr, Rot3::EXPMAP);

View File

@ -308,11 +308,11 @@ namespace gtsam {
/** Constructor */ /** Constructor */
ImuFactor( ImuFactor(
Key pose_i, ///< previous pose key Key pose_i, ///< previous pose key
Key vel_i, ///< previous velocity key Key vel_i, ///< previous velocity key
Key pose_j, ///< current pose key Key pose_j, ///< current pose key
Key vel_j, ///< current velocity key Key vel_j, ///< current velocity key
Key bias, ///< previous bias key Key bias, ///< previous bias key
const PreintegratedMeasurements& preintegratedMeasurements, ///< preintegrated IMU measurements const PreintegratedMeasurements& preintegratedMeasurements, ///< preintegrated IMU measurements
const Vector3& gravity, ///< gravity vector const Vector3& gravity, ///< gravity vector
const Vector3& omegaCoriolis, ///< rotation rate of the inertial frame const Vector3& omegaCoriolis, ///< rotation rate of the inertial frame
@ -419,29 +419,29 @@ namespace gtsam {
Matrix3 dfPdPi; Matrix3 dfPdPi;
Matrix3 dfVdPi; Matrix3 dfVdPi;
if(use2ndOrderCoriolis_){ if(use2ndOrderCoriolis_){
dfPdPi = - Rot_i.matrix() + 0.5 * skewSymmetric(omegaCoriolis_) * skewSymmetric(omegaCoriolis_) * Rot_i.matrix() * deltaTij*deltaTij; dfPdPi = - Rot_i.matrix() + 0.5 * skewSymmetric(omegaCoriolis_) * skewSymmetric(omegaCoriolis_) * Rot_i.matrix() * deltaTij*deltaTij;
dfVdPi = skewSymmetric(omegaCoriolis_) * skewSymmetric(omegaCoriolis_) * Rot_i.matrix() * deltaTij; dfVdPi = skewSymmetric(omegaCoriolis_) * skewSymmetric(omegaCoriolis_) * Rot_i.matrix() * deltaTij;
} }
else{ else{
dfPdPi = - Rot_i.matrix(); dfPdPi = - Rot_i.matrix();
dfVdPi = Matrix3::Zero(); dfVdPi = Matrix3::Zero();
} }
(*H1) << (*H1) <<
// dfP/dRi // dfP/dRi
Rot_i.matrix() * skewSymmetric(preintegratedMeasurements_.deltaPij Rot_i.matrix() * skewSymmetric(preintegratedMeasurements_.deltaPij
+ preintegratedMeasurements_.delPdelBiasOmega * biasOmegaIncr + preintegratedMeasurements_.delPdelBiasAcc * biasAccIncr), + preintegratedMeasurements_.delPdelBiasOmega * biasOmegaIncr + preintegratedMeasurements_.delPdelBiasAcc * biasAccIncr),
// dfP/dPi // dfP/dPi
dfPdPi, dfPdPi,
// dfV/dRi // dfV/dRi
Rot_i.matrix() * skewSymmetric(preintegratedMeasurements_.deltaVij Rot_i.matrix() * skewSymmetric(preintegratedMeasurements_.deltaVij
+ preintegratedMeasurements_.delVdelBiasOmega * biasOmegaIncr + preintegratedMeasurements_.delVdelBiasAcc * biasAccIncr), + preintegratedMeasurements_.delVdelBiasOmega * biasOmegaIncr + preintegratedMeasurements_.delVdelBiasAcc * biasAccIncr),
// dfV/dPi // dfV/dPi
dfVdPi, dfVdPi,
// dfR/dRi // dfR/dRi
Jrinv_fRhat * (- Rot_j.between(Rot_i).matrix() - fRhat.inverse().matrix() * Jtheta), Jrinv_fRhat * (- Rot_j.between(Rot_i).matrix() - fRhat.inverse().matrix() * Jtheta),
// dfR/dPi // dfR/dPi
Matrix3::Zero(); Matrix3::Zero();
} }
if(H2) { if(H2) {
@ -540,22 +540,22 @@ namespace gtsam {
// Predict state at time j // Predict state at time j
/* ---------------------------------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------------------------------------- */
Vector3 pos_j = pos_i + Rot_i.matrix() * (preintegratedMeasurements.deltaPij Vector3 pos_j = pos_i + Rot_i.matrix() * (preintegratedMeasurements.deltaPij
+ preintegratedMeasurements.delPdelBiasAcc * biasAccIncr + preintegratedMeasurements.delPdelBiasAcc * biasAccIncr
+ preintegratedMeasurements.delPdelBiasOmega * biasOmegaIncr) + preintegratedMeasurements.delPdelBiasOmega * biasOmegaIncr)
+ vel_i * deltaTij + vel_i * deltaTij
- skewSymmetric(omegaCoriolis) * vel_i * deltaTij*deltaTij // Coriolis term - we got rid of the 2 wrt ins paper - skewSymmetric(omegaCoriolis) * vel_i * deltaTij*deltaTij // Coriolis term - we got rid of the 2 wrt ins paper
+ 0.5 * gravity * deltaTij*deltaTij; + 0.5 * gravity * deltaTij*deltaTij;
vel_j = LieVector(vel_i + Rot_i.matrix() * (preintegratedMeasurements.deltaVij vel_j = LieVector(vel_i + Rot_i.matrix() * (preintegratedMeasurements.deltaVij
+ preintegratedMeasurements.delVdelBiasAcc * biasAccIncr + preintegratedMeasurements.delVdelBiasAcc * biasAccIncr
+ preintegratedMeasurements.delVdelBiasOmega * biasOmegaIncr) + preintegratedMeasurements.delVdelBiasOmega * biasOmegaIncr)
- 2 * skewSymmetric(omegaCoriolis) * vel_i * deltaTij // Coriolis term - 2 * skewSymmetric(omegaCoriolis) * vel_i * deltaTij // Coriolis term
+ gravity * deltaTij); + gravity * deltaTij);
if(use2ndOrderCoriolis){ if(use2ndOrderCoriolis){
pos_j += - 0.5 * skewSymmetric(omegaCoriolis) * skewSymmetric(omegaCoriolis) * pos_i * deltaTij*deltaTij; // 2nd order coriolis term for position pos_j += - 0.5 * skewSymmetric(omegaCoriolis) * skewSymmetric(omegaCoriolis) * pos_i * deltaTij*deltaTij; // 2nd order coriolis term for position
vel_j += - skewSymmetric(omegaCoriolis) * skewSymmetric(omegaCoriolis) * pos_i * deltaTij; // 2nd order term for velocity vel_j += - skewSymmetric(omegaCoriolis) * skewSymmetric(omegaCoriolis) * pos_i * deltaTij; // 2nd order term for velocity
} }
const Rot3 deltaRij_biascorrected = preintegratedMeasurements.deltaRij.retract(preintegratedMeasurements.delRdelBiasOmega * biasOmegaIncr, Rot3::EXPMAP); const Rot3 deltaRij_biascorrected = preintegratedMeasurements.deltaRij.retract(preintegratedMeasurements.delRdelBiasOmega * biasOmegaIncr, Rot3::EXPMAP);

View File

@ -176,11 +176,11 @@ void NonlinearFactorGraph::saveGraph(std::ostream &stm, const Values& values,
stm << "];\n"; stm << "];\n";
if (firstTimePoses) { if (firstTimePoses) {
lastKey = key; lastKey = key;
firstTimePoses = false; firstTimePoses = false;
} else { } else {
stm << " var" << key << "--" << "var" << lastKey << ";\n"; stm << " var" << key << "--" << "var" << lastKey << ";\n";
lastKey = key; lastKey = key;
} }
} }
stm << "\n"; stm << "\n";
@ -219,37 +219,37 @@ void NonlinearFactorGraph::saveGraph(std::ostream &stm, const Values& values,
// Create factors and variable connections // Create factors and variable connections
for(size_t i = 0; i < this->size(); ++i) { for(size_t i = 0; i < this->size(); ++i) {
if(graphvizFormatting.plotFactorPoints){ if(graphvizFormatting.plotFactorPoints){
// Make each factor a dot // Make each factor a dot
stm << " factor" << i << "[label=\"\", shape=point"; stm << " factor" << i << "[label=\"\", shape=point";
{ {
map<size_t, Point2>::const_iterator pos = graphvizFormatting.factorPositions.find(i); map<size_t, Point2>::const_iterator pos = graphvizFormatting.factorPositions.find(i);
if(pos != graphvizFormatting.factorPositions.end()) if(pos != graphvizFormatting.factorPositions.end())
stm << ", pos=\"" << graphvizFormatting.scale*(pos->second.x() - minX) << "," << graphvizFormatting.scale*(pos->second.y() - minY) << "!\""; stm << ", pos=\"" << graphvizFormatting.scale*(pos->second.x() - minX) << "," << graphvizFormatting.scale*(pos->second.y() - minY) << "!\"";
} }
stm << "];\n"; stm << "];\n";
// Make factor-variable connections // Make factor-variable connections
if(graphvizFormatting.connectKeysToFactor && this->at(i)) { if(graphvizFormatting.connectKeysToFactor && this->at(i)) {
BOOST_FOREACH(Key key, *this->at(i)) { BOOST_FOREACH(Key key, *this->at(i)) {
stm << " var" << key << "--" << "factor" << i << ";\n"; stm << " var" << key << "--" << "factor" << i << ";\n";
} }
} }
} }
else { else {
if(this->at(i)) { if(this->at(i)) {
Key k; Key k;
bool firstTime = true; bool firstTime = true;
BOOST_FOREACH(Key key, *this->at(i)) { BOOST_FOREACH(Key key, *this->at(i)) {
if(firstTime){ if(firstTime){
k = key; k = key;
firstTime = false; firstTime = false;
continue; continue;
} }
stm << " var" << key << "--" << "var" << k << ";\n"; stm << " var" << key << "--" << "var" << k << ";\n";
k = key; k = key;
} }
} }
} }
} }
} }

View File

@ -34,89 +34,89 @@ class DSFMap {
protected: protected:
/// We store the forest in an STL map, but parents are done with pointers /// We store the forest in an STL map, but parents are done with pointers
struct Entry { struct Entry {
typename std::map<KEY, Entry>::iterator parent_; typename std::map<KEY, Entry>::iterator parent_;
size_t rank_; size_t rank_;
Entry() {} Entry() {}
}; };
typedef typename std::map<KEY, Entry> Map; typedef typename std::map<KEY, Entry> Map;
typedef typename Map::iterator iterator; typedef typename Map::iterator iterator;
mutable Map entries_; mutable Map entries_;
/// Given key, find iterator to initial entry /// Given key, find iterator to initial entry
iterator find__(const KEY& key) const { iterator find__(const KEY& key) const {
static const Entry empty; static const Entry empty;
iterator it = entries_.find(key); iterator it = entries_.find(key);
// if key does not exist, create and return itself // if key does not exist, create and return itself
if (it == entries_.end()) { if (it == entries_.end()) {
it = entries_.insert(std::make_pair(key, empty)).first; it = entries_.insert(std::make_pair(key, empty)).first;
it->second.parent_ = it; it->second.parent_ = it;
it->second.rank_ = 0; it->second.rank_ = 0;
} }
return it; return it;
} }
/// Given iterator to initial entry, find the root Entry /// Given iterator to initial entry, find the root Entry
iterator find_(const iterator& it) const { iterator find_(const iterator& it) const {
// follow parent pointers until we reach set representative // follow parent pointers until we reach set representative
iterator& parent = it->second.parent_; iterator& parent = it->second.parent_;
if (parent != it) if (parent != it)
parent = find_(parent); // not yet, recurse! parent = find_(parent); // not yet, recurse!
return parent; return parent;
} }
/// Given key, find the root Entry /// Given key, find the root Entry
inline iterator find_(const KEY& key) const { inline iterator find_(const KEY& key) const {
iterator initial = find__(key); iterator initial = find__(key);
return find_(initial); return find_(initial);
} }
public: public:
typedef std::set<KEY> Set; typedef std::set<KEY> Set;
/// constructor /// constructor
DSFMap() { DSFMap() {
} }
/// Given key, find the representative key for the set in which it lives /// Given key, find the representative key for the set in which it lives
inline KEY find(const KEY& key) const { inline KEY find(const KEY& key) const {
iterator root = find_(key); iterator root = find_(key);
return root->first; return root->first;
} }
/// Merge two sets /// Merge two sets
void merge(const KEY& x, const KEY& y) { void merge(const KEY& x, const KEY& y) {
// straight from http://en.wikipedia.org/wiki/Disjoint-set_data_structure // straight from http://en.wikipedia.org/wiki/Disjoint-set_data_structure
iterator xRoot = find_(x); iterator xRoot = find_(x);
iterator yRoot = find_(y); iterator yRoot = find_(y);
if (xRoot == yRoot) if (xRoot == yRoot)
return; return;
// Merge sets // Merge sets
if (xRoot->second.rank_ < yRoot->second.rank_) if (xRoot->second.rank_ < yRoot->second.rank_)
xRoot->second.parent_ = yRoot; xRoot->second.parent_ = yRoot;
else if (xRoot->second.rank_ > yRoot->second.rank_) else if (xRoot->second.rank_ > yRoot->second.rank_)
yRoot->second.parent_ = xRoot; yRoot->second.parent_ = xRoot;
else { else {
yRoot->second.parent_ = xRoot; yRoot->second.parent_ = xRoot;
xRoot->second.rank_ = xRoot->second.rank_ + 1; xRoot->second.rank_ = xRoot->second.rank_ + 1;
} }
} }
/// return all sets, i.e. a partition of all elements /// return all sets, i.e. a partition of all elements
std::map<KEY, Set> sets() const { std::map<KEY, Set> sets() const {
std::map<KEY, Set> sets; std::map<KEY, Set> sets;
iterator it = entries_.begin(); iterator it = entries_.begin();
for (; it != entries_.end(); it++) { for (; it != entries_.end(); it++) {
iterator root = find_(it); iterator root = find_(it);
sets[root->first].insert(it->first); sets[root->first].insert(it->first);
} }
return sets; return sets;
} }
}; };

View File

@ -1,8 +1,8 @@
/** /**
* @file testLoopyBelief.cpp * @file testLoopyBelief.cpp
* @brief * @brief
* @author Duy-Nguyen Ta * @author Duy-Nguyen Ta
* @date Oct 11, 2013 * @date Oct 11, 2013
*/ */
#include <gtsam/inference/VariableIndex.h> #include <gtsam/inference/VariableIndex.h>

View File

@ -26,539 +26,539 @@ extern "C" {
namespace gtsam { namespace partition { namespace gtsam { namespace partition {
typedef boost::shared_array<idx_t> sharedInts; typedef boost::shared_array<idx_t> sharedInts;
/* ************************************************************************* */ /* ************************************************************************* */
/** /**
* Return the size of the separator and the partiion indices {part} * Return the size of the separator and the partiion indices {part}
* Part [j] is 0, 1, or 2, depending on * Part [j] is 0, 1, or 2, depending on
* whether node j is in the left part of the graph, the right part, or the * whether node j is in the left part of the graph, the right part, or the
* separator, respectively * separator, respectively
*/ */
std::pair<int, sharedInts> separatorMetis(idx_t n, const sharedInts& xadj, std::pair<int, sharedInts> separatorMetis(idx_t n, const sharedInts& xadj,
const sharedInts& adjncy, const sharedInts& adjwgt, bool verbose) { const sharedInts& adjncy, const sharedInts& adjwgt, bool verbose) {
// control parameters // control parameters
idx_t vwgt[n]; // the weights of the vertices idx_t vwgt[n]; // the weights of the vertices
idx_t options[METIS_NOPTIONS]; idx_t options[METIS_NOPTIONS];
METIS_SetDefaultOptions(options); // use defaults METIS_SetDefaultOptions(options); // use defaults
idx_t sepsize; // the size of the separator, output idx_t sepsize; // the size of the separator, output
sharedInts part_(new idx_t[n]); // the partition of each vertex, output sharedInts part_(new idx_t[n]); // the partition of each vertex, output
// set uniform weights on the vertices // set uniform weights on the vertices
std::fill(vwgt, vwgt+n, 1); std::fill(vwgt, vwgt+n, 1);
// TODO: Fix at later time // TODO: Fix at later time
//boost::timer::cpu_timer TOTALTmr; //boost::timer::cpu_timer TOTALTmr;
if (verbose) { if (verbose) {
printf("**********************************************************************\n"); printf("**********************************************************************\n");
printf("Graph Information ---------------------------------------------------\n"); printf("Graph Information ---------------------------------------------------\n");
printf(" #Vertices: %d, #Edges: %u\n", n, *(xadj.get()+n) / 2); printf(" #Vertices: %d, #Edges: %u\n", n, *(xadj.get()+n) / 2);
printf("\nND Partitioning... -------------------------------------------\n"); printf("\nND Partitioning... -------------------------------------------\n");
//TOTALTmr.start() //TOTALTmr.start()
} }
// call metis parition routine // call metis parition routine
METIS_ComputeVertexSeparator(&n, xadj.get(), adjncy.get(), METIS_ComputeVertexSeparator(&n, xadj.get(), adjncy.get(),
vwgt, options, &sepsize, part_.get()); vwgt, options, &sepsize, part_.get());
if (verbose) { if (verbose) {
//boost::cpu_times const elapsed_times(timer.elapsed()); //boost::cpu_times const elapsed_times(timer.elapsed());
//printf("\nTiming Information --------------------------------------------------\n"); //printf("\nTiming Information --------------------------------------------------\n");
//printf(" Total: \t\t %7.3f\n", elapsed_times); //printf(" Total: \t\t %7.3f\n", elapsed_times);
printf(" Sep size: \t\t %d\n", sepsize); printf(" Sep size: \t\t %d\n", sepsize);
printf("**********************************************************************\n"); printf("**********************************************************************\n");
} }
return std::make_pair(sepsize, part_); return std::make_pair(sepsize, part_);
} }
/* ************************************************************************* */ /* ************************************************************************* */
void modefied_EdgeComputeSeparator(idx_t *nvtxs, idx_t *xadj, idx_t *adjncy, idx_t *vwgt, void modefied_EdgeComputeSeparator(idx_t *nvtxs, idx_t *xadj, idx_t *adjncy, idx_t *vwgt,
idx_t *adjwgt, idx_t *options, idx_t *edgecut, idx_t *part) idx_t *adjwgt, idx_t *options, idx_t *edgecut, idx_t *part)
{ {
idx_t i, ncon; idx_t i, ncon;
graph_t *graph; graph_t *graph;
real_t *tpwgts2; real_t *tpwgts2;
ctrl_t *ctrl; ctrl_t *ctrl;
ctrl = SetupCtrl(METIS_OP_OMETIS, options, 1, 3, NULL, NULL); ctrl = SetupCtrl(METIS_OP_OMETIS, options, 1, 3, NULL, NULL);
ctrl->iptype = METIS_IPTYPE_GROW; ctrl->iptype = METIS_IPTYPE_GROW;
//if () == NULL) //if () == NULL)
// return METIS_ERROR_INPUT; // return METIS_ERROR_INPUT;
InitRandom(ctrl->seed); InitRandom(ctrl->seed);
graph = SetupGraph(ctrl, *nvtxs, 1, xadj, adjncy, vwgt, NULL, NULL); graph = SetupGraph(ctrl, *nvtxs, 1, xadj, adjncy, vwgt, NULL, NULL);
AllocateWorkSpace(ctrl, graph); AllocateWorkSpace(ctrl, graph);
ncon = graph->ncon; ncon = graph->ncon;
ctrl->ncuts = 1; ctrl->ncuts = 1;
/* determine the weights of the two partitions as a function of the weight of the /* determine the weights of the two partitions as a function of the weight of the
target partition weights */ target partition weights */
tpwgts2 = rwspacemalloc(ctrl, 2*ncon); tpwgts2 = rwspacemalloc(ctrl, 2*ncon);
for (i=0; i<ncon; i++) { for (i=0; i<ncon; i++) {
tpwgts2[i] = rsum((2>>1), ctrl->tpwgts+i, ncon); tpwgts2[i] = rsum((2>>1), ctrl->tpwgts+i, ncon);
tpwgts2[ncon+i] = 1.0 - tpwgts2[i]; tpwgts2[ncon+i] = 1.0 - tpwgts2[i];
} }
/* perform the bisection */ /* perform the bisection */
*edgecut = MultilevelBisect(ctrl, graph, tpwgts2); *edgecut = MultilevelBisect(ctrl, graph, tpwgts2);
// ConstructMinCoverSeparator(&ctrl, &graph, 1.05); // ConstructMinCoverSeparator(&ctrl, &graph, 1.05);
// *edgecut = graph->mincut; // *edgecut = graph->mincut;
// *sepsize = graph.pwgts[2]; // *sepsize = graph.pwgts[2];
icopy(*nvtxs, graph->where, part); icopy(*nvtxs, graph->where, part);
std::cout << "Finished bisection:" << *edgecut << std::endl; std::cout << "Finished bisection:" << *edgecut << std::endl;
FreeGraph(&graph); FreeGraph(&graph);
FreeCtrl(&ctrl); FreeCtrl(&ctrl);
} }
/* ************************************************************************* */ /* ************************************************************************* */
/** /**
* Return the number of edge cuts and the partition indices {part} * Return the number of edge cuts and the partition indices {part}
* Part [j] is 0 or 1, depending on * Part [j] is 0 or 1, depending on
* whether node j is in the left part of the graph or the right part respectively * whether node j is in the left part of the graph or the right part respectively
*/ */
std::pair<int, sharedInts> edgeMetis(idx_t n, const sharedInts& xadj, const sharedInts& adjncy, std::pair<int, sharedInts> edgeMetis(idx_t n, const sharedInts& xadj, const sharedInts& adjncy,
const sharedInts& adjwgt, bool verbose) { const sharedInts& adjwgt, bool verbose) {
// control parameters // control parameters
idx_t vwgt[n]; // the weights of the vertices idx_t vwgt[n]; // the weights of the vertices
idx_t options[METIS_NOPTIONS]; idx_t options[METIS_NOPTIONS];
METIS_SetDefaultOptions(options); // use defaults METIS_SetDefaultOptions(options); // use defaults
idx_t edgecut; // the number of edge cuts, output idx_t edgecut; // the number of edge cuts, output
sharedInts part_(new idx_t[n]); // the partition of each vertex, output sharedInts part_(new idx_t[n]); // the partition of each vertex, output
// set uniform weights on the vertices // set uniform weights on the vertices
std::fill(vwgt, vwgt+n, 1); std::fill(vwgt, vwgt+n, 1);
//TODO: Fix later //TODO: Fix later
//boost::timer TOTALTmr; //boost::timer TOTALTmr;
if (verbose) { if (verbose) {
printf("**********************************************************************\n"); printf("**********************************************************************\n");
printf("Graph Information ---------------------------------------------------\n"); printf("Graph Information ---------------------------------------------------\n");
printf(" #Vertices: %d, #Edges: %u\n", n, *(xadj.get()+n) / 2); printf(" #Vertices: %d, #Edges: %u\n", n, *(xadj.get()+n) / 2);
printf("\nND Partitioning... -------------------------------------------\n"); printf("\nND Partitioning... -------------------------------------------\n");
//cleartimer(TOTALTmr); //cleartimer(TOTALTmr);
//starttimer(TOTALTmr); //starttimer(TOTALTmr);
} }
//int wgtflag = 1; // only edge weights //int wgtflag = 1; // only edge weights
//int numflag = 0; // c style numbering starting from 0 //int numflag = 0; // c style numbering starting from 0
//int nparts = 2; // partition the graph to 2 submaps //int nparts = 2; // partition the graph to 2 submaps
modefied_EdgeComputeSeparator(&n, xadj.get(), adjncy.get(), vwgt, adjwgt.get(), modefied_EdgeComputeSeparator(&n, xadj.get(), adjncy.get(), vwgt, adjwgt.get(),
options, &edgecut, part_.get()); options, &edgecut, part_.get());
if (verbose) { if (verbose) {
//stoptimer(TOTALTmr); //stoptimer(TOTALTmr);
printf("\nTiming Information --------------------------------------------------\n"); printf("\nTiming Information --------------------------------------------------\n");
//printf(" Total: \t\t %7.3f\n", gettimer(TOTALTmr)); //printf(" Total: \t\t %7.3f\n", gettimer(TOTALTmr));
printf(" Edge cuts: \t\t %d\n", edgecut); printf(" Edge cuts: \t\t %d\n", edgecut);
printf("**********************************************************************\n"); printf("**********************************************************************\n");
} }
return std::make_pair(edgecut, part_); return std::make_pair(edgecut, part_);
} }
/* ************************************************************************* */ /* ************************************************************************* */
/** /**
* Prepare the data structure {xadj} and {adjncy} required by metis * Prepare the data structure {xadj} and {adjncy} required by metis
* xadj always has the size equal to the no. of the nodes plus 1 * xadj always has the size equal to the no. of the nodes plus 1
* adjncy always has the size equal to two times of the no. of the edges in the Metis graph * adjncy always has the size equal to two times of the no. of the edges in the Metis graph
*/ */
template <class GenericGraph> template <class GenericGraph>
void prepareMetisGraph(const GenericGraph& graph, const std::vector<size_t>& keys, WorkSpace& workspace, void prepareMetisGraph(const GenericGraph& graph, const std::vector<size_t>& keys, WorkSpace& workspace,
sharedInts* ptr_xadj, sharedInts* ptr_adjncy, sharedInts* ptr_adjwgt) { sharedInts* ptr_xadj, sharedInts* ptr_adjncy, sharedInts* ptr_adjwgt) {
typedef int Weight; typedef int Weight;
typedef std::vector<int> Weights; typedef std::vector<int> Weights;
typedef std::vector<int> Neighbors; typedef std::vector<int> Neighbors;
typedef std::pair<Neighbors, Weights> NeighborsInfo; typedef std::pair<Neighbors, Weights> NeighborsInfo;
// set up dictionary // set up dictionary
std::vector<int>& dictionary = workspace.dictionary; std::vector<int>& dictionary = workspace.dictionary;
workspace.prepareDictionary(keys); workspace.prepareDictionary(keys);
// prepare for {adjacencyMap}, a pair of neighbor indices and the correponding edge weights // prepare for {adjacencyMap}, a pair of neighbor indices and the correponding edge weights
int numNodes = keys.size(); int numNodes = keys.size();
int numEdges = 0; int numEdges = 0;
std::vector<NeighborsInfo> adjacencyMap; std::vector<NeighborsInfo> adjacencyMap;
adjacencyMap.resize(numNodes); adjacencyMap.resize(numNodes);
std::cout << "Number of nodes: " << adjacencyMap.size() << std::endl; std::cout << "Number of nodes: " << adjacencyMap.size() << std::endl;
int index1, index2; int index1, index2;
BOOST_FOREACH(const typename GenericGraph::value_type& factor, graph){ BOOST_FOREACH(const typename GenericGraph::value_type& factor, graph){
index1 = dictionary[factor->key1.index]; index1 = dictionary[factor->key1.index];
index2 = dictionary[factor->key2.index]; index2 = dictionary[factor->key2.index];
std::cout << "index1: " << index1 << std::endl; std::cout << "index1: " << index1 << std::endl;
std::cout << "index2: " << index2 << std::endl; std::cout << "index2: " << index2 << std::endl;
// if both nodes are in the current graph, i.e. not a joint factor between frontal and separator // if both nodes are in the current graph, i.e. not a joint factor between frontal and separator
if (index1 >= 0 && index2 >= 0) { if (index1 >= 0 && index2 >= 0) {
std::pair<Neighbors, Weights>& adjacencyMap1 = adjacencyMap[index1]; std::pair<Neighbors, Weights>& adjacencyMap1 = adjacencyMap[index1];
std::pair<Neighbors, Weights>& adjacencyMap2 = adjacencyMap[index2]; std::pair<Neighbors, Weights>& adjacencyMap2 = adjacencyMap[index2];
try{ try{
adjacencyMap1.first.push_back(index2); adjacencyMap1.first.push_back(index2);
adjacencyMap1.second.push_back(factor->weight); adjacencyMap1.second.push_back(factor->weight);
adjacencyMap2.first.push_back(index1); adjacencyMap2.first.push_back(index1);
adjacencyMap2.second.push_back(factor->weight); adjacencyMap2.second.push_back(factor->weight);
}catch(std::exception& e){ }catch(std::exception& e){
std::cout << e.what() << std::endl; std::cout << e.what() << std::endl;
} }
numEdges++; numEdges++;
} }
} }
// prepare for {xadj}, {adjncy}, and {adjwgt} // prepare for {xadj}, {adjncy}, and {adjwgt}
*ptr_xadj = sharedInts(new idx_t[numNodes+1]); *ptr_xadj = sharedInts(new idx_t[numNodes+1]);
*ptr_adjncy = sharedInts(new idx_t[numEdges*2]); *ptr_adjncy = sharedInts(new idx_t[numEdges*2]);
*ptr_adjwgt = sharedInts(new idx_t[numEdges*2]); *ptr_adjwgt = sharedInts(new idx_t[numEdges*2]);
sharedInts& xadj = *ptr_xadj; sharedInts& xadj = *ptr_xadj;
sharedInts& adjncy = *ptr_adjncy; sharedInts& adjncy = *ptr_adjncy;
sharedInts& adjwgt = *ptr_adjwgt; sharedInts& adjwgt = *ptr_adjwgt;
int ind_xadj = 0, ind_adjncy = 0; int ind_xadj = 0, ind_adjncy = 0;
BOOST_FOREACH(const NeighborsInfo& info, adjacencyMap) { BOOST_FOREACH(const NeighborsInfo& info, adjacencyMap) {
*(xadj.get() + ind_xadj) = ind_adjncy; *(xadj.get() + ind_xadj) = ind_adjncy;
std::copy(info.first .begin(), info.first .end(), adjncy.get() + ind_adjncy); std::copy(info.first .begin(), info.first .end(), adjncy.get() + ind_adjncy);
std::copy(info.second.begin(), info.second.end(), adjwgt.get() + ind_adjncy); std::copy(info.second.begin(), info.second.end(), adjwgt.get() + ind_adjncy);
assert(info.first.size() == info.second.size()); assert(info.first.size() == info.second.size());
ind_adjncy += info.first.size(); ind_adjncy += info.first.size();
ind_xadj ++; ind_xadj ++;
} }
if (ind_xadj != numNodes) throw std::runtime_error("prepareMetisGraph_: ind_xadj != numNodes"); if (ind_xadj != numNodes) throw std::runtime_error("prepareMetisGraph_: ind_xadj != numNodes");
*(xadj.get() + ind_xadj) = ind_adjncy; *(xadj.get() + ind_xadj) = ind_adjncy;
} }
/* ************************************************************************* */ /* ************************************************************************* */
template<class GenericGraph> template<class GenericGraph>
boost::optional<MetisResult> separatorPartitionByMetis(const GenericGraph& graph, boost::optional<MetisResult> separatorPartitionByMetis(const GenericGraph& graph,
const std::vector<size_t>& keys, WorkSpace& workspace, bool verbose) { const std::vector<size_t>& keys, WorkSpace& workspace, bool verbose) {
// create a metis graph // create a metis graph
size_t numKeys = keys.size(); size_t numKeys = keys.size();
if (verbose) if (verbose)
std::cout << graph.size() << " factors,\t" << numKeys << " nodes;\t" << std::endl; std::cout << graph.size() << " factors,\t" << numKeys << " nodes;\t" << std::endl;
sharedInts xadj, adjncy, adjwgt; sharedInts xadj, adjncy, adjwgt;
prepareMetisGraph<GenericGraph>(graph, keys, workspace, &xadj, &adjncy, &adjwgt); prepareMetisGraph<GenericGraph>(graph, keys, workspace, &xadj, &adjncy, &adjwgt);
// run ND on the graph // run ND on the graph
size_t sepsize; size_t sepsize;
sharedInts part; sharedInts part;
boost::tie(sepsize, part) = separatorMetis(numKeys, xadj, adjncy, adjwgt, verbose); boost::tie(sepsize, part) = separatorMetis(numKeys, xadj, adjncy, adjwgt, verbose);
if (!sepsize) return boost::optional<MetisResult>(); if (!sepsize) return boost::optional<MetisResult>();
// convert the 0-1-2 from Metis to 1-2-0, so that the separator is 0, as later // convert the 0-1-2 from Metis to 1-2-0, so that the separator is 0, as later
// we will have more submaps // we will have more submaps
MetisResult result; MetisResult result;
result.C.reserve(sepsize); result.C.reserve(sepsize);
result.A.reserve(numKeys - sepsize); result.A.reserve(numKeys - sepsize);
result.B.reserve(numKeys - sepsize); result.B.reserve(numKeys - sepsize);
int* ptr_part = part.get(); int* ptr_part = part.get();
std::vector<size_t>::const_iterator itKey = keys.begin(); std::vector<size_t>::const_iterator itKey = keys.begin();
std::vector<size_t>::const_iterator itKeyLast = keys.end(); std::vector<size_t>::const_iterator itKeyLast = keys.end();
while(itKey != itKeyLast) { while(itKey != itKeyLast) {
switch(*(ptr_part++)) { switch(*(ptr_part++)) {
case 0: result.A.push_back(*(itKey++)); break; case 0: result.A.push_back(*(itKey++)); break;
case 1: result.B.push_back(*(itKey++)); break; case 1: result.B.push_back(*(itKey++)); break;
case 2: result.C.push_back(*(itKey++)); break; case 2: result.C.push_back(*(itKey++)); break;
default: throw std::runtime_error("separatorPartitionByMetis: invalid results from Metis ND!"); default: throw std::runtime_error("separatorPartitionByMetis: invalid results from Metis ND!");
} }
} }
if (verbose) { if (verbose) {
std::cout << "total key: " << keys.size() std::cout << "total key: " << keys.size()
<< " result(A,B,C) = " << result.A.size() << ", " << result.B.size() << ", " << " result(A,B,C) = " << result.A.size() << ", " << result.B.size() << ", "
<< result.C.size() << "; sepsize from Metis = " << sepsize << std::endl; << result.C.size() << "; sepsize from Metis = " << sepsize << std::endl;
//throw runtime_error("separatorPartitionByMetis:stop for debug"); //throw runtime_error("separatorPartitionByMetis:stop for debug");
} }
if(result.C.size() != sepsize) { if(result.C.size() != sepsize) {
std::cout << "total key: " << keys.size() std::cout << "total key: " << keys.size()
<< " result(A,B,C) = " << result.A.size() << ", " << result.B.size() << ", " << result.C.size() << " result(A,B,C) = " << result.A.size() << ", " << result.B.size() << ", " << result.C.size()
<< "; sepsize from Metis = " << sepsize << std::endl; << "; sepsize from Metis = " << sepsize << std::endl;
throw std::runtime_error("separatorPartitionByMetis: invalid sepsize from Metis ND!"); throw std::runtime_error("separatorPartitionByMetis: invalid sepsize from Metis ND!");
} }
return boost::make_optional<MetisResult >(result); return boost::make_optional<MetisResult >(result);
} }
/* *************************************************************************/ /* *************************************************************************/
template<class GenericGraph> template<class GenericGraph>
boost::optional<MetisResult> edgePartitionByMetis(const GenericGraph& graph, boost::optional<MetisResult> edgePartitionByMetis(const GenericGraph& graph,
const std::vector<size_t>& keys, WorkSpace& workspace, bool verbose) { const std::vector<size_t>& keys, WorkSpace& workspace, bool verbose) {
// a small hack for handling the camera1-camera2 case used in the unit tests // a small hack for handling the camera1-camera2 case used in the unit tests
if (graph.size() == 1 && keys.size() == 2) { if (graph.size() == 1 && keys.size() == 2) {
MetisResult result; MetisResult result;
result.A.push_back(keys.front()); result.A.push_back(keys.front());
result.B.push_back(keys.back()); result.B.push_back(keys.back());
return result; return result;
} }
// create a metis graph // create a metis graph
size_t numKeys = keys.size(); size_t numKeys = keys.size();
if (verbose) std::cout << graph.size() << " factors,\t" << numKeys << " nodes;\t" << std::endl; if (verbose) std::cout << graph.size() << " factors,\t" << numKeys << " nodes;\t" << std::endl;
sharedInts xadj, adjncy, adjwgt; sharedInts xadj, adjncy, adjwgt;
prepareMetisGraph<GenericGraph>(graph, keys, workspace, &xadj, &adjncy, &adjwgt); prepareMetisGraph<GenericGraph>(graph, keys, workspace, &xadj, &adjncy, &adjwgt);
// run metis on the graph // run metis on the graph
int edgecut; int edgecut;
sharedInts part; sharedInts part;
boost::tie(edgecut, part) = edgeMetis(numKeys, xadj, adjncy, adjwgt, verbose); boost::tie(edgecut, part) = edgeMetis(numKeys, xadj, adjncy, adjwgt, verbose);
// convert the 0-1-2 from Metis to 1-2-0, so that the separator is 0, as later we will have more submaps // convert the 0-1-2 from Metis to 1-2-0, so that the separator is 0, as later we will have more submaps
MetisResult result; MetisResult result;
result.A.reserve(numKeys); result.A.reserve(numKeys);
result.B.reserve(numKeys); result.B.reserve(numKeys);
int* ptr_part = part.get(); int* ptr_part = part.get();
std::vector<size_t>::const_iterator itKey = keys.begin(); std::vector<size_t>::const_iterator itKey = keys.begin();
std::vector<size_t>::const_iterator itKeyLast = keys.end(); std::vector<size_t>::const_iterator itKeyLast = keys.end();
while(itKey != itKeyLast) { while(itKey != itKeyLast) {
if (*ptr_part != 0 && *ptr_part != 1) if (*ptr_part != 0 && *ptr_part != 1)
std::cout << *ptr_part << "!!!" << std::endl; std::cout << *ptr_part << "!!!" << std::endl;
switch(*(ptr_part++)) { switch(*(ptr_part++)) {
case 0: result.A.push_back(*(itKey++)); break; case 0: result.A.push_back(*(itKey++)); break;
case 1: result.B.push_back(*(itKey++)); break; case 1: result.B.push_back(*(itKey++)); break;
default: throw std::runtime_error("edgePartitionByMetis: invalid results from Metis ND!"); default: throw std::runtime_error("edgePartitionByMetis: invalid results from Metis ND!");
} }
} }
if (verbose) { if (verbose) {
std::cout << "the size of two submaps in the reduced graph: " << result.A.size() std::cout << "the size of two submaps in the reduced graph: " << result.A.size()
<< " " << result.B.size() << std::endl; << " " << result.B.size() << std::endl;
int edgeCut = 0; int edgeCut = 0;
BOOST_FOREACH(const typename GenericGraph::value_type& factor, graph){ BOOST_FOREACH(const typename GenericGraph::value_type& factor, graph){
int key1 = factor->key1.index; int key1 = factor->key1.index;
int key2 = factor->key2.index; int key2 = factor->key2.index;
// print keys and their subgraph assignment // print keys and their subgraph assignment
std::cout << key1; std::cout << key1;
if (std::find(result.A.begin(), result.A.end(), key1) != result.A.end()) std::cout <<"A "; if (std::find(result.A.begin(), result.A.end(), key1) != result.A.end()) std::cout <<"A ";
if (std::find(result.B.begin(), result.B.end(), key1) != result.B.end()) std::cout <<"B "; if (std::find(result.B.begin(), result.B.end(), key1) != result.B.end()) std::cout <<"B ";
std::cout << key2; std::cout << key2;
if (std::find(result.A.begin(), result.A.end(), key2) != result.A.end()) std::cout <<"A "; if (std::find(result.A.begin(), result.A.end(), key2) != result.A.end()) std::cout <<"A ";
if (std::find(result.B.begin(), result.B.end(), key2) != result.B.end()) std::cout <<"B "; if (std::find(result.B.begin(), result.B.end(), key2) != result.B.end()) std::cout <<"B ";
std::cout << "weight " << factor->weight;; std::cout << "weight " << factor->weight;;
// find vertices that were assigned to sets A & B. Their edge will be cut // find vertices that were assigned to sets A & B. Their edge will be cut
if ((std::find(result.A.begin(), result.A.end(), key1) != result.A.end() && if ((std::find(result.A.begin(), result.A.end(), key1) != result.A.end() &&
std::find(result.B.begin(), result.B.end(), key2) != result.B.end()) || std::find(result.B.begin(), result.B.end(), key2) != result.B.end()) ||
(std::find(result.B.begin(), result.B.end(), key1) != result.B.end() && (std::find(result.B.begin(), result.B.end(), key1) != result.B.end() &&
std::find(result.A.begin(), result.A.end(), key2) != result.A.end())){ std::find(result.A.begin(), result.A.end(), key2) != result.A.end())){
edgeCut ++; edgeCut ++;
std::cout << " CUT "; std::cout << " CUT ";
} }
std::cout << std::endl; std::cout << std::endl;
} }
std::cout << "edgeCut: " << edgeCut << std::endl; std::cout << "edgeCut: " << edgeCut << std::endl;
} }
return boost::make_optional<MetisResult >(result); return boost::make_optional<MetisResult >(result);
} }
/* ************************************************************************* */ /* ************************************************************************* */
bool isLargerIsland(const std::vector<size_t>& island1, const std::vector<size_t>& island2) { bool isLargerIsland(const std::vector<size_t>& island1, const std::vector<size_t>& island2) {
return island1.size() > island2.size(); return island1.size() > island2.size();
} }
/* ************************************************************************* */ /* ************************************************************************* */
// debug functions // debug functions
void printIsland(const std::vector<size_t>& island) { void printIsland(const std::vector<size_t>& island) {
std::cout << "island: "; std::cout << "island: ";
BOOST_FOREACH(const size_t key, island) BOOST_FOREACH(const size_t key, island)
std::cout << key << " "; std::cout << key << " ";
std::cout << std::endl; std::cout << std::endl;
} }
void printIslands(const std::list<std::vector<size_t> >& islands) { void printIslands(const std::list<std::vector<size_t> >& islands) {
BOOST_FOREACH(const std::vector<std::size_t>& island, islands) BOOST_FOREACH(const std::vector<std::size_t>& island, islands)
printIsland(island); printIsland(island);
} }
void printNumCamerasLandmarks(const std::vector<size_t>& keys, const std::vector<Symbol>& int2symbol) { void printNumCamerasLandmarks(const std::vector<size_t>& keys, const std::vector<Symbol>& int2symbol) {
int numCamera = 0, numLandmark = 0; int numCamera = 0, numLandmark = 0;
BOOST_FOREACH(const size_t key, keys) BOOST_FOREACH(const size_t key, keys)
if (int2symbol[key].chr() == 'x') if (int2symbol[key].chr() == 'x')
numCamera++; numCamera++;
else else
numLandmark++; numLandmark++;
std::cout << "numCamera: " << numCamera << " numLandmark: " << numLandmark << std::endl; std::cout << "numCamera: " << numCamera << " numLandmark: " << numLandmark << std::endl;
} }
/* ************************************************************************* */ /* ************************************************************************* */
template<class GenericGraph> template<class GenericGraph>
void addLandmarkToPartitionResult(const GenericGraph& graph, const std::vector<size_t>& landmarkKeys, void addLandmarkToPartitionResult(const GenericGraph& graph, const std::vector<size_t>& landmarkKeys,
MetisResult& partitionResult, WorkSpace& workspace) { MetisResult& partitionResult, WorkSpace& workspace) {
// set up cameras in the dictionary // set up cameras in the dictionary
std::vector<size_t>& A = partitionResult.A; std::vector<size_t>& A = partitionResult.A;
std::vector<size_t>& B = partitionResult.B; std::vector<size_t>& B = partitionResult.B;
std::vector<size_t>& C = partitionResult.C; std::vector<size_t>& C = partitionResult.C;
std::vector<int>& dictionary = workspace.dictionary; std::vector<int>& dictionary = workspace.dictionary;
std::fill(dictionary.begin(), dictionary.end(), -1); std::fill(dictionary.begin(), dictionary.end(), -1);
BOOST_FOREACH(const size_t a, A) BOOST_FOREACH(const size_t a, A)
dictionary[a] = 1; dictionary[a] = 1;
BOOST_FOREACH(const size_t b, B) BOOST_FOREACH(const size_t b, B)
dictionary[b] = 2; dictionary[b] = 2;
if (!C.empty()) if (!C.empty())
throw std::runtime_error("addLandmarkToPartitionResult: C is not empty"); throw std::runtime_error("addLandmarkToPartitionResult: C is not empty");
// set up landmarks // set up landmarks
size_t i,j; size_t i,j;
BOOST_FOREACH(const typename GenericGraph::value_type& factor, graph) { BOOST_FOREACH(const typename GenericGraph::value_type& factor, graph) {
i = factor->key1.index; i = factor->key1.index;
j = factor->key2.index; j = factor->key2.index;
if (dictionary[j] == 0) // if the landmark is already in the separator, continue if (dictionary[j] == 0) // if the landmark is already in the separator, continue
continue; continue;
else if (dictionary[j] == -1) else if (dictionary[j] == -1)
dictionary[j] = dictionary[i]; dictionary[j] = dictionary[i];
else { else {
if (dictionary[j] != dictionary[i]) if (dictionary[j] != dictionary[i])
dictionary[j] = 0; dictionary[j] = 0;
} }
// if (j == 67980) // if (j == 67980)
// std::cout << "dictionary[67980]" << dictionary[j] << std::endl; // std::cout << "dictionary[67980]" << dictionary[j] << std::endl;
} }
BOOST_FOREACH(const size_t j, landmarkKeys) { BOOST_FOREACH(const size_t j, landmarkKeys) {
switch(dictionary[j]) { switch(dictionary[j]) {
case 0: C.push_back(j); break; case 0: C.push_back(j); break;
case 1: A.push_back(j); break; case 1: A.push_back(j); break;
case 2: B.push_back(j); break; case 2: B.push_back(j); break;
default: std::cout << j << ": " << dictionary[j] << std::endl; default: std::cout << j << ": " << dictionary[j] << std::endl;
throw std::runtime_error("addLandmarkToPartitionResult: wrong status for landmark"); throw std::runtime_error("addLandmarkToPartitionResult: wrong status for landmark");
} }
} }
} }
#define REDUCE_CAMERA_GRAPH #define REDUCE_CAMERA_GRAPH
/* ************************************************************************* */ /* ************************************************************************* */
template<class GenericGraph> template<class GenericGraph>
boost::optional<MetisResult> findPartitoning(const GenericGraph& graph, const std::vector<size_t>& keys, boost::optional<MetisResult> findPartitoning(const GenericGraph& graph, const std::vector<size_t>& keys,
WorkSpace& workspace, bool verbose, WorkSpace& workspace, bool verbose,
const boost::optional<std::vector<Symbol> >& int2symbol, const bool reduceGraph) { const boost::optional<std::vector<Symbol> >& int2symbol, const bool reduceGraph) {
boost::optional<MetisResult> result; boost::optional<MetisResult> result;
GenericGraph reducedGraph; GenericGraph reducedGraph;
std::vector<size_t> keyToPartition; std::vector<size_t> keyToPartition;
std::vector<size_t> cameraKeys, landmarkKeys; std::vector<size_t> cameraKeys, landmarkKeys;
if (reduceGraph) { if (reduceGraph) {
if (!int2symbol.is_initialized()) if (!int2symbol.is_initialized())
throw std::invalid_argument("findSeparator: int2symbol must be valid!"); throw std::invalid_argument("findSeparator: int2symbol must be valid!");
// find out all the landmark keys, which are to be eliminated // find out all the landmark keys, which are to be eliminated
cameraKeys.reserve(keys.size()); cameraKeys.reserve(keys.size());
landmarkKeys.reserve(keys.size()); landmarkKeys.reserve(keys.size());
BOOST_FOREACH(const size_t key, keys) { BOOST_FOREACH(const size_t key, keys) {
if((*int2symbol)[key].chr() == 'x') if((*int2symbol)[key].chr() == 'x')
cameraKeys.push_back(key); cameraKeys.push_back(key);
else else
landmarkKeys.push_back(key); landmarkKeys.push_back(key);
} }
keyToPartition = cameraKeys; keyToPartition = cameraKeys;
workspace.prepareDictionary(keyToPartition); workspace.prepareDictionary(keyToPartition);
const std::vector<int>& dictionary = workspace.dictionary; const std::vector<int>& dictionary = workspace.dictionary;
reduceGenericGraph(graph, cameraKeys, landmarkKeys, dictionary, reducedGraph); reduceGenericGraph(graph, cameraKeys, landmarkKeys, dictionary, reducedGraph);
std::cout << "original graph: V" << keys.size() << ", E" << graph.size() std::cout << "original graph: V" << keys.size() << ", E" << graph.size()
<< " --> reduced graph: V" << cameraKeys.size() << ", E" << reducedGraph.size() << std::endl; << " --> reduced graph: V" << cameraKeys.size() << ", E" << reducedGraph.size() << std::endl;
result = edgePartitionByMetis(reducedGraph, keyToPartition, workspace, verbose); result = edgePartitionByMetis(reducedGraph, keyToPartition, workspace, verbose);
} else // call Metis to partition the graph to A, B, C } else // call Metis to partition the graph to A, B, C
result = separatorPartitionByMetis(graph, keys, workspace, verbose); result = separatorPartitionByMetis(graph, keys, workspace, verbose);
if (!result.is_initialized()) { if (!result.is_initialized()) {
std::cout << "metis failed!" << std::endl; std::cout << "metis failed!" << std::endl;
return 0; return 0;
} }
if (reduceGraph) { if (reduceGraph) {
addLandmarkToPartitionResult(graph, landmarkKeys, *result, workspace); addLandmarkToPartitionResult(graph, landmarkKeys, *result, workspace);
std::cout << "the separator size: " << result->C.size() << " landmarks" << std::endl; std::cout << "the separator size: " << result->C.size() << " landmarks" << std::endl;
} }
return result; return result;
} }
/* ************************************************************************* */ /* ************************************************************************* */
template<class GenericGraph> template<class GenericGraph>
int findSeparator(const GenericGraph& graph, const std::vector<size_t>& keys, int findSeparator(const GenericGraph& graph, const std::vector<size_t>& keys,
const int minNodesPerMap, WorkSpace& workspace, bool verbose, const int minNodesPerMap, WorkSpace& workspace, bool verbose,
const boost::optional<std::vector<Symbol> >& int2symbol, const bool reduceGraph, const boost::optional<std::vector<Symbol> >& int2symbol, const bool reduceGraph,
const int minNrConstraintsPerCamera, const int minNrConstraintsPerLandmark) { const int minNrConstraintsPerCamera, const int minNrConstraintsPerLandmark) {
boost::optional<MetisResult> result = findPartitoning(graph, keys, workspace, boost::optional<MetisResult> result = findPartitoning(graph, keys, workspace,
verbose, int2symbol, reduceGraph); verbose, int2symbol, reduceGraph);
// find the island in A and B, and make them separated submaps // find the island in A and B, and make them separated submaps
typedef std::vector<size_t> Island; typedef std::vector<size_t> Island;
std::list<Island> islands; std::list<Island> islands;
std::list<Island> islands_in_A = findIslands(graph, result->A, workspace, std::list<Island> islands_in_A = findIslands(graph, result->A, workspace,
minNrConstraintsPerCamera, minNrConstraintsPerLandmark); minNrConstraintsPerCamera, minNrConstraintsPerLandmark);
std::list<Island> islands_in_B = findIslands(graph, result->B, workspace, std::list<Island> islands_in_B = findIslands(graph, result->B, workspace,
minNrConstraintsPerCamera, minNrConstraintsPerLandmark); minNrConstraintsPerCamera, minNrConstraintsPerLandmark);
islands.insert(islands.end(), islands_in_A.begin(), islands_in_A.end()); islands.insert(islands.end(), islands_in_A.begin(), islands_in_A.end());
islands.insert(islands.end(), islands_in_B.begin(), islands_in_B.end()); islands.insert(islands.end(), islands_in_B.begin(), islands_in_B.end());
islands.sort(isLargerIsland); islands.sort(isLargerIsland);
size_t numIsland0 = islands.size(); size_t numIsland0 = islands.size();
#ifdef NDEBUG #ifdef NDEBUG
// verbose = true; // verbose = true;
// if (!int2symbol) throw std::invalid_argument("findSeparator: int2symbol is not set!"); // if (!int2symbol) throw std::invalid_argument("findSeparator: int2symbol is not set!");
// std::cout << "sep size: " << result->C.size() << "; "; // std::cout << "sep size: " << result->C.size() << "; ";
// printNumCamerasLandmarks(result->C, *int2symbol); // printNumCamerasLandmarks(result->C, *int2symbol);
// std::cout << "no. of island: " << islands.size() << "; "; // std::cout << "no. of island: " << islands.size() << "; ";
// std::cout << "island size: "; // std::cout << "island size: ";
// BOOST_FOREACH(const Island& island, islands) // BOOST_FOREACH(const Island& island, islands)
// std::cout << island.size() << " "; // std::cout << island.size() << " ";
// std::cout << std::endl; // std::cout << std::endl;
// BOOST_FOREACH(const Island& island, islands) { // BOOST_FOREACH(const Island& island, islands) {
// printNumCamerasLandmarks(island, int2symbol); // printNumCamerasLandmarks(island, int2symbol);
// } // }
#endif #endif
// absorb small components into the separator // absorb small components into the separator
size_t oldSize = islands.size(); size_t oldSize = islands.size();
while(true) { while(true) {
if (islands.size() < 2) { if (islands.size() < 2) {
std::cout << "numIsland: " << numIsland0 << std::endl; std::cout << "numIsland: " << numIsland0 << std::endl;
throw std::runtime_error("findSeparator: found fewer than 2 submaps!"); throw std::runtime_error("findSeparator: found fewer than 2 submaps!");
} }
std::list<Island>::reference island = islands.back(); std::list<Island>::reference island = islands.back();
if ((int)island.size() >= minNodesPerMap) break; if ((int)island.size() >= minNodesPerMap) break;
result->C.insert(result->C.end(), island.begin(), island.end()); result->C.insert(result->C.end(), island.begin(), island.end());
islands.pop_back(); islands.pop_back();
} }
if (islands.size() != oldSize){ if (islands.size() != oldSize){
if (verbose) std::cout << oldSize << "-" << oldSize - islands.size() << " submap(s);\t" << std::endl; if (verbose) std::cout << oldSize << "-" << oldSize - islands.size() << " submap(s);\t" << std::endl;
} }
else{ else{
if (verbose) std::cout << oldSize << " submap(s);\t" << std::endl; if (verbose) std::cout << oldSize << " submap(s);\t" << std::endl;
} }
// generate the node map // generate the node map
std::vector<int>& partitionTable = workspace.partitionTable; std::vector<int>& partitionTable = workspace.partitionTable;
std::fill(partitionTable.begin(), partitionTable.end(), -1); std::fill(partitionTable.begin(), partitionTable.end(), -1);
BOOST_FOREACH(const size_t key, result->C) BOOST_FOREACH(const size_t key, result->C)
partitionTable[key] = 0; partitionTable[key] = 0;
int idx = 0; int idx = 0;
BOOST_FOREACH(const Island& island, islands) { BOOST_FOREACH(const Island& island, islands) {
idx++; idx++;
BOOST_FOREACH(const size_t key, island) { BOOST_FOREACH(const size_t key, island) {
partitionTable[key] = idx; partitionTable[key] = idx;
} }
} }
return islands.size(); return islands.size();
} }
}} //namespace }} //namespace

View File

@ -16,29 +16,29 @@
namespace gtsam { namespace partition { namespace gtsam { namespace partition {
// typedef std::map<size_t, size_t> PartitionTable; // from the key to the partition: 0 - separator, > 1: submap id // typedef std::map<size_t, size_t> PartitionTable; // from the key to the partition: 0 - separator, > 1: submap id
/** the metis Nest dissection result */ /** the metis Nest dissection result */
struct MetisResult { struct MetisResult {
std::vector<size_t> A, B; // frontals std::vector<size_t> A, B; // frontals
std::vector<size_t> C; // separator std::vector<size_t> C; // separator
}; };
/** /**
* use Metis library to partition, return the size of separator and the optional partition table * use Metis library to partition, return the size of separator and the optional partition table
* the size of dictionary mush be equal to the number of variables in the original graph (the largest one) * the size of dictionary mush be equal to the number of variables in the original graph (the largest one)
*/ */
template<class GenericGraph> template<class GenericGraph>
boost::optional<MetisResult> separatorPartitionByMetis(const GenericGraph& graph, const std::vector<size_t>& keys, boost::optional<MetisResult> separatorPartitionByMetis(const GenericGraph& graph, const std::vector<size_t>& keys,
WorkSpace& workspace, bool verbose); WorkSpace& workspace, bool verbose);
/** /**
* return the number of submaps and the parition table of the partitioned graph (**stored in workspace.partitionTable**). * return the number of submaps and the parition table of the partitioned graph (**stored in workspace.partitionTable**).
* return 0 if failed Note that the original output of Metis is 0,1 for submap, and 2 for the separator. * return 0 if failed Note that the original output of Metis is 0,1 for submap, and 2 for the separator.
*/ */
template<class GenericGraph> template<class GenericGraph>
int findSeparator(const GenericGraph& graph, const std::vector<size_t>& keys, int findSeparator(const GenericGraph& graph, const std::vector<size_t>& keys,
const int minNodesPerMap, WorkSpace& workspace, bool verbose, const boost::optional<std::vector<Symbol> >& int2symbol, const int minNodesPerMap, WorkSpace& workspace, bool verbose, const boost::optional<std::vector<Symbol> >& int2symbol,
const bool reduceGraph, const int minNrConstraintsPerCamera, const int minNrConstraintsPerLandmark); const bool reduceGraph, const int minNrConstraintsPerCamera, const int minNrConstraintsPerLandmark);
}} //namespace }} //namespace

View File

@ -19,459 +19,459 @@ using namespace std;
namespace gtsam { namespace partition { namespace gtsam { namespace partition {
/** /**
* Note: Need to be able to handle a graph with factors that involve variables not in the given {keys} * Note: Need to be able to handle a graph with factors that involve variables not in the given {keys}
*/ */
list<vector<size_t> > findIslands(const GenericGraph2D& graph, const vector<size_t>& keys, WorkSpace& workspace, list<vector<size_t> > findIslands(const GenericGraph2D& graph, const vector<size_t>& keys, WorkSpace& workspace,
const int minNrConstraintsPerCamera, const int minNrConstraintsPerLandmark) const int minNrConstraintsPerCamera, const int minNrConstraintsPerLandmark)
{ {
typedef pair<int, int> IntPair; typedef pair<int, int> IntPair;
typedef list<sharedGenericFactor2D> FactorList; typedef list<sharedGenericFactor2D> FactorList;
typedef map<IntPair, FactorList::iterator> Connections; typedef map<IntPair, FactorList::iterator> Connections;
// create disjoin set forest // create disjoin set forest
DSFVector dsf(workspace.dsf, keys); DSFVector dsf(workspace.dsf, keys);
FactorList factors(graph.begin(), graph.end()); FactorList factors(graph.begin(), graph.end());
size_t nrFactors = factors.size(); size_t nrFactors = factors.size();
FactorList::iterator itEnd; FactorList::iterator itEnd;
workspace.prepareDictionary(keys); workspace.prepareDictionary(keys);
while (nrFactors) { while (nrFactors) {
Connections connections; Connections connections;
bool succeed = false; bool succeed = false;
itEnd = factors.end(); itEnd = factors.end();
list<FactorList::iterator> toErase; list<FactorList::iterator> toErase;
for (FactorList::iterator itFactor=factors.begin(); itFactor!=itEnd; itFactor++) { for (FactorList::iterator itFactor=factors.begin(); itFactor!=itEnd; itFactor++) {
// remove invalid factors // remove invalid factors
GenericNode2D key1 = (*itFactor)->key1, key2 = (*itFactor)->key2; GenericNode2D key1 = (*itFactor)->key1, key2 = (*itFactor)->key2;
if (workspace.dictionary[key1.index]==-1 || workspace.dictionary[key2.index]==-1) { if (workspace.dictionary[key1.index]==-1 || workspace.dictionary[key2.index]==-1) {
toErase.push_back(itFactor); nrFactors--; continue; toErase.push_back(itFactor); nrFactors--; continue;
} }
size_t label1 = dsf.findSet(key1.index); size_t label1 = dsf.findSet(key1.index);
size_t label2 = dsf.findSet(key2.index); size_t label2 = dsf.findSet(key2.index);
if (label1 == label2) { toErase.push_back(itFactor); nrFactors--; continue; } if (label1 == label2) { toErase.push_back(itFactor); nrFactors--; continue; }
// merge two trees if the connection is strong enough, otherwise cache it // merge two trees if the connection is strong enough, otherwise cache it
// an odometry factor always merges two islands // an odometry factor always merges two islands
if (key1.type == NODE_POSE_2D && key2.type == NODE_POSE_2D) { if (key1.type == NODE_POSE_2D && key2.type == NODE_POSE_2D) {
toErase.push_back(itFactor); nrFactors--; toErase.push_back(itFactor); nrFactors--;
dsf.makeUnionInPlace(label1, label2); dsf.makeUnionInPlace(label1, label2);
succeed = true; succeed = true;
break; break;
} }
// single landmark island only need one measurement // single landmark island only need one measurement
if ((dsf.isSingleton(label1)==1 && key1.type == NODE_LANDMARK_2D) || if ((dsf.isSingleton(label1)==1 && key1.type == NODE_LANDMARK_2D) ||
(dsf.isSingleton(label2)==1 && key2.type == NODE_LANDMARK_2D)) { (dsf.isSingleton(label2)==1 && key2.type == NODE_LANDMARK_2D)) {
toErase.push_back(itFactor); nrFactors--; toErase.push_back(itFactor); nrFactors--;
dsf.makeUnionInPlace(label1, label2); dsf.makeUnionInPlace(label1, label2);
succeed = true; succeed = true;
break; break;
} }
// stack the current factor with the cached constraint // stack the current factor with the cached constraint
IntPair labels = (label1 < label2) ? make_pair(label1, label2) : make_pair(label2, label1); IntPair labels = (label1 < label2) ? make_pair(label1, label2) : make_pair(label2, label1);
Connections::iterator itCached = connections.find(labels); Connections::iterator itCached = connections.find(labels);
if (itCached == connections.end()) { if (itCached == connections.end()) {
connections.insert(make_pair(labels, itFactor)); connections.insert(make_pair(labels, itFactor));
continue; continue;
} else { } else {
GenericNode2D key21 = (*itCached->second)->key1, key22 = (*itCached->second)->key2; GenericNode2D key21 = (*itCached->second)->key1, key22 = (*itCached->second)->key2;
// if observe the same landmark, we can not merge, abandon the current factor // if observe the same landmark, we can not merge, abandon the current factor
if ((key1.index == key21.index && key1.type == NODE_LANDMARK_2D) || if ((key1.index == key21.index && key1.type == NODE_LANDMARK_2D) ||
(key1.index == key22.index && key1.type == NODE_LANDMARK_2D) || (key1.index == key22.index && key1.type == NODE_LANDMARK_2D) ||
(key2.index == key21.index && key2.type == NODE_LANDMARK_2D) || (key2.index == key21.index && key2.type == NODE_LANDMARK_2D) ||
(key2.index == key22.index && key2.type == NODE_LANDMARK_2D)) { (key2.index == key22.index && key2.type == NODE_LANDMARK_2D)) {
toErase.push_back(itFactor); nrFactors--; toErase.push_back(itFactor); nrFactors--;
continue; continue;
} else { } else {
toErase.push_back(itFactor); nrFactors--; toErase.push_back(itFactor); nrFactors--;
toErase.push_back(itCached->second); nrFactors--; toErase.push_back(itCached->second); nrFactors--;
dsf.makeUnionInPlace(label1, label2); dsf.makeUnionInPlace(label1, label2);
connections.erase(itCached); connections.erase(itCached);
succeed = true; succeed = true;
break; break;
} }
} }
} }
// erase unused factors // erase unused factors
BOOST_FOREACH(const FactorList::iterator& it, toErase) BOOST_FOREACH(const FactorList::iterator& it, toErase)
factors.erase(it); factors.erase(it);
if (!succeed) break; if (!succeed) break;
} }
list<vector<size_t> > islands; list<vector<size_t> > islands;
map<size_t, vector<size_t> > arrays = dsf.arrays(); map<size_t, vector<size_t> > arrays = dsf.arrays();
size_t key; vector<size_t> array; size_t key; vector<size_t> array;
BOOST_FOREACH(boost::tie(key, array), arrays) BOOST_FOREACH(boost::tie(key, array), arrays)
islands.push_back(array); islands.push_back(array);
return islands; return islands;
} }
/* ************************************************************************* */ /* ************************************************************************* */
void print(const GenericGraph2D& graph, const std::string name) { void print(const GenericGraph2D& graph, const std::string name) {
cout << name << endl; cout << name << endl;
BOOST_FOREACH(const sharedGenericFactor2D& factor_, graph) BOOST_FOREACH(const sharedGenericFactor2D& factor_, graph)
cout << factor_->key1.index << " " << factor_->key2.index << endl; cout << factor_->key1.index << " " << factor_->key2.index << endl;
} }
/* ************************************************************************* */ /* ************************************************************************* */
void print(const GenericGraph3D& graph, const std::string name) { void print(const GenericGraph3D& graph, const std::string name) {
cout << name << endl; cout << name << endl;
BOOST_FOREACH(const sharedGenericFactor3D& factor_, graph) BOOST_FOREACH(const sharedGenericFactor3D& factor_, graph)
cout << factor_->key1.index << " " << factor_->key2.index << " (" << cout << factor_->key1.index << " " << factor_->key2.index << " (" <<
factor_->key1.type << ", " << factor_->key2.type <<")" << endl; factor_->key1.type << ", " << factor_->key2.type <<")" << endl;
} }
/* ************************************************************************* */ /* ************************************************************************* */
// create disjoin set forest // create disjoin set forest
DSFVector createDSF(const GenericGraph3D& graph, const vector<size_t>& keys, const WorkSpace& workspace) { DSFVector createDSF(const GenericGraph3D& graph, const vector<size_t>& keys, const WorkSpace& workspace) {
DSFVector dsf(workspace.dsf, keys); DSFVector dsf(workspace.dsf, keys);
typedef list<sharedGenericFactor3D> FactorList; typedef list<sharedGenericFactor3D> FactorList;
FactorList factors(graph.begin(), graph.end()); FactorList factors(graph.begin(), graph.end());
size_t nrFactors = factors.size(); size_t nrFactors = factors.size();
FactorList::iterator itEnd; FactorList::iterator itEnd;
while (nrFactors) { while (nrFactors) {
bool succeed = false; bool succeed = false;
itEnd = factors.end(); itEnd = factors.end();
list<FactorList::iterator> toErase; list<FactorList::iterator> toErase;
for (FactorList::iterator itFactor=factors.begin(); itFactor!=itEnd; itFactor++) { for (FactorList::iterator itFactor=factors.begin(); itFactor!=itEnd; itFactor++) {
// remove invalid factors // remove invalid factors
if (graph.size() == 178765) cout << "kai21" << endl; if (graph.size() == 178765) cout << "kai21" << endl;
GenericNode3D key1 = (*itFactor)->key1, key2 = (*itFactor)->key2; GenericNode3D key1 = (*itFactor)->key1, key2 = (*itFactor)->key2;
if (graph.size() == 178765) cout << "kai21: " << key1.index << " " << key2.index << endl; if (graph.size() == 178765) cout << "kai21: " << key1.index << " " << key2.index << endl;
if (workspace.dictionary[key1.index]==-1 || workspace.dictionary[key2.index]==-1) { if (workspace.dictionary[key1.index]==-1 || workspace.dictionary[key2.index]==-1) {
toErase.push_back(itFactor); nrFactors--; continue; toErase.push_back(itFactor); nrFactors--; continue;
} }
if (graph.size() == 178765) cout << "kai22" << endl; if (graph.size() == 178765) cout << "kai22" << endl;
size_t label1 = dsf.findSet(key1.index); size_t label1 = dsf.findSet(key1.index);
size_t label2 = dsf.findSet(key2.index); size_t label2 = dsf.findSet(key2.index);
if (label1 == label2) { toErase.push_back(itFactor); nrFactors--; continue; } if (label1 == label2) { toErase.push_back(itFactor); nrFactors--; continue; }
if (graph.size() == 178765) cout << "kai23" << endl; if (graph.size() == 178765) cout << "kai23" << endl;
// merge two trees if the connection is strong enough, otherwise cache it // merge two trees if the connection is strong enough, otherwise cache it
// an odometry factor always merges two islands // an odometry factor always merges two islands
if ((key1.type == NODE_POSE_3D && key2.type == NODE_LANDMARK_3D) || if ((key1.type == NODE_POSE_3D && key2.type == NODE_LANDMARK_3D) ||
(key1.type == NODE_POSE_3D && key2.type == NODE_POSE_3D)) { (key1.type == NODE_POSE_3D && key2.type == NODE_POSE_3D)) {
toErase.push_back(itFactor); nrFactors--; toErase.push_back(itFactor); nrFactors--;
dsf.makeUnionInPlace(label1, label2); dsf.makeUnionInPlace(label1, label2);
succeed = true; succeed = true;
break; break;
} }
if (graph.size() == 178765) cout << "kai24" << endl; if (graph.size() == 178765) cout << "kai24" << endl;
} }
// erase unused factors // erase unused factors
BOOST_FOREACH(const FactorList::iterator& it, toErase) BOOST_FOREACH(const FactorList::iterator& it, toErase)
factors.erase(it); factors.erase(it);
if (!succeed) break; if (!succeed) break;
} }
return dsf; return dsf;
} }
/* ************************************************************************* */ /* ************************************************************************* */
// first check the type of the key (pose or landmark), and then check whether it is singular // first check the type of the key (pose or landmark), and then check whether it is singular
inline bool isSingular(const set<size_t>& singularCameras, const set<size_t>& singularLandmarks, const GenericNode3D& node) { inline bool isSingular(const set<size_t>& singularCameras, const set<size_t>& singularLandmarks, const GenericNode3D& node) {
switch(node.type) { switch(node.type) {
case NODE_POSE_3D: case NODE_POSE_3D:
return singularCameras.find(node.index) != singularCameras.end(); break; return singularCameras.find(node.index) != singularCameras.end(); break;
case NODE_LANDMARK_3D: case NODE_LANDMARK_3D:
return singularLandmarks.find(node.index) != singularLandmarks.end(); break; return singularLandmarks.find(node.index) != singularLandmarks.end(); break;
default: default:
throw runtime_error("unrecognized key type!"); throw runtime_error("unrecognized key type!");
} }
} }
/* ************************************************************************* */ /* ************************************************************************* */
void findSingularCamerasLandmarks(const GenericGraph3D& graph, const WorkSpace& workspace, void findSingularCamerasLandmarks(const GenericGraph3D& graph, const WorkSpace& workspace,
const vector<bool>& isCamera, const vector<bool>& isLandmark, const vector<bool>& isCamera, const vector<bool>& isLandmark,
set<size_t>& singularCameras, set<size_t>& singularLandmarks, vector<int>& nrConstraints, set<size_t>& singularCameras, set<size_t>& singularLandmarks, vector<int>& nrConstraints,
bool& foundSingularCamera, bool& foundSingularLandmark, bool& foundSingularCamera, bool& foundSingularLandmark,
const int minNrConstraintsPerCamera, const int minNrConstraintsPerLandmark) { const int minNrConstraintsPerCamera, const int minNrConstraintsPerLandmark) {
// compute the constraint number per camera // compute the constraint number per camera
std::fill(nrConstraints.begin(), nrConstraints.end(), 0); std::fill(nrConstraints.begin(), nrConstraints.end(), 0);
BOOST_FOREACH(const sharedGenericFactor3D& factor_, graph) { BOOST_FOREACH(const sharedGenericFactor3D& factor_, graph) {
const int& key1 = factor_->key1.index; const int& key1 = factor_->key1.index;
const int& key2 = factor_->key2.index; const int& key2 = factor_->key2.index;
if (workspace.dictionary[key1] != -1 && workspace.dictionary[key2] != -1 && if (workspace.dictionary[key1] != -1 && workspace.dictionary[key2] != -1 &&
!isSingular(singularCameras, singularLandmarks, factor_->key1) && !isSingular(singularCameras, singularLandmarks, factor_->key1) &&
!isSingular(singularCameras, singularLandmarks, factor_->key2)) { !isSingular(singularCameras, singularLandmarks, factor_->key2)) {
nrConstraints[key1]++; nrConstraints[key1]++;
nrConstraints[key2]++; nrConstraints[key2]++;
// a single pose constraint is sufficient for stereo, so we add 2 to the counter // a single pose constraint is sufficient for stereo, so we add 2 to the counter
// for a total of 3, i.e. the same as 3 landmarks fully constraining the camera // for a total of 3, i.e. the same as 3 landmarks fully constraining the camera
if(factor_->key1.type == NODE_POSE_3D && factor_->key2.type == NODE_POSE_3D){ if(factor_->key1.type == NODE_POSE_3D && factor_->key2.type == NODE_POSE_3D){
nrConstraints[key1]+=2; nrConstraints[key1]+=2;
nrConstraints[key2]+=2; nrConstraints[key2]+=2;
} }
} }
} }
// find singular cameras and landmarks // find singular cameras and landmarks
foundSingularCamera = false; foundSingularCamera = false;
foundSingularLandmark = false; foundSingularLandmark = false;
for (size_t i=0; i<nrConstraints.size(); i++) { for (size_t i=0; i<nrConstraints.size(); i++) {
if (isCamera[i] && nrConstraints[i] < minNrConstraintsPerCamera && if (isCamera[i] && nrConstraints[i] < minNrConstraintsPerCamera &&
singularCameras.find(i) == singularCameras.end()) { singularCameras.find(i) == singularCameras.end()) {
singularCameras.insert(i); singularCameras.insert(i);
foundSingularCamera = true; foundSingularCamera = true;
} }
if (isLandmark[i] && nrConstraints[i] < minNrConstraintsPerLandmark && if (isLandmark[i] && nrConstraints[i] < minNrConstraintsPerLandmark &&
singularLandmarks.find(i) == singularLandmarks.end()) { singularLandmarks.find(i) == singularLandmarks.end()) {
singularLandmarks.insert(i); singularLandmarks.insert(i);
foundSingularLandmark = true; foundSingularLandmark = true;
} }
} }
} }
/* ************************************************************************* */ /* ************************************************************************* */
list<vector<size_t> > findIslands(const GenericGraph3D& graph, const vector<size_t>& keys, WorkSpace& workspace, list<vector<size_t> > findIslands(const GenericGraph3D& graph, const vector<size_t>& keys, WorkSpace& workspace,
const size_t minNrConstraintsPerCamera, const size_t minNrConstraintsPerLandmark) { const size_t minNrConstraintsPerCamera, const size_t minNrConstraintsPerLandmark) {
// create disjoint set forest // create disjoint set forest
workspace.prepareDictionary(keys); workspace.prepareDictionary(keys);
DSFVector dsf = createDSF(graph, keys, workspace); DSFVector dsf = createDSF(graph, keys, workspace);
const bool verbose = false; const bool verbose = false;
bool foundSingularCamera = true; bool foundSingularCamera = true;
bool foundSingularLandmark = true; bool foundSingularLandmark = true;
list<vector<size_t> > islands; list<vector<size_t> > islands;
set<size_t> singularCameras, singularLandmarks; set<size_t> singularCameras, singularLandmarks;
vector<bool> isCamera(workspace.dictionary.size(), false); vector<bool> isCamera(workspace.dictionary.size(), false);
vector<bool> isLandmark(workspace.dictionary.size(), false); vector<bool> isLandmark(workspace.dictionary.size(), false);
// check the constraint number of every variable // check the constraint number of every variable
// find the camera and landmark keys // find the camera and landmark keys
BOOST_FOREACH(const sharedGenericFactor3D& factor_, graph) { BOOST_FOREACH(const sharedGenericFactor3D& factor_, graph) {
//assert(factor_->key2.type == NODE_LANDMARK_3D); // only VisualSLAM should come here, not StereoSLAM //assert(factor_->key2.type == NODE_LANDMARK_3D); // only VisualSLAM should come here, not StereoSLAM
if (workspace.dictionary[factor_->key1.index] != -1) { if (workspace.dictionary[factor_->key1.index] != -1) {
if (factor_->key1.type == NODE_POSE_3D) if (factor_->key1.type == NODE_POSE_3D)
isCamera[factor_->key1.index] = true; isCamera[factor_->key1.index] = true;
else else
isLandmark[factor_->key1.index] = true; isLandmark[factor_->key1.index] = true;
} }
if (workspace.dictionary[factor_->key2.index] != -1) { if (workspace.dictionary[factor_->key2.index] != -1) {
if (factor_->key2.type == NODE_POSE_3D) if (factor_->key2.type == NODE_POSE_3D)
isCamera[factor_->key2.index] = true; isCamera[factor_->key2.index] = true;
else else
isLandmark[factor_->key2.index] = true; isLandmark[factor_->key2.index] = true;
} }
} }
vector<int> nrConstraints(workspace.dictionary.size(), 0); vector<int> nrConstraints(workspace.dictionary.size(), 0);
// iterate until all singular variables have been removed. Removing a singular variable // iterate until all singular variables have been removed. Removing a singular variable
// can cause another to become singular, so this will probably run several times // can cause another to become singular, so this will probably run several times
while (foundSingularCamera || foundSingularLandmark) { while (foundSingularCamera || foundSingularLandmark) {
findSingularCamerasLandmarks(graph, workspace, isCamera, isLandmark, // input findSingularCamerasLandmarks(graph, workspace, isCamera, isLandmark, // input
singularCameras, singularLandmarks, nrConstraints, // output singularCameras, singularLandmarks, nrConstraints, // output
foundSingularCamera, foundSingularLandmark, // output foundSingularCamera, foundSingularLandmark, // output
minNrConstraintsPerCamera, minNrConstraintsPerLandmark); // input minNrConstraintsPerCamera, minNrConstraintsPerLandmark); // input
} }
// add singular variables directly as islands // add singular variables directly as islands
if (!singularCameras.empty()) { if (!singularCameras.empty()) {
if (verbose) cout << "singular cameras:"; if (verbose) cout << "singular cameras:";
BOOST_FOREACH(const size_t i, singularCameras) { BOOST_FOREACH(const size_t i, singularCameras) {
islands.push_back(vector<size_t>(1, i)); // <--------------------------- islands.push_back(vector<size_t>(1, i)); // <---------------------------
if (verbose) cout << i << " "; if (verbose) cout << i << " ";
} }
if (verbose) cout << endl; if (verbose) cout << endl;
} }
if (!singularLandmarks.empty()) { if (!singularLandmarks.empty()) {
if (verbose) cout << "singular landmarks:"; if (verbose) cout << "singular landmarks:";
BOOST_FOREACH(const size_t i, singularLandmarks) { BOOST_FOREACH(const size_t i, singularLandmarks) {
islands.push_back(vector<size_t>(1, i)); // <--------------------------- islands.push_back(vector<size_t>(1, i)); // <---------------------------
if (verbose) cout << i << " "; if (verbose) cout << i << " ";
} }
if (verbose) cout << endl; if (verbose) cout << endl;
} }
// regenerating islands // regenerating islands
map<size_t, vector<size_t> > labelIslands = dsf.arrays(); map<size_t, vector<size_t> > labelIslands = dsf.arrays();
size_t label; vector<size_t> island; size_t label; vector<size_t> island;
BOOST_FOREACH(boost::tie(label, island), labelIslands) { BOOST_FOREACH(boost::tie(label, island), labelIslands) {
vector<size_t> filteredIsland; // remove singular cameras from array vector<size_t> filteredIsland; // remove singular cameras from array
filteredIsland.reserve(island.size()); filteredIsland.reserve(island.size());
BOOST_FOREACH(const size_t key, island) { BOOST_FOREACH(const size_t key, island) {
if ((isCamera[key] && singularCameras.find(key) == singularCameras.end()) || // not singular if ((isCamera[key] && singularCameras.find(key) == singularCameras.end()) || // not singular
(isLandmark[key] && singularLandmarks.find(key) == singularLandmarks.end()) || // not singular (isLandmark[key] && singularLandmarks.find(key) == singularLandmarks.end()) || // not singular
(!isCamera[key] && !isLandmark[key])) { // the key is not involved in any factor, so the type is undertermined (!isCamera[key] && !isLandmark[key])) { // the key is not involved in any factor, so the type is undertermined
filteredIsland.push_back(key); filteredIsland.push_back(key);
} }
} }
islands.push_back(filteredIsland); islands.push_back(filteredIsland);
} }
// sanity check // sanity check
size_t nrKeys = 0; size_t nrKeys = 0;
BOOST_FOREACH(const vector<size_t>& island, islands) BOOST_FOREACH(const vector<size_t>& island, islands)
nrKeys += island.size(); nrKeys += island.size();
if (nrKeys != keys.size()) { if (nrKeys != keys.size()) {
cout << nrKeys << " vs " << keys.size() << endl; cout << nrKeys << " vs " << keys.size() << endl;
throw runtime_error("findIslands: the number of keys is inconsistent!"); throw runtime_error("findIslands: the number of keys is inconsistent!");
} }
if (verbose) cout << "found " << islands.size() << " islands!" << endl; if (verbose) cout << "found " << islands.size() << " islands!" << endl;
return islands; return islands;
} }
/* ************************************************************************* */ /* ************************************************************************* */
// return the number of intersection between two **sorted** landmark vectors // return the number of intersection between two **sorted** landmark vectors
inline int getNrCommonLandmarks(const vector<size_t>& landmarks1, const vector<size_t>& landmarks2){ inline int getNrCommonLandmarks(const vector<size_t>& landmarks1, const vector<size_t>& landmarks2){
size_t i1 = 0, i2 = 0; size_t i1 = 0, i2 = 0;
int nrCommonLandmarks = 0; int nrCommonLandmarks = 0;
while (i1 < landmarks1.size() && i2 < landmarks2.size()) { while (i1 < landmarks1.size() && i2 < landmarks2.size()) {
if (landmarks1[i1] < landmarks2[i2]) if (landmarks1[i1] < landmarks2[i2])
i1 ++; i1 ++;
else if (landmarks1[i1] > landmarks2[i2]) else if (landmarks1[i1] > landmarks2[i2])
i2 ++; i2 ++;
else { else {
i1++; i2++; i1++; i2++;
nrCommonLandmarks ++; nrCommonLandmarks ++;
} }
} }
return nrCommonLandmarks; return nrCommonLandmarks;
} }
/* ************************************************************************* */ /* ************************************************************************* */
void reduceGenericGraph(const GenericGraph3D& graph, const std::vector<size_t>& cameraKeys, const std::vector<size_t>& landmarkKeys, void reduceGenericGraph(const GenericGraph3D& graph, const std::vector<size_t>& cameraKeys, const std::vector<size_t>& landmarkKeys,
const std::vector<int>& dictionary, GenericGraph3D& reducedGraph) { const std::vector<int>& dictionary, GenericGraph3D& reducedGraph) {
typedef size_t CameraKey; typedef size_t CameraKey;
typedef pair<CameraKey, CameraKey> CameraPair; typedef pair<CameraKey, CameraKey> CameraPair;
typedef size_t LandmarkKey; typedef size_t LandmarkKey;
// get a mapping from each landmark to its connected cameras // get a mapping from each landmark to its connected cameras
vector<vector<LandmarkKey> > cameraToLandmarks(dictionary.size()); vector<vector<LandmarkKey> > cameraToLandmarks(dictionary.size());
// for odometry xi-xj where i<j, we always store cameraToCamera[i] = j, otherwise equal to -1 if no odometry // for odometry xi-xj where i<j, we always store cameraToCamera[i] = j, otherwise equal to -1 if no odometry
vector<int> cameraToCamera(dictionary.size(), -1); vector<int> cameraToCamera(dictionary.size(), -1);
size_t key_i, key_j; size_t key_i, key_j;
BOOST_FOREACH(const sharedGenericFactor3D& factor_, graph) { BOOST_FOREACH(const sharedGenericFactor3D& factor_, graph) {
if (factor_->key1.type == NODE_POSE_3D) { if (factor_->key1.type == NODE_POSE_3D) {
if (factor_->key2.type == NODE_LANDMARK_3D) {// projection factor if (factor_->key2.type == NODE_LANDMARK_3D) {// projection factor
cameraToLandmarks[factor_->key1.index].push_back(factor_->key2.index); cameraToLandmarks[factor_->key1.index].push_back(factor_->key2.index);
} }
else { // odometry factor else { // odometry factor
if (factor_->key1.index < factor_->key2.index) { if (factor_->key1.index < factor_->key2.index) {
key_i = factor_->key1.index; key_i = factor_->key1.index;
key_j = factor_->key2.index; key_j = factor_->key2.index;
} else { } else {
key_i = factor_->key2.index; key_i = factor_->key2.index;
key_j = factor_->key1.index; key_j = factor_->key1.index;
} }
cameraToCamera[key_i] = key_j; cameraToCamera[key_i] = key_j;
} }
} }
} }
// sort the landmark keys for the late getNrCommonLandmarks call // sort the landmark keys for the late getNrCommonLandmarks call
BOOST_FOREACH(vector<LandmarkKey> &landmarks, cameraToLandmarks){ BOOST_FOREACH(vector<LandmarkKey> &landmarks, cameraToLandmarks){
if (!landmarks.empty()) if (!landmarks.empty())
std::sort(landmarks.begin(), landmarks.end()); std::sort(landmarks.begin(), landmarks.end());
} }
// generate the reduced graph // generate the reduced graph
reducedGraph.clear(); reducedGraph.clear();
int factorIndex = 0; int factorIndex = 0;
int camera1, camera2, nrTotalConstraints; int camera1, camera2, nrTotalConstraints;
bool hasOdometry; bool hasOdometry;
for (size_t i1=0; i1<cameraKeys.size()-1; ++i1) { for (size_t i1=0; i1<cameraKeys.size()-1; ++i1) {
for (size_t i2=i1+1; i2<cameraKeys.size(); ++i2) { for (size_t i2=i1+1; i2<cameraKeys.size(); ++i2) {
camera1 = cameraKeys[i1]; camera1 = cameraKeys[i1];
camera2 = cameraKeys[i2]; camera2 = cameraKeys[i2];
int nrCommonLandmarks = getNrCommonLandmarks(cameraToLandmarks[camera1], cameraToLandmarks[camera2]); int nrCommonLandmarks = getNrCommonLandmarks(cameraToLandmarks[camera1], cameraToLandmarks[camera2]);
hasOdometry = cameraToCamera[camera1] == camera2; hasOdometry = cameraToCamera[camera1] == camera2;
if (nrCommonLandmarks > 0 || hasOdometry) { if (nrCommonLandmarks > 0 || hasOdometry) {
nrTotalConstraints = 2 * nrCommonLandmarks + (hasOdometry ? 6 : 0); nrTotalConstraints = 2 * nrCommonLandmarks + (hasOdometry ? 6 : 0);
reducedGraph.push_back(boost::make_shared<GenericFactor3D>(camera1, camera2, reducedGraph.push_back(boost::make_shared<GenericFactor3D>(camera1, camera2,
factorIndex++, NODE_POSE_3D, NODE_POSE_3D, nrTotalConstraints)); factorIndex++, NODE_POSE_3D, NODE_POSE_3D, nrTotalConstraints));
} }
} }
} }
} }
/* ************************************************************************* */ /* ************************************************************************* */
void checkSingularity(const GenericGraph3D& graph, const std::vector<size_t>& frontals, void checkSingularity(const GenericGraph3D& graph, const std::vector<size_t>& frontals,
WorkSpace& workspace, const size_t minNrConstraintsPerCamera, const size_t minNrConstraintsPerLandmark) { WorkSpace& workspace, const size_t minNrConstraintsPerCamera, const size_t minNrConstraintsPerLandmark) {
workspace.prepareDictionary(frontals); workspace.prepareDictionary(frontals);
vector<size_t> nrConstraints(workspace.dictionary.size(), 0); vector<size_t> nrConstraints(workspace.dictionary.size(), 0);
// summarize the constraint number // summarize the constraint number
const vector<int>& dictionary = workspace.dictionary; const vector<int>& dictionary = workspace.dictionary;
vector<bool> isValidCamera(workspace.dictionary.size(), false); vector<bool> isValidCamera(workspace.dictionary.size(), false);
vector<bool> isValidLandmark(workspace.dictionary.size(), false); vector<bool> isValidLandmark(workspace.dictionary.size(), false);
BOOST_FOREACH(const sharedGenericFactor3D& factor_, graph) { BOOST_FOREACH(const sharedGenericFactor3D& factor_, graph) {
assert(factor_->key1.type == NODE_POSE_3D); assert(factor_->key1.type == NODE_POSE_3D);
//assert(factor_->key2.type == NODE_LANDMARK_3D); //assert(factor_->key2.type == NODE_LANDMARK_3D);
const size_t& key1 = factor_->key1.index; const size_t& key1 = factor_->key1.index;
const size_t& key2 = factor_->key2.index; const size_t& key2 = factor_->key2.index;
if (dictionary[key1] == -1 || dictionary[key2] == -1) if (dictionary[key1] == -1 || dictionary[key2] == -1)
continue; continue;
isValidCamera[key1] = true; isValidCamera[key1] = true;
if(factor_->key2.type == NODE_LANDMARK_3D) if(factor_->key2.type == NODE_LANDMARK_3D)
isValidLandmark[key2] = true; isValidLandmark[key2] = true;
else else
isValidCamera[key2] = true; isValidCamera[key2] = true;
nrConstraints[key1]++; nrConstraints[key1]++;
nrConstraints[key2]++; nrConstraints[key2]++;
// a single pose constraint is sufficient for stereo, so we add 2 to the counter // a single pose constraint is sufficient for stereo, so we add 2 to the counter
// for a total of 3, i.e. the same as 3 landmarks fully constraining the camera // for a total of 3, i.e. the same as 3 landmarks fully constraining the camera
if(factor_->key1.type == NODE_POSE_3D && factor_->key2.type == NODE_POSE_3D){ if(factor_->key1.type == NODE_POSE_3D && factor_->key2.type == NODE_POSE_3D){
nrConstraints[key1]+=2; nrConstraints[key1]+=2;
nrConstraints[key2]+=2; nrConstraints[key2]+=2;
} }
} }
// find the minimum constraint for cameras and landmarks // find the minimum constraint for cameras and landmarks
size_t minFoundConstraintsPerCamera = 10000; size_t minFoundConstraintsPerCamera = 10000;
size_t minFoundConstraintsPerLandmark = 10000; size_t minFoundConstraintsPerLandmark = 10000;
for (size_t i=0; i<isValidCamera.size(); i++) { for (size_t i=0; i<isValidCamera.size(); i++) {
if (isValidCamera[i]) { if (isValidCamera[i]) {
minFoundConstraintsPerCamera = std::min(nrConstraints[i], minFoundConstraintsPerCamera); minFoundConstraintsPerCamera = std::min(nrConstraints[i], minFoundConstraintsPerCamera);
if (nrConstraints[i] < minNrConstraintsPerCamera) if (nrConstraints[i] < minNrConstraintsPerCamera)
cout << "!!!!!!!!!!!!!!!!!!! camera with " << nrConstraints[i] << " constraint: " << i << endl; cout << "!!!!!!!!!!!!!!!!!!! camera with " << nrConstraints[i] << " constraint: " << i << endl;
} }
} }
for (size_t j=0; j<isValidLandmark.size(); j++) { for (size_t j=0; j<isValidLandmark.size(); j++) {
if (isValidLandmark[j]) { if (isValidLandmark[j]) {
minFoundConstraintsPerLandmark = std::min(nrConstraints[j], minFoundConstraintsPerLandmark); minFoundConstraintsPerLandmark = std::min(nrConstraints[j], minFoundConstraintsPerLandmark);
if (nrConstraints[j] < minNrConstraintsPerLandmark) if (nrConstraints[j] < minNrConstraintsPerLandmark)
cout << "!!!!!!!!!!!!!!!!!!! landmark with " << nrConstraints[j] << " constraint: " << j << endl; cout << "!!!!!!!!!!!!!!!!!!! landmark with " << nrConstraints[j] << " constraint: " << j << endl;
} }
} }
// debug info // debug info
BOOST_FOREACH(const size_t key, frontals) { BOOST_FOREACH(const size_t key, frontals) {
if (isValidCamera[key] && nrConstraints[key] < minNrConstraintsPerCamera) if (isValidCamera[key] && nrConstraints[key] < minNrConstraintsPerCamera)
cout << "singular camera:" << key << " with " << nrConstraints[key] << " constraints" << endl; cout << "singular camera:" << key << " with " << nrConstraints[key] << " constraints" << endl;
} }
if (minFoundConstraintsPerCamera < minNrConstraintsPerCamera) if (minFoundConstraintsPerCamera < minNrConstraintsPerCamera)
throw runtime_error("checkSingularity:minConstraintsPerCamera < " + boost::lexical_cast<string>(minFoundConstraintsPerCamera)); throw runtime_error("checkSingularity:minConstraintsPerCamera < " + boost::lexical_cast<string>(minFoundConstraintsPerCamera));
if (minFoundConstraintsPerLandmark < minNrConstraintsPerLandmark) if (minFoundConstraintsPerLandmark < minNrConstraintsPerLandmark)
throw runtime_error("checkSingularity:minConstraintsPerLandmark < " + boost::lexical_cast<string>(minFoundConstraintsPerLandmark)); throw runtime_error("checkSingularity:minConstraintsPerLandmark < " + boost::lexical_cast<string>(minFoundConstraintsPerLandmark));
} }
}} // namespace }} // namespace

View File

@ -17,133 +17,133 @@
namespace gtsam { namespace partition { namespace gtsam { namespace partition {
/*************************************************** /***************************************************
* 2D generic factors and their factor graph * 2D generic factors and their factor graph
***************************************************/ ***************************************************/
enum GenericNode2DType { NODE_POSE_2D, NODE_LANDMARK_2D }; enum GenericNode2DType { NODE_POSE_2D, NODE_LANDMARK_2D };
/** the index of the node and the type of the node */ /** the index of the node and the type of the node */
struct GenericNode2D { struct GenericNode2D {
std::size_t index; std::size_t index;
GenericNode2DType type; GenericNode2DType type;
GenericNode2D (const std::size_t& index_in, const GenericNode2DType& type_in) : index(index_in), type(type_in) {} GenericNode2D (const std::size_t& index_in, const GenericNode2DType& type_in) : index(index_in), type(type_in) {}
}; };
/** a factor always involves two nodes/variables for now */ /** a factor always involves two nodes/variables for now */
struct GenericFactor2D { struct GenericFactor2D {
GenericNode2D key1; GenericNode2D key1;
GenericNode2D key2; GenericNode2D key2;
int index; // the factor index in the original nonlinear factor graph int index; // the factor index in the original nonlinear factor graph
int weight; // the weight of the edge int weight; // the weight of the edge
GenericFactor2D(const size_t index1, const GenericNode2DType type1, const size_t index2, const GenericNode2DType type2, const int index_ = -1, const int weight_ = 1) GenericFactor2D(const size_t index1, const GenericNode2DType type1, const size_t index2, const GenericNode2DType type2, const int index_ = -1, const int weight_ = 1)
: key1(index1, type1), key2(index2, type2), index(index_), weight(weight_) {} : key1(index1, type1), key2(index2, type2), index(index_), weight(weight_) {}
GenericFactor2D(const size_t index1, const char type1, const size_t index2, const char type2, const int index_ = -1, const int weight_ = 1) GenericFactor2D(const size_t index1, const char type1, const size_t index2, const char type2, const int index_ = -1, const int weight_ = 1)
: key1(index1, type1 == 'x' ? NODE_POSE_2D : NODE_LANDMARK_2D), : key1(index1, type1 == 'x' ? NODE_POSE_2D : NODE_LANDMARK_2D),
key2(index2, type2 == 'x' ? NODE_POSE_2D : NODE_LANDMARK_2D), index(index_), weight(weight_) {} key2(index2, type2 == 'x' ? NODE_POSE_2D : NODE_LANDMARK_2D), index(index_), weight(weight_) {}
}; };
/** graph is a collection of factors */ /** graph is a collection of factors */
typedef boost::shared_ptr<GenericFactor2D> sharedGenericFactor2D; typedef boost::shared_ptr<GenericFactor2D> sharedGenericFactor2D;
typedef std::vector<sharedGenericFactor2D> GenericGraph2D; typedef std::vector<sharedGenericFactor2D> GenericGraph2D;
/** merge nodes in DSF using constraints captured by the given graph */ /** merge nodes in DSF using constraints captured by the given graph */
std::list<std::vector<size_t> > findIslands(const GenericGraph2D& graph, const std::vector<size_t>& keys, WorkSpace& workspace, std::list<std::vector<size_t> > findIslands(const GenericGraph2D& graph, const std::vector<size_t>& keys, WorkSpace& workspace,
const int minNrConstraintsPerCamera, const int minNrConstraintsPerLandmark); const int minNrConstraintsPerCamera, const int minNrConstraintsPerLandmark);
/** eliminate the sensors from generic graph */ /** eliminate the sensors from generic graph */
inline void reduceGenericGraph(const GenericGraph2D& graph, const std::vector<size_t>& cameraKeys, const std::vector<size_t>& landmarkKeys, inline void reduceGenericGraph(const GenericGraph2D& graph, const std::vector<size_t>& cameraKeys, const std::vector<size_t>& landmarkKeys,
const std::vector<int>& dictionary, GenericGraph2D& reducedGraph) { const std::vector<int>& dictionary, GenericGraph2D& reducedGraph) {
throw std::runtime_error("reduceGenericGraph 2d not implemented"); throw std::runtime_error("reduceGenericGraph 2d not implemented");
} }
/** check whether the 2D graph is singular (under constrained) , Dummy function for 2D */ /** check whether the 2D graph is singular (under constrained) , Dummy function for 2D */
inline void checkSingularity(const GenericGraph2D& graph, const std::vector<size_t>& frontals, inline void checkSingularity(const GenericGraph2D& graph, const std::vector<size_t>& frontals,
WorkSpace& workspace, const int minNrConstraintsPerCamera, const int minNrConstraintsPerLandmark) { return; } WorkSpace& workspace, const int minNrConstraintsPerCamera, const int minNrConstraintsPerLandmark) { return; }
/** print the graph **/ /** print the graph **/
void print(const GenericGraph2D& graph, const std::string name = "GenericGraph2D"); void print(const GenericGraph2D& graph, const std::string name = "GenericGraph2D");
/*************************************************** /***************************************************
* 3D generic factors and their factor graph * 3D generic factors and their factor graph
***************************************************/ ***************************************************/
enum GenericNode3DType { NODE_POSE_3D, NODE_LANDMARK_3D }; enum GenericNode3DType { NODE_POSE_3D, NODE_LANDMARK_3D };
// const int minNrConstraintsPerCamera = 7; // const int minNrConstraintsPerCamera = 7;
// const int minNrConstraintsPerLandmark = 2; // const int minNrConstraintsPerLandmark = 2;
/** the index of the node and the type of the node */ /** the index of the node and the type of the node */
struct GenericNode3D { struct GenericNode3D {
std::size_t index; std::size_t index;
GenericNode3DType type; GenericNode3DType type;
GenericNode3D (const std::size_t& index_in, const GenericNode3DType& type_in) : index(index_in), type(type_in) {} GenericNode3D (const std::size_t& index_in, const GenericNode3DType& type_in) : index(index_in), type(type_in) {}
}; };
/** a factor always involves two nodes/variables for now */ /** a factor always involves two nodes/variables for now */
struct GenericFactor3D { struct GenericFactor3D {
GenericNode3D key1; GenericNode3D key1;
GenericNode3D key2; GenericNode3D key2;
int index; // the index in the entire graph, 0-based int index; // the index in the entire graph, 0-based
int weight; // the weight of the edge int weight; // the weight of the edge
GenericFactor3D() :key1(-1, NODE_POSE_3D), key2(-1, NODE_LANDMARK_3D), index(-1), weight(1) {} GenericFactor3D() :key1(-1, NODE_POSE_3D), key2(-1, NODE_LANDMARK_3D), index(-1), weight(1) {}
GenericFactor3D(const size_t index1, const size_t index2, const int index_ = -1, GenericFactor3D(const size_t index1, const size_t index2, const int index_ = -1,
const GenericNode3DType type1 = NODE_POSE_3D, const GenericNode3DType type2 = NODE_LANDMARK_3D, const int weight_ = 1) const GenericNode3DType type1 = NODE_POSE_3D, const GenericNode3DType type2 = NODE_LANDMARK_3D, const int weight_ = 1)
: key1(index1, type1), key2(index2, type2), index(index_), weight(weight_) {} : key1(index1, type1), key2(index2, type2), index(index_), weight(weight_) {}
}; };
/** graph is a collection of factors */ /** graph is a collection of factors */
typedef boost::shared_ptr<GenericFactor3D> sharedGenericFactor3D; typedef boost::shared_ptr<GenericFactor3D> sharedGenericFactor3D;
typedef std::vector<sharedGenericFactor3D> GenericGraph3D; typedef std::vector<sharedGenericFactor3D> GenericGraph3D;
/** merge nodes in DSF using constraints captured by the given graph */ /** merge nodes in DSF using constraints captured by the given graph */
std::list<std::vector<size_t> > findIslands(const GenericGraph3D& graph, const std::vector<size_t>& keys, WorkSpace& workspace, std::list<std::vector<size_t> > findIslands(const GenericGraph3D& graph, const std::vector<size_t>& keys, WorkSpace& workspace,
const size_t minNrConstraintsPerCamera, const size_t minNrConstraintsPerLandmark); const size_t minNrConstraintsPerCamera, const size_t minNrConstraintsPerLandmark);
/** eliminate the sensors from generic graph */ /** eliminate the sensors from generic graph */
void reduceGenericGraph(const GenericGraph3D& graph, const std::vector<size_t>& cameraKeys, const std::vector<size_t>& landmarkKeys, void reduceGenericGraph(const GenericGraph3D& graph, const std::vector<size_t>& cameraKeys, const std::vector<size_t>& landmarkKeys,
const std::vector<int>& dictionary, GenericGraph3D& reducedGraph); const std::vector<int>& dictionary, GenericGraph3D& reducedGraph);
/** check whether the 3D graph is singular (under constrained) */ /** check whether the 3D graph is singular (under constrained) */
void checkSingularity(const GenericGraph3D& graph, const std::vector<size_t>& frontals, void checkSingularity(const GenericGraph3D& graph, const std::vector<size_t>& frontals,
WorkSpace& workspace, const size_t minNrConstraintsPerCamera, const size_t minNrConstraintsPerLandmark); WorkSpace& workspace, const size_t minNrConstraintsPerCamera, const size_t minNrConstraintsPerLandmark);
/** print the graph **/ /** print the graph **/
void print(const GenericGraph3D& graph, const std::string name = "GenericGraph3D"); void print(const GenericGraph3D& graph, const std::string name = "GenericGraph3D");
/*************************************************** /***************************************************
* unary generic factors and their factor graph * unary generic factors and their factor graph
***************************************************/ ***************************************************/
/** a factor involves a single variable */ /** a factor involves a single variable */
struct GenericUnaryFactor { struct GenericUnaryFactor {
GenericNode2D key; GenericNode2D key;
int index; // the factor index in the original nonlinear factor graph int index; // the factor index in the original nonlinear factor graph
GenericUnaryFactor(const size_t key_, const GenericNode2DType type_, const int index_ = -1) GenericUnaryFactor(const size_t key_, const GenericNode2DType type_, const int index_ = -1)
: key(key_, type_), index(index_) {} : key(key_, type_), index(index_) {}
GenericUnaryFactor(const size_t key_, const char type_, const int index_ = -1) GenericUnaryFactor(const size_t key_, const char type_, const int index_ = -1)
: key(key_, type_ == 'x' ? NODE_POSE_2D : NODE_LANDMARK_2D), index(index_) {} : key(key_, type_ == 'x' ? NODE_POSE_2D : NODE_LANDMARK_2D), index(index_) {}
}; };
/** graph is a collection of factors */ /** graph is a collection of factors */
typedef boost::shared_ptr<GenericUnaryFactor> sharedGenericUnaryFactor; typedef boost::shared_ptr<GenericUnaryFactor> sharedGenericUnaryFactor;
typedef std::vector<sharedGenericUnaryFactor> GenericUnaryGraph; typedef std::vector<sharedGenericUnaryFactor> GenericUnaryGraph;
/*************************************************** /***************************************************
* utility functions * utility functions
***************************************************/ ***************************************************/
inline bool hasCommonCamera(const std::set<size_t>& cameras1, const std::set<size_t>& cameras2) { inline bool hasCommonCamera(const std::set<size_t>& cameras1, const std::set<size_t>& cameras2) {
if (cameras1.empty() || cameras2.empty()) if (cameras1.empty() || cameras2.empty())
throw std::invalid_argument("hasCommonCamera: the input camera set is empty!"); throw std::invalid_argument("hasCommonCamera: the input camera set is empty!");
std::set<size_t>::const_iterator it1 = cameras1.begin(); std::set<size_t>::const_iterator it1 = cameras1.begin();
std::set<size_t>::const_iterator it2 = cameras2.begin(); std::set<size_t>::const_iterator it2 = cameras2.begin();
while (it1 != cameras1.end() && it2 != cameras2.end()) { while (it1 != cameras1.end() && it2 != cameras2.end()) {
if (*it1 == *it2) if (*it1 == *it2)
return true; return true;
else if (*it1 < *it2) else if (*it1 < *it2)
it1++; it1++;
else else
it2++; it2++;
} }
return false; return false;
} }
}} // namespace }} // namespace

View File

@ -16,236 +16,236 @@
namespace gtsam { namespace partition { namespace gtsam { namespace partition {
/* ************************************************************************* */ /* ************************************************************************* */
template <class NLG, class SubNLG, class GenericGraph> template <class NLG, class SubNLG, class GenericGraph>
NestedDissection<NLG, SubNLG, GenericGraph>::NestedDissection( NestedDissection<NLG, SubNLG, GenericGraph>::NestedDissection(
const NLG& fg, const Ordering& ordering, const int numNodeStopPartition, const int minNodesPerMap, const bool verbose) : const NLG& fg, const Ordering& ordering, const int numNodeStopPartition, const int minNodesPerMap, const bool verbose) :
fg_(fg), ordering_(ordering){ fg_(fg), ordering_(ordering){
GenericUnaryGraph unaryFactors; GenericUnaryGraph unaryFactors;
GenericGraph gfg; GenericGraph gfg;
boost::tie(unaryFactors, gfg) = fg.createGenericGraph(ordering); boost::tie(unaryFactors, gfg) = fg.createGenericGraph(ordering);
// build reverse mapping from integer to symbol // build reverse mapping from integer to symbol
int numNodes = ordering.size(); int numNodes = ordering.size();
int2symbol_.resize(numNodes); int2symbol_.resize(numNodes);
Ordering::const_iterator it = ordering.begin(), itLast = ordering.end(); Ordering::const_iterator it = ordering.begin(), itLast = ordering.end();
while(it != itLast) while(it != itLast)
int2symbol_[it->second] = (it++)->first; int2symbol_[it->second] = (it++)->first;
vector<size_t> keys; vector<size_t> keys;
keys.reserve(numNodes); keys.reserve(numNodes);
for(int i=0; i<ordering.size(); ++i) for(int i=0; i<ordering.size(); ++i)
keys.push_back(i); keys.push_back(i);
WorkSpace workspace(numNodes); WorkSpace workspace(numNodes);
root_ = recursivePartition(gfg, unaryFactors, keys, vector<size_t>(), numNodeStopPartition, minNodesPerMap, boost::shared_ptr<SubNLG>(), workspace, verbose); root_ = recursivePartition(gfg, unaryFactors, keys, vector<size_t>(), numNodeStopPartition, minNodesPerMap, boost::shared_ptr<SubNLG>(), workspace, verbose);
} }
/* ************************************************************************* */ /* ************************************************************************* */
template <class NLG, class SubNLG, class GenericGraph> template <class NLG, class SubNLG, class GenericGraph>
NestedDissection<NLG, SubNLG, GenericGraph>::NestedDissection( NestedDissection<NLG, SubNLG, GenericGraph>::NestedDissection(
const NLG& fg, const Ordering& ordering, const boost::shared_ptr<Cuts>& cuts, const bool verbose) : fg_(fg), ordering_(ordering){ const NLG& fg, const Ordering& ordering, const boost::shared_ptr<Cuts>& cuts, const bool verbose) : fg_(fg), ordering_(ordering){
GenericUnaryGraph unaryFactors; GenericUnaryGraph unaryFactors;
GenericGraph gfg; GenericGraph gfg;
boost::tie(unaryFactors, gfg) = fg.createGenericGraph(ordering); boost::tie(unaryFactors, gfg) = fg.createGenericGraph(ordering);
// build reverse mapping from integer to symbol // build reverse mapping from integer to symbol
int numNodes = ordering.size(); int numNodes = ordering.size();
int2symbol_.resize(numNodes); int2symbol_.resize(numNodes);
Ordering::const_iterator it = ordering.begin(), itLast = ordering.end(); Ordering::const_iterator it = ordering.begin(), itLast = ordering.end();
while(it != itLast) while(it != itLast)
int2symbol_[it->second] = (it++)->first; int2symbol_[it->second] = (it++)->first;
vector<size_t> keys; vector<size_t> keys;
keys.reserve(numNodes); keys.reserve(numNodes);
for(int i=0; i<ordering.size(); ++i) for(int i=0; i<ordering.size(); ++i)
keys.push_back(i); keys.push_back(i);
WorkSpace workspace(numNodes); WorkSpace workspace(numNodes);
root_ = recursivePartition(gfg, unaryFactors, keys, vector<size_t>(), cuts, boost::shared_ptr<SubNLG>(), workspace, verbose); root_ = recursivePartition(gfg, unaryFactors, keys, vector<size_t>(), cuts, boost::shared_ptr<SubNLG>(), workspace, verbose);
} }
/* ************************************************************************* */ /* ************************************************************************* */
template <class NLG, class SubNLG, class GenericGraph> template <class NLG, class SubNLG, class GenericGraph>
boost::shared_ptr<SubNLG> NestedDissection<NLG, SubNLG, GenericGraph>::makeSubNLG( boost::shared_ptr<SubNLG> NestedDissection<NLG, SubNLG, GenericGraph>::makeSubNLG(
const NLG& fg, const vector<size_t>& frontals, const vector<size_t>& sep, const boost::shared_ptr<SubNLG>& parent) const { const NLG& fg, const vector<size_t>& frontals, const vector<size_t>& sep, const boost::shared_ptr<SubNLG>& parent) const {
OrderedSymbols frontalKeys; OrderedSymbols frontalKeys;
BOOST_FOREACH(const size_t index, frontals) BOOST_FOREACH(const size_t index, frontals)
frontalKeys.push_back(int2symbol_[index]); frontalKeys.push_back(int2symbol_[index]);
UnorderedSymbols sepKeys; UnorderedSymbols sepKeys;
BOOST_FOREACH(const size_t index, sep) BOOST_FOREACH(const size_t index, sep)
sepKeys.insert(int2symbol_[index]); sepKeys.insert(int2symbol_[index]);
return boost::make_shared<SubNLG>(fg, frontalKeys, sepKeys, parent); return boost::make_shared<SubNLG>(fg, frontalKeys, sepKeys, parent);
} }
/* ************************************************************************* */ /* ************************************************************************* */
template <class NLG, class SubNLG, class GenericGraph> template <class NLG, class SubNLG, class GenericGraph>
void NestedDissection<NLG, SubNLG, GenericGraph>::processFactor( void NestedDissection<NLG, SubNLG, GenericGraph>::processFactor(
const typename GenericGraph::value_type& factor, const std::vector<int>& partitionTable, // input const typename GenericGraph::value_type& factor, const std::vector<int>& partitionTable, // input
vector<GenericGraph>& frontalFactors, NLG& sepFactors, vector<set<size_t> >& childSeps, // output factor graphs vector<GenericGraph>& frontalFactors, NLG& sepFactors, vector<set<size_t> >& childSeps, // output factor graphs
typename SubNLG::Weeklinks& weeklinks) const { // the links between child cliques typename SubNLG::Weeklinks& weeklinks) const { // the links between child cliques
list<size_t> sep_; // the separator variables involved in the current factor list<size_t> sep_; // the separator variables involved in the current factor
int partition1 = partitionTable[factor->key1.index]; int partition1 = partitionTable[factor->key1.index];
int partition2 = partitionTable[factor->key2.index]; int partition2 = partitionTable[factor->key2.index];
if (partition1 <= 0 && partition2 <= 0) { // is a factor in the current clique if (partition1 <= 0 && partition2 <= 0) { // is a factor in the current clique
sepFactors.push_back(fg_[factor->index]); sepFactors.push_back(fg_[factor->index]);
} }
else if (partition1 > 0 && partition2 > 0 && partition1 != partition2) { // is a weeklink (factor between two child cliques) else if (partition1 > 0 && partition2 > 0 && partition1 != partition2) { // is a weeklink (factor between two child cliques)
weeklinks.push_back(fg_[factor->index]); weeklinks.push_back(fg_[factor->index]);
} }
else if (partition1 > 0 && partition2 > 0 && partition1 == partition2) { // is a local factor in one of the child cliques else if (partition1 > 0 && partition2 > 0 && partition1 == partition2) { // is a local factor in one of the child cliques
frontalFactors[partition1 - 1].push_back(factor); frontalFactors[partition1 - 1].push_back(factor);
} }
else { // is a joint factor in the child clique (involving varaibles in the current clique) else { // is a joint factor in the child clique (involving varaibles in the current clique)
if (partition1 > 0 && partition2 <= 0) { if (partition1 > 0 && partition2 <= 0) {
frontalFactors[partition1 - 1].push_back(factor); frontalFactors[partition1 - 1].push_back(factor);
childSeps[partition1 - 1].insert(factor->key2.index); childSeps[partition1 - 1].insert(factor->key2.index);
} else if (partition1 <= 0 && partition2 > 0) { } else if (partition1 <= 0 && partition2 > 0) {
frontalFactors[partition2 - 1].push_back(factor); frontalFactors[partition2 - 1].push_back(factor);
childSeps[partition2 - 1].insert(factor->key1.index); childSeps[partition2 - 1].insert(factor->key1.index);
} else } else
throw runtime_error("processFactor: unexpected entries in the partition table!"); throw runtime_error("processFactor: unexpected entries in the partition table!");
} }
} }
/* ************************************************************************* */ /* ************************************************************************* */
/** /**
* given a factor graph and its partition {nodeMap}, split the factors between the child cliques ({frontalFactors}) * given a factor graph and its partition {nodeMap}, split the factors between the child cliques ({frontalFactors})
* and the current clique ({sepFactors}). Also split the variables between the child cliques ({childFrontals}) * and the current clique ({sepFactors}). Also split the variables between the child cliques ({childFrontals})
* and the current clique ({localFrontals}). Those separator variables involved in {frontalFactors} are put into * and the current clique ({localFrontals}). Those separator variables involved in {frontalFactors} are put into
* the correspoding ordering in {childSeps}. * the correspoding ordering in {childSeps}.
*/ */
// TODO: frontalFactors and localFrontals should be generated in findSeparator // TODO: frontalFactors and localFrontals should be generated in findSeparator
template <class NLG, class SubNLG, class GenericGraph> template <class NLG, class SubNLG, class GenericGraph>
void NestedDissection<NLG, SubNLG, GenericGraph>::partitionFactorsAndVariables( void NestedDissection<NLG, SubNLG, GenericGraph>::partitionFactorsAndVariables(
const GenericGraph& fg, const GenericUnaryGraph& unaryFactors, const std::vector<size_t>& keys, //input const GenericGraph& fg, const GenericUnaryGraph& unaryFactors, const std::vector<size_t>& keys, //input
const std::vector<int>& partitionTable, const int numSubmaps, // input const std::vector<int>& partitionTable, const int numSubmaps, // input
vector<GenericGraph>& frontalFactors, vector<GenericUnaryGraph>& frontalUnaryFactors, NLG& sepFactors, // output factor graphs vector<GenericGraph>& frontalFactors, vector<GenericUnaryGraph>& frontalUnaryFactors, NLG& sepFactors, // output factor graphs
vector<vector<size_t> >& childFrontals, vector<vector<size_t> >& childSeps, vector<size_t>& localFrontals, // output sub-orderings vector<vector<size_t> >& childFrontals, vector<vector<size_t> >& childSeps, vector<size_t>& localFrontals, // output sub-orderings
typename SubNLG::Weeklinks& weeklinks) const { // the links between child cliques typename SubNLG::Weeklinks& weeklinks) const { // the links between child cliques
// make three lists of variables A, B, and C // make three lists of variables A, B, and C
int partition; int partition;
childFrontals.resize(numSubmaps); childFrontals.resize(numSubmaps);
BOOST_FOREACH(const size_t key, keys){ BOOST_FOREACH(const size_t key, keys){
partition = partitionTable[key]; partition = partitionTable[key];
switch (partition) { switch (partition) {
case -1: break; // the separator of the separator variables case -1: break; // the separator of the separator variables
case 0: localFrontals.push_back(key); break; // the separator variables case 0: localFrontals.push_back(key); break; // the separator variables
default: childFrontals[partition-1].push_back(key); // the frontal variables default: childFrontals[partition-1].push_back(key); // the frontal variables
} }
} }
// group the factors to {frontalFactors} and {sepFactors},and find the joint variables // group the factors to {frontalFactors} and {sepFactors},and find the joint variables
vector<set<size_t> > childSeps_; vector<set<size_t> > childSeps_;
childSeps_.resize(numSubmaps); childSeps_.resize(numSubmaps);
childSeps.reserve(numSubmaps); childSeps.reserve(numSubmaps);
frontalFactors.resize(numSubmaps); frontalFactors.resize(numSubmaps);
frontalUnaryFactors.resize(numSubmaps); frontalUnaryFactors.resize(numSubmaps);
BOOST_FOREACH(typename GenericGraph::value_type factor, fg) BOOST_FOREACH(typename GenericGraph::value_type factor, fg)
processFactor(factor, partitionTable, frontalFactors, sepFactors, childSeps_, weeklinks); processFactor(factor, partitionTable, frontalFactors, sepFactors, childSeps_, weeklinks);
BOOST_FOREACH(const set<size_t>& childSep, childSeps_) BOOST_FOREACH(const set<size_t>& childSep, childSeps_)
childSeps.push_back(vector<size_t>(childSep.begin(), childSep.end())); childSeps.push_back(vector<size_t>(childSep.begin(), childSep.end()));
// add unary factor to the current cluster or pass it to one of the child clusters // add unary factor to the current cluster or pass it to one of the child clusters
BOOST_FOREACH(const sharedGenericUnaryFactor& unaryFactor_, unaryFactors) { BOOST_FOREACH(const sharedGenericUnaryFactor& unaryFactor_, unaryFactors) {
partition = partitionTable[unaryFactor_->key.index]; partition = partitionTable[unaryFactor_->key.index];
if (!partition) sepFactors.push_back(fg_[unaryFactor_->index]); if (!partition) sepFactors.push_back(fg_[unaryFactor_->index]);
else frontalUnaryFactors[partition-1].push_back(unaryFactor_); else frontalUnaryFactors[partition-1].push_back(unaryFactor_);
} }
} }
/* ************************************************************************* */ /* ************************************************************************* */
template <class NLG, class SubNLG, class GenericGraph> template <class NLG, class SubNLG, class GenericGraph>
NLG NestedDissection<NLG, SubNLG, GenericGraph>::collectOriginalFactors( NLG NestedDissection<NLG, SubNLG, GenericGraph>::collectOriginalFactors(
const GenericGraph& gfg, const GenericUnaryGraph& unaryFactors) const { const GenericGraph& gfg, const GenericUnaryGraph& unaryFactors) const {
NLG sepFactors; NLG sepFactors;
typename GenericGraph::const_iterator it = gfg.begin(), itLast = gfg.end(); typename GenericGraph::const_iterator it = gfg.begin(), itLast = gfg.end();
while(it!=itLast) sepFactors.push_back(fg_[(*it++)->index]); while(it!=itLast) sepFactors.push_back(fg_[(*it++)->index]);
BOOST_FOREACH(const sharedGenericUnaryFactor& unaryFactor_, unaryFactors) BOOST_FOREACH(const sharedGenericUnaryFactor& unaryFactor_, unaryFactors)
sepFactors.push_back(fg_[unaryFactor_->index]); sepFactors.push_back(fg_[unaryFactor_->index]);
return sepFactors; return sepFactors;
} }
/* ************************************************************************* */ /* ************************************************************************* */
template <class NLG, class SubNLG, class GenericGraph> template <class NLG, class SubNLG, class GenericGraph>
boost::shared_ptr<SubNLG> NestedDissection<NLG, SubNLG, GenericGraph>::recursivePartition( boost::shared_ptr<SubNLG> NestedDissection<NLG, SubNLG, GenericGraph>::recursivePartition(
const GenericGraph& gfg, const GenericUnaryGraph& unaryFactors, const vector<size_t>& frontals, const vector<size_t>& sep, const GenericGraph& gfg, const GenericUnaryGraph& unaryFactors, const vector<size_t>& frontals, const vector<size_t>& sep,
const int numNodeStopPartition, const int minNodesPerMap, const boost::shared_ptr<SubNLG>& parent, WorkSpace& workspace, const bool verbose) const { const int numNodeStopPartition, const int minNodesPerMap, const boost::shared_ptr<SubNLG>& parent, WorkSpace& workspace, const bool verbose) const {
// if no split needed // if no split needed
NLG sepFactors; // factors that should remain in the current cluster NLG sepFactors; // factors that should remain in the current cluster
if (frontals.size() <= numNodeStopPartition || gfg.size() <= numNodeStopPartition) { if (frontals.size() <= numNodeStopPartition || gfg.size() <= numNodeStopPartition) {
sepFactors = collectOriginalFactors(gfg, unaryFactors); sepFactors = collectOriginalFactors(gfg, unaryFactors);
return makeSubNLG(sepFactors, frontals, sep, parent); return makeSubNLG(sepFactors, frontals, sep, parent);
} }
// find the nested dissection separator // find the nested dissection separator
int numSubmaps = findSeparator(gfg, frontals, minNodesPerMap, workspace, verbose, int2symbol_, NLG::reduceGraph(), int numSubmaps = findSeparator(gfg, frontals, minNodesPerMap, workspace, verbose, int2symbol_, NLG::reduceGraph(),
NLG::minNrConstraintsPerCamera(),NLG::minNrConstraintsPerLandmark()); NLG::minNrConstraintsPerCamera(),NLG::minNrConstraintsPerLandmark());
partition::PartitionTable& partitionTable = workspace.partitionTable; partition::PartitionTable& partitionTable = workspace.partitionTable;
if (numSubmaps == 0) throw runtime_error("recursivePartition: get zero submap after ND!"); if (numSubmaps == 0) throw runtime_error("recursivePartition: get zero submap after ND!");
// split the factors between child cliques and the current clique // split the factors between child cliques and the current clique
vector<GenericGraph> frontalFactors; vector<GenericUnaryGraph> frontalUnaryFactors; typename SubNLG::Weeklinks weeklinks; vector<GenericGraph> frontalFactors; vector<GenericUnaryGraph> frontalUnaryFactors; typename SubNLG::Weeklinks weeklinks;
vector<size_t> localFrontals; vector<vector<size_t> > childFrontals, childSeps; vector<size_t> localFrontals; vector<vector<size_t> > childFrontals, childSeps;
partitionFactorsAndVariables(gfg, unaryFactors, frontals, partitionTable, numSubmaps, partitionFactorsAndVariables(gfg, unaryFactors, frontals, partitionTable, numSubmaps,
frontalFactors, frontalUnaryFactors, sepFactors, childFrontals, childSeps, localFrontals, weeklinks); frontalFactors, frontalUnaryFactors, sepFactors, childFrontals, childSeps, localFrontals, weeklinks);
// make a new cluster // make a new cluster
boost::shared_ptr<SubNLG> current = makeSubNLG(sepFactors, localFrontals, sep, parent); boost::shared_ptr<SubNLG> current = makeSubNLG(sepFactors, localFrontals, sep, parent);
current->setWeeklinks(weeklinks); current->setWeeklinks(weeklinks);
// check whether all the submaps are fully constrained // check whether all the submaps are fully constrained
for (int i=0; i<numSubmaps; i++) { for (int i=0; i<numSubmaps; i++) {
checkSingularity(frontalFactors[i], childFrontals[i], workspace, NLG::minNrConstraintsPerCamera(),NLG::minNrConstraintsPerLandmark()); checkSingularity(frontalFactors[i], childFrontals[i], workspace, NLG::minNrConstraintsPerCamera(),NLG::minNrConstraintsPerLandmark());
} }
// create child clusters // create child clusters
for (int i=0; i<numSubmaps; i++) { for (int i=0; i<numSubmaps; i++) {
boost::shared_ptr<SubNLG> child = recursivePartition(frontalFactors[i], frontalUnaryFactors[i], childFrontals[i], childSeps[i], boost::shared_ptr<SubNLG> child = recursivePartition(frontalFactors[i], frontalUnaryFactors[i], childFrontals[i], childSeps[i],
numNodeStopPartition, minNodesPerMap, current, workspace, verbose); numNodeStopPartition, minNodesPerMap, current, workspace, verbose);
current->addChild(child); current->addChild(child);
} }
return current; return current;
} }
/* ************************************************************************* */ /* ************************************************************************* */
template <class NLG, class SubNLG, class GenericGraph> template <class NLG, class SubNLG, class GenericGraph>
boost::shared_ptr<SubNLG> NestedDissection<NLG, SubNLG, GenericGraph>::recursivePartition( boost::shared_ptr<SubNLG> NestedDissection<NLG, SubNLG, GenericGraph>::recursivePartition(
const GenericGraph& gfg, const GenericUnaryGraph& unaryFactors, const vector<size_t>& frontals, const vector<size_t>& sep, const GenericGraph& gfg, const GenericUnaryGraph& unaryFactors, const vector<size_t>& frontals, const vector<size_t>& sep,
const boost::shared_ptr<Cuts>& cuts, const boost::shared_ptr<SubNLG>& parent, WorkSpace& workspace, const bool verbose) const { const boost::shared_ptr<Cuts>& cuts, const boost::shared_ptr<SubNLG>& parent, WorkSpace& workspace, const bool verbose) const {
// if there is no need to cut any more // if there is no need to cut any more
NLG sepFactors; // factors that should remain in the current cluster NLG sepFactors; // factors that should remain in the current cluster
if (!cuts.get()) { if (!cuts.get()) {
sepFactors = collectOriginalFactors(gfg, unaryFactors); sepFactors = collectOriginalFactors(gfg, unaryFactors);
return makeSubNLG(sepFactors, frontals, sep, parent); return makeSubNLG(sepFactors, frontals, sep, parent);
} }
// retrieve the current partitioning info // retrieve the current partitioning info
int numSubmaps = 2; int numSubmaps = 2;
partition::PartitionTable& partitionTable = cuts->partitionTable; partition::PartitionTable& partitionTable = cuts->partitionTable;
// split the factors between child cliques and the current clique // split the factors between child cliques and the current clique
vector<GenericGraph> frontalFactors; vector<GenericUnaryGraph> frontalUnaryFactors; typename SubNLG::Weeklinks weeklinks; vector<GenericGraph> frontalFactors; vector<GenericUnaryGraph> frontalUnaryFactors; typename SubNLG::Weeklinks weeklinks;
vector<size_t> localFrontals; vector<vector<size_t> > childFrontals, childSeps; vector<size_t> localFrontals; vector<vector<size_t> > childFrontals, childSeps;
partitionFactorsAndVariables(gfg, unaryFactors, frontals, partitionTable, numSubmaps, partitionFactorsAndVariables(gfg, unaryFactors, frontals, partitionTable, numSubmaps,
frontalFactors, frontalUnaryFactors, sepFactors, childFrontals, childSeps, localFrontals, weeklinks); frontalFactors, frontalUnaryFactors, sepFactors, childFrontals, childSeps, localFrontals, weeklinks);
// make a new cluster // make a new cluster
boost::shared_ptr<SubNLG> current = makeSubNLG(sepFactors, localFrontals, sep, parent); boost::shared_ptr<SubNLG> current = makeSubNLG(sepFactors, localFrontals, sep, parent);
current->setWeeklinks(weeklinks); current->setWeeklinks(weeklinks);
// create child clusters // create child clusters
for (int i=0; i<2; i++) { for (int i=0; i<2; i++) {
boost::shared_ptr<SubNLG> child = recursivePartition(frontalFactors[i], frontalUnaryFactors[i], childFrontals[i], childSeps[i], boost::shared_ptr<SubNLG> child = recursivePartition(frontalFactors[i], frontalUnaryFactors[i], childFrontals[i], childSeps[i],
cuts->children.empty() ? boost::shared_ptr<Cuts>() : cuts->children[i], current, workspace, verbose); cuts->children.empty() ? boost::shared_ptr<Cuts>() : cuts->children[i], current, workspace, verbose);
current->addChild(child); current->addChild(child);
} }
return current; return current;
} }
}} //namespace }} //namespace

View File

@ -14,56 +14,56 @@
namespace gtsam { namespace partition { namespace gtsam { namespace partition {
/** /**
* Apply nested dissection algorithm to nonlinear factor graphs * Apply nested dissection algorithm to nonlinear factor graphs
*/ */
template <class NLG, class SubNLG, class GenericGraph> template <class NLG, class SubNLG, class GenericGraph>
class NestedDissection { class NestedDissection {
public: public:
typedef boost::shared_ptr<SubNLG> sharedSubNLG; typedef boost::shared_ptr<SubNLG> sharedSubNLG;
private: private:
NLG fg_; // the original nonlinear factor graph NLG fg_; // the original nonlinear factor graph
Ordering ordering_; // the variable ordering in the nonlinear factor graph Ordering ordering_; // the variable ordering in the nonlinear factor graph
std::vector<Symbol> int2symbol_; // the mapping from integer key to symbol std::vector<Symbol> int2symbol_; // the mapping from integer key to symbol
sharedSubNLG root_; // the root of generated cluster tree sharedSubNLG root_; // the root of generated cluster tree
public: public:
sharedSubNLG root() const { return root_; } sharedSubNLG root() const { return root_; }
public: public:
/* constructor with post-determined partitoning*/ /* constructor with post-determined partitoning*/
NestedDissection(const NLG& fg, const Ordering& ordering, const int numNodeStopPartition, const int minNodesPerMap, const bool verbose = false); NestedDissection(const NLG& fg, const Ordering& ordering, const int numNodeStopPartition, const int minNodesPerMap, const bool verbose = false);
/* constructor with pre-determined cuts*/ /* constructor with pre-determined cuts*/
NestedDissection(const NLG& fg, const Ordering& ordering, const boost::shared_ptr<Cuts>& cuts, const bool verbose = false); NestedDissection(const NLG& fg, const Ordering& ordering, const boost::shared_ptr<Cuts>& cuts, const bool verbose = false);
private: private:
/* convert generic subgraph to nonlinear subgraph */ /* convert generic subgraph to nonlinear subgraph */
sharedSubNLG makeSubNLG(const NLG& fg, const std::vector<size_t>& frontals, const std::vector<size_t>& sep, const boost::shared_ptr<SubNLG>& parent) const; sharedSubNLG makeSubNLG(const NLG& fg, const std::vector<size_t>& frontals, const std::vector<size_t>& sep, const boost::shared_ptr<SubNLG>& parent) const;
void processFactor(const typename GenericGraph::value_type& factor, const std::vector<int>& partitionTable, // input void processFactor(const typename GenericGraph::value_type& factor, const std::vector<int>& partitionTable, // input
std::vector<GenericGraph>& frontalFactors, NLG& sepFactors, std::vector<std::set<size_t> >& childSeps, // output factor graphs std::vector<GenericGraph>& frontalFactors, NLG& sepFactors, std::vector<std::set<size_t> >& childSeps, // output factor graphs
typename SubNLG::Weeklinks& weeklinks) const; typename SubNLG::Weeklinks& weeklinks) const;
/* recursively partition the generic graph */ /* recursively partition the generic graph */
void partitionFactorsAndVariables( void partitionFactorsAndVariables(
const GenericGraph& fg, const GenericUnaryGraph& unaryFactors, const GenericGraph& fg, const GenericUnaryGraph& unaryFactors,
const std::vector<size_t>& keys, const std::vector<int>& partitionTable, const int numSubmaps, // input const std::vector<size_t>& keys, const std::vector<int>& partitionTable, const int numSubmaps, // input
std::vector<GenericGraph>& frontalFactors, vector<GenericUnaryGraph>& frontalUnaryFactors, NLG& sepFactors, // output factor graphs std::vector<GenericGraph>& frontalFactors, vector<GenericUnaryGraph>& frontalUnaryFactors, NLG& sepFactors, // output factor graphs
std::vector<std::vector<size_t> >& childFrontals, std::vector<std::vector<size_t> >& childSeps, std::vector<size_t>& localFrontals, // output sub-orderings std::vector<std::vector<size_t> >& childFrontals, std::vector<std::vector<size_t> >& childSeps, std::vector<size_t>& localFrontals, // output sub-orderings
typename SubNLG::Weeklinks& weeklinks) const; typename SubNLG::Weeklinks& weeklinks) const;
NLG collectOriginalFactors(const GenericGraph& gfg, const GenericUnaryGraph& unaryFactors) const; NLG collectOriginalFactors(const GenericGraph& gfg, const GenericUnaryGraph& unaryFactors) const;
/* recursively partition the generic graph */ /* recursively partition the generic graph */
sharedSubNLG recursivePartition(const GenericGraph& gfg, const GenericUnaryGraph& unaryFactors, const std::vector<size_t>& frontals, const std::vector<size_t>& sep, sharedSubNLG recursivePartition(const GenericGraph& gfg, const GenericUnaryGraph& unaryFactors, const std::vector<size_t>& frontals, const std::vector<size_t>& sep,
const int numNodeStopPartition, const int minNodesPerMap, const boost::shared_ptr<SubNLG>& parent, WorkSpace& workspace, const bool verbose) const; const int numNodeStopPartition, const int minNodesPerMap, const boost::shared_ptr<SubNLG>& parent, WorkSpace& workspace, const bool verbose) const;
/* recursively partition the generic graph */ /* recursively partition the generic graph */
sharedSubNLG recursivePartition(const GenericGraph& gfg, const GenericUnaryGraph& unaryFactors, const std::vector<size_t>& frontals, const std::vector<size_t>& sep, sharedSubNLG recursivePartition(const GenericGraph& gfg, const GenericUnaryGraph& unaryFactors, const std::vector<size_t>& frontals, const std::vector<size_t>& sep,
const boost::shared_ptr<Cuts>& cuts, const boost::shared_ptr<SubNLG>& parent, WorkSpace& workspace, const bool verbose) const; const boost::shared_ptr<Cuts>& cuts, const boost::shared_ptr<SubNLG>& parent, WorkSpace& workspace, const bool verbose) const;
}; };
}} //namespace }} //namespace

View File

@ -13,32 +13,32 @@
namespace gtsam { namespace partition { namespace gtsam { namespace partition {
typedef std::vector<int> PartitionTable; typedef std::vector<int> PartitionTable;
// the work space, preallocated memory // the work space, preallocated memory
struct WorkSpace { struct WorkSpace {
std::vector<int> dictionary; // a mapping from the integer key in the original graph to 0-based index in the subgraph, useful when handling a subset of keys and graphs std::vector<int> dictionary; // a mapping from the integer key in the original graph to 0-based index in the subgraph, useful when handling a subset of keys and graphs
boost::shared_ptr<std::vector<size_t> > dsf; // a block memory pre-allocated for DSFVector boost::shared_ptr<std::vector<size_t> > dsf; // a block memory pre-allocated for DSFVector
PartitionTable partitionTable; // a mapping from a key to the submap index, 0 means the separator, i means the ith submap PartitionTable partitionTable; // a mapping from a key to the submap index, 0 means the separator, i means the ith submap
// constructor // constructor
WorkSpace(const size_t numNodes) : dictionary(numNodes,0), WorkSpace(const size_t numNodes) : dictionary(numNodes,0),
dsf(new std::vector<size_t>(numNodes, 0)), partitionTable(numNodes, -1) { } dsf(new std::vector<size_t>(numNodes, 0)), partitionTable(numNodes, -1) { }
// set up dictionary: -1: no such key, none-zero: the corresponding 0-based index // set up dictionary: -1: no such key, none-zero: the corresponding 0-based index
inline void prepareDictionary(const std::vector<size_t>& keys) { inline void prepareDictionary(const std::vector<size_t>& keys) {
int index = 0; int index = 0;
std::fill(dictionary.begin(), dictionary.end(), -1); std::fill(dictionary.begin(), dictionary.end(), -1);
std::vector<size_t>::const_iterator it=keys.begin(), itLast=keys.end(); std::vector<size_t>::const_iterator it=keys.begin(), itLast=keys.end();
while(it!=itLast) dictionary[*(it++)] = index++; while(it!=itLast) dictionary[*(it++)] = index++;
} }
}; };
// manually defined cuts // manually defined cuts
struct Cuts { struct Cuts {
PartitionTable partitionTable; PartitionTable partitionTable;
std::vector<boost::shared_ptr<Cuts> > children; std::vector<boost::shared_ptr<Cuts> > children;
}; };
}} // namespace }} // namespace

View File

@ -185,45 +185,45 @@ TEST ( Partition, findSeparator2 )
// x25 x26 x27 x28 // x25 x26 x27 x28
TEST ( Partition, findSeparator3_with_reduced_camera ) TEST ( Partition, findSeparator3_with_reduced_camera )
{ {
GenericGraph3D graph; GenericGraph3D graph;
for (int j=1; j<=8; j++) for (int j=1; j<=8; j++)
graph.push_back(boost::make_shared<GenericFactor3D>(25, j)); graph.push_back(boost::make_shared<GenericFactor3D>(25, j));
for (int j=1; j<=16; j++) for (int j=1; j<=16; j++)
graph.push_back(boost::make_shared<GenericFactor3D>(26, j)); graph.push_back(boost::make_shared<GenericFactor3D>(26, j));
for (int j=9; j<=24; j++) for (int j=9; j<=24; j++)
graph.push_back(boost::make_shared<GenericFactor3D>(27, j)); graph.push_back(boost::make_shared<GenericFactor3D>(27, j));
for (int j=17; j<=24; j++) for (int j=17; j<=24; j++)
graph.push_back(boost::make_shared<GenericFactor3D>(28, j)); graph.push_back(boost::make_shared<GenericFactor3D>(28, j));
std::vector<size_t> keys; std::vector<size_t> keys;
for(int i=1; i<=28; i++) for(int i=1; i<=28; i++)
keys.push_back(i); keys.push_back(i);
vector<Symbol> int2symbol; vector<Symbol> int2symbol;
int2symbol.push_back(Symbol('x',0)); // dummy int2symbol.push_back(Symbol('x',0)); // dummy
for(int i=1; i<=24; i++) for(int i=1; i<=24; i++)
int2symbol.push_back(Symbol('l',i)); int2symbol.push_back(Symbol('l',i));
int2symbol.push_back(Symbol('x',25)); int2symbol.push_back(Symbol('x',25));
int2symbol.push_back(Symbol('x',26)); int2symbol.push_back(Symbol('x',26));
int2symbol.push_back(Symbol('x',27)); int2symbol.push_back(Symbol('x',27));
int2symbol.push_back(Symbol('x',28)); int2symbol.push_back(Symbol('x',28));
WorkSpace workspace(29); WorkSpace workspace(29);
bool reduceGraph = true; bool reduceGraph = true;
int numIsland = findSeparator(graph, keys, 3, workspace, false, int2symbol, reduceGraph, 0, 0); int numIsland = findSeparator(graph, keys, 3, workspace, false, int2symbol, reduceGraph, 0, 0);
LONGS_EQUAL(2, numIsland); LONGS_EQUAL(2, numIsland);
partition::PartitionTable& partitionTable = workspace.partitionTable; partition::PartitionTable& partitionTable = workspace.partitionTable;
for (int j=1; j<=8; j++) for (int j=1; j<=8; j++)
LONGS_EQUAL(1, partitionTable[j]); LONGS_EQUAL(1, partitionTable[j]);
for (int j=9; j<=16; j++) for (int j=9; j<=16; j++)
LONGS_EQUAL(0, partitionTable[j]); LONGS_EQUAL(0, partitionTable[j]);
for (int j=17; j<=24; j++) for (int j=17; j<=24; j++)
LONGS_EQUAL(2, partitionTable[j]); LONGS_EQUAL(2, partitionTable[j]);
LONGS_EQUAL(1, partitionTable[25]); LONGS_EQUAL(1, partitionTable[25]);
LONGS_EQUAL(1, partitionTable[26]); LONGS_EQUAL(1, partitionTable[26]);
LONGS_EQUAL(2, partitionTable[27]); LONGS_EQUAL(2, partitionTable[27]);
LONGS_EQUAL(2, partitionTable[28]); LONGS_EQUAL(2, partitionTable[28]);
} }
/* ************************************************************************* */ /* ************************************************************************* */

View File

@ -29,29 +29,29 @@ using namespace gtsam::partition;
*/ */
TEST ( GenerciGraph, findIslands ) TEST ( GenerciGraph, findIslands )
{ {
GenericGraph2D graph; GenericGraph2D graph;
graph.push_back(boost::make_shared<GenericFactor2D>(1, NODE_POSE_2D, 7, NODE_LANDMARK_2D)); graph.push_back(boost::make_shared<GenericFactor2D>(1, NODE_POSE_2D, 7, NODE_LANDMARK_2D));
graph.push_back(boost::make_shared<GenericFactor2D>(2, NODE_POSE_2D, 7, NODE_LANDMARK_2D)); graph.push_back(boost::make_shared<GenericFactor2D>(2, NODE_POSE_2D, 7, NODE_LANDMARK_2D));
graph.push_back(boost::make_shared<GenericFactor2D>(3, NODE_POSE_2D, 7, NODE_LANDMARK_2D)); graph.push_back(boost::make_shared<GenericFactor2D>(3, NODE_POSE_2D, 7, NODE_LANDMARK_2D));
graph.push_back(boost::make_shared<GenericFactor2D>(3, NODE_POSE_2D, 8, NODE_LANDMARK_2D)); graph.push_back(boost::make_shared<GenericFactor2D>(3, NODE_POSE_2D, 8, NODE_LANDMARK_2D));
graph.push_back(boost::make_shared<GenericFactor2D>(4, NODE_POSE_2D, 8, NODE_LANDMARK_2D)); graph.push_back(boost::make_shared<GenericFactor2D>(4, NODE_POSE_2D, 8, NODE_LANDMARK_2D));
graph.push_back(boost::make_shared<GenericFactor2D>(4, NODE_POSE_2D, 9, NODE_LANDMARK_2D)); graph.push_back(boost::make_shared<GenericFactor2D>(4, NODE_POSE_2D, 9, NODE_LANDMARK_2D));
graph.push_back(boost::make_shared<GenericFactor2D>(5, NODE_POSE_2D, 9, NODE_LANDMARK_2D)); graph.push_back(boost::make_shared<GenericFactor2D>(5, NODE_POSE_2D, 9, NODE_LANDMARK_2D));
graph.push_back(boost::make_shared<GenericFactor2D>(6, NODE_POSE_2D, 9, NODE_LANDMARK_2D)); graph.push_back(boost::make_shared<GenericFactor2D>(6, NODE_POSE_2D, 9, NODE_LANDMARK_2D));
graph.push_back(boost::make_shared<GenericFactor2D>(1, NODE_POSE_2D, 2, NODE_POSE_2D)); graph.push_back(boost::make_shared<GenericFactor2D>(1, NODE_POSE_2D, 2, NODE_POSE_2D));
graph.push_back(boost::make_shared<GenericFactor2D>(2, NODE_POSE_2D, 3, NODE_POSE_2D)); graph.push_back(boost::make_shared<GenericFactor2D>(2, NODE_POSE_2D, 3, NODE_POSE_2D));
graph.push_back(boost::make_shared<GenericFactor2D>(4, NODE_POSE_2D, 5, NODE_POSE_2D)); graph.push_back(boost::make_shared<GenericFactor2D>(4, NODE_POSE_2D, 5, NODE_POSE_2D));
graph.push_back(boost::make_shared<GenericFactor2D>(5, NODE_POSE_2D, 6, NODE_POSE_2D)); graph.push_back(boost::make_shared<GenericFactor2D>(5, NODE_POSE_2D, 6, NODE_POSE_2D));
std::vector<size_t> keys; keys += 1, 2, 3, 4, 5, 6, 7, 8, 9; std::vector<size_t> keys; keys += 1, 2, 3, 4, 5, 6, 7, 8, 9;
WorkSpace workspace(10); // from 0 to 9 WorkSpace workspace(10); // from 0 to 9
list<vector<size_t> > islands = findIslands(graph, keys, workspace, 7, 2); list<vector<size_t> > islands = findIslands(graph, keys, workspace, 7, 2);
LONGS_EQUAL(2, islands.size()); LONGS_EQUAL(2, islands.size());
vector<size_t> island1; island1 += 1, 2, 3, 7, 8; vector<size_t> island1; island1 += 1, 2, 3, 7, 8;
vector<size_t> island2; island2 += 4, 5, 6, 9; vector<size_t> island2; island2 += 4, 5, 6, 9;
CHECK(island1 == islands.front()); CHECK(island1 == islands.front());
CHECK(island2 == islands.back()); CHECK(island2 == islands.back());
} }
/* ************************************************************************* */ /* ************************************************************************* */
@ -62,27 +62,27 @@ TEST ( GenerciGraph, findIslands )
*/ */
TEST( GenerciGraph, findIslands2 ) TEST( GenerciGraph, findIslands2 )
{ {
GenericGraph2D graph; GenericGraph2D graph;
graph.push_back(boost::make_shared<GenericFactor2D>(1, NODE_POSE_2D, 7, NODE_LANDMARK_2D)); graph.push_back(boost::make_shared<GenericFactor2D>(1, NODE_POSE_2D, 7, NODE_LANDMARK_2D));
graph.push_back(boost::make_shared<GenericFactor2D>(2, NODE_POSE_2D, 7, NODE_LANDMARK_2D)); graph.push_back(boost::make_shared<GenericFactor2D>(2, NODE_POSE_2D, 7, NODE_LANDMARK_2D));
graph.push_back(boost::make_shared<GenericFactor2D>(3, NODE_POSE_2D, 7, NODE_LANDMARK_2D)); graph.push_back(boost::make_shared<GenericFactor2D>(3, NODE_POSE_2D, 7, NODE_LANDMARK_2D));
graph.push_back(boost::make_shared<GenericFactor2D>(3, NODE_POSE_2D, 8, NODE_LANDMARK_2D)); graph.push_back(boost::make_shared<GenericFactor2D>(3, NODE_POSE_2D, 8, NODE_LANDMARK_2D));
graph.push_back(boost::make_shared<GenericFactor2D>(4, NODE_POSE_2D, 7, NODE_LANDMARK_2D)); graph.push_back(boost::make_shared<GenericFactor2D>(4, NODE_POSE_2D, 7, NODE_LANDMARK_2D));
graph.push_back(boost::make_shared<GenericFactor2D>(4, NODE_POSE_2D, 8, NODE_LANDMARK_2D)); graph.push_back(boost::make_shared<GenericFactor2D>(4, NODE_POSE_2D, 8, NODE_LANDMARK_2D));
graph.push_back(boost::make_shared<GenericFactor2D>(5, NODE_POSE_2D, 8, NODE_LANDMARK_2D)); graph.push_back(boost::make_shared<GenericFactor2D>(5, NODE_POSE_2D, 8, NODE_LANDMARK_2D));
graph.push_back(boost::make_shared<GenericFactor2D>(6, NODE_POSE_2D, 8, NODE_LANDMARK_2D)); graph.push_back(boost::make_shared<GenericFactor2D>(6, NODE_POSE_2D, 8, NODE_LANDMARK_2D));
graph.push_back(boost::make_shared<GenericFactor2D>(1, NODE_POSE_2D, 2, NODE_POSE_2D)); graph.push_back(boost::make_shared<GenericFactor2D>(1, NODE_POSE_2D, 2, NODE_POSE_2D));
graph.push_back(boost::make_shared<GenericFactor2D>(2, NODE_POSE_2D, 3, NODE_POSE_2D)); graph.push_back(boost::make_shared<GenericFactor2D>(2, NODE_POSE_2D, 3, NODE_POSE_2D));
graph.push_back(boost::make_shared<GenericFactor2D>(4, NODE_POSE_2D, 5, NODE_POSE_2D)); graph.push_back(boost::make_shared<GenericFactor2D>(4, NODE_POSE_2D, 5, NODE_POSE_2D));
graph.push_back(boost::make_shared<GenericFactor2D>(5, NODE_POSE_2D, 6, NODE_POSE_2D)); graph.push_back(boost::make_shared<GenericFactor2D>(5, NODE_POSE_2D, 6, NODE_POSE_2D));
std::vector<size_t> keys; keys += 1, 2, 3, 4, 5, 6, 7, 8; std::vector<size_t> keys; keys += 1, 2, 3, 4, 5, 6, 7, 8;
WorkSpace workspace(15); // from 0 to 8, but testing over-allocation here WorkSpace workspace(15); // from 0 to 8, but testing over-allocation here
list<vector<size_t> > islands = findIslands(graph, keys, workspace, 7, 2); list<vector<size_t> > islands = findIslands(graph, keys, workspace, 7, 2);
LONGS_EQUAL(1, islands.size()); LONGS_EQUAL(1, islands.size());
vector<size_t> island1; island1 += 1, 2, 3, 4, 5, 6, 7, 8; vector<size_t> island1; island1 += 1, 2, 3, 4, 5, 6, 7, 8;
CHECK(island1 == islands.front()); CHECK(island1 == islands.front());
} }
/* ************************************************************************* */ /* ************************************************************************* */
@ -92,21 +92,21 @@ TEST( GenerciGraph, findIslands2 )
*/ */
TEST ( GenerciGraph, findIslands3 ) TEST ( GenerciGraph, findIslands3 )
{ {
GenericGraph2D graph; GenericGraph2D graph;
graph.push_back(boost::make_shared<GenericFactor2D>(1, NODE_POSE_2D, 5, NODE_LANDMARK_2D)); graph.push_back(boost::make_shared<GenericFactor2D>(1, NODE_POSE_2D, 5, NODE_LANDMARK_2D));
graph.push_back(boost::make_shared<GenericFactor2D>(4, NODE_POSE_2D, 6, NODE_LANDMARK_2D)); graph.push_back(boost::make_shared<GenericFactor2D>(4, NODE_POSE_2D, 6, NODE_LANDMARK_2D));
graph.push_back(boost::make_shared<GenericFactor2D>(2, NODE_POSE_2D, 3, NODE_POSE_2D)); graph.push_back(boost::make_shared<GenericFactor2D>(2, NODE_POSE_2D, 3, NODE_POSE_2D));
graph.push_back(boost::make_shared<GenericFactor2D>(3, NODE_POSE_2D, 4, NODE_POSE_2D)); graph.push_back(boost::make_shared<GenericFactor2D>(3, NODE_POSE_2D, 4, NODE_POSE_2D));
std::vector<size_t> keys; keys += 1, 2, 3, 4, 5, 6; std::vector<size_t> keys; keys += 1, 2, 3, 4, 5, 6;
WorkSpace workspace(7); // from 0 to 9 WorkSpace workspace(7); // from 0 to 9
list<vector<size_t> > islands = findIslands(graph, keys, workspace, 7, 2); list<vector<size_t> > islands = findIslands(graph, keys, workspace, 7, 2);
LONGS_EQUAL(2, islands.size()); LONGS_EQUAL(2, islands.size());
vector<size_t> island1; island1 += 1, 5; vector<size_t> island1; island1 += 1, 5;
vector<size_t> island2; island2 += 2, 3, 4, 6; vector<size_t> island2; island2 += 2, 3, 4, 6;
CHECK(island1 == islands.front()); CHECK(island1 == islands.front());
CHECK(island2 == islands.back()); CHECK(island2 == islands.back());
} }
/* ************************************************************************* */ /* ************************************************************************* */
@ -115,18 +115,18 @@ TEST ( GenerciGraph, findIslands3 )
*/ */
TEST ( GenerciGraph, findIslands4 ) TEST ( GenerciGraph, findIslands4 )
{ {
GenericGraph2D graph; GenericGraph2D graph;
graph.push_back(boost::make_shared<GenericFactor2D>(3, NODE_POSE_2D, 4, NODE_LANDMARK_2D)); graph.push_back(boost::make_shared<GenericFactor2D>(3, NODE_POSE_2D, 4, NODE_LANDMARK_2D));
graph.push_back(boost::make_shared<GenericFactor2D>(7, NODE_POSE_2D, 7, NODE_LANDMARK_2D)); graph.push_back(boost::make_shared<GenericFactor2D>(7, NODE_POSE_2D, 7, NODE_LANDMARK_2D));
std::vector<size_t> keys; keys += 3, 4, 7; std::vector<size_t> keys; keys += 3, 4, 7;
WorkSpace workspace(8); // from 0 to 7 WorkSpace workspace(8); // from 0 to 7
list<vector<size_t> > islands = findIslands(graph, keys, workspace, 7, 2); list<vector<size_t> > islands = findIslands(graph, keys, workspace, 7, 2);
LONGS_EQUAL(2, islands.size()); LONGS_EQUAL(2, islands.size());
vector<size_t> island1; island1 += 3, 4; vector<size_t> island1; island1 += 3, 4;
vector<size_t> island2; island2 += 7; vector<size_t> island2; island2 += 7;
CHECK(island1 == islands.front()); CHECK(island1 == islands.front());
CHECK(island2 == islands.back()); CHECK(island2 == islands.back());
} }
/* ************************************************************************* */ /* ************************************************************************* */
@ -137,24 +137,24 @@ TEST ( GenerciGraph, findIslands4 )
*/ */
TEST ( GenerciGraph, findIslands5 ) TEST ( GenerciGraph, findIslands5 )
{ {
GenericGraph2D graph; GenericGraph2D graph;
graph.push_back(boost::make_shared<GenericFactor2D>(1, NODE_POSE_2D, 5, NODE_LANDMARK_2D)); graph.push_back(boost::make_shared<GenericFactor2D>(1, NODE_POSE_2D, 5, NODE_LANDMARK_2D));
graph.push_back(boost::make_shared<GenericFactor2D>(2, NODE_POSE_2D, 5, NODE_LANDMARK_2D)); graph.push_back(boost::make_shared<GenericFactor2D>(2, NODE_POSE_2D, 5, NODE_LANDMARK_2D));
graph.push_back(boost::make_shared<GenericFactor2D>(3, NODE_POSE_2D, 5, NODE_LANDMARK_2D)); graph.push_back(boost::make_shared<GenericFactor2D>(3, NODE_POSE_2D, 5, NODE_LANDMARK_2D));
graph.push_back(boost::make_shared<GenericFactor2D>(4, NODE_POSE_2D, 5, NODE_LANDMARK_2D)); graph.push_back(boost::make_shared<GenericFactor2D>(4, NODE_POSE_2D, 5, NODE_LANDMARK_2D));
graph.push_back(boost::make_shared<GenericFactor2D>(1, NODE_POSE_2D, 3, NODE_POSE_2D)); graph.push_back(boost::make_shared<GenericFactor2D>(1, NODE_POSE_2D, 3, NODE_POSE_2D));
graph.push_back(boost::make_shared<GenericFactor2D>(2, NODE_POSE_2D, 4, NODE_POSE_2D)); graph.push_back(boost::make_shared<GenericFactor2D>(2, NODE_POSE_2D, 4, NODE_POSE_2D));
std::vector<size_t> keys; keys += 1, 2, 3, 4, 5; std::vector<size_t> keys; keys += 1, 2, 3, 4, 5;
WorkSpace workspace(6); // from 0 to 5 WorkSpace workspace(6); // from 0 to 5
list<vector<size_t> > islands = findIslands(graph, keys, workspace, 7, 2); list<vector<size_t> > islands = findIslands(graph, keys, workspace, 7, 2);
LONGS_EQUAL(2, islands.size()); LONGS_EQUAL(2, islands.size());
vector<size_t> island1; island1 += 1, 3, 5; vector<size_t> island1; island1 += 1, 3, 5;
vector<size_t> island2; island2 += 2, 4; vector<size_t> island2; island2 += 2, 4;
CHECK(island1 == islands.front()); CHECK(island1 == islands.front());
CHECK(island2 == islands.back()); CHECK(island2 == islands.back());
} }
/* ************************************************************************* */ /* ************************************************************************* */
@ -165,31 +165,31 @@ TEST ( GenerciGraph, findIslands5 )
*/ */
TEST ( GenerciGraph, reduceGenericGraph ) TEST ( GenerciGraph, reduceGenericGraph )
{ {
GenericGraph3D graph; GenericGraph3D graph;
graph.push_back(boost::make_shared<GenericFactor3D>(1, 3)); graph.push_back(boost::make_shared<GenericFactor3D>(1, 3));
graph.push_back(boost::make_shared<GenericFactor3D>(1, 4)); graph.push_back(boost::make_shared<GenericFactor3D>(1, 4));
graph.push_back(boost::make_shared<GenericFactor3D>(1, 5)); graph.push_back(boost::make_shared<GenericFactor3D>(1, 5));
graph.push_back(boost::make_shared<GenericFactor3D>(2, 5)); graph.push_back(boost::make_shared<GenericFactor3D>(2, 5));
graph.push_back(boost::make_shared<GenericFactor3D>(2, 6)); graph.push_back(boost::make_shared<GenericFactor3D>(2, 6));
std::vector<size_t> cameraKeys, landmarkKeys; std::vector<size_t> cameraKeys, landmarkKeys;
cameraKeys.push_back(1); cameraKeys.push_back(1);
cameraKeys.push_back(2); cameraKeys.push_back(2);
landmarkKeys.push_back(3); landmarkKeys.push_back(3);
landmarkKeys.push_back(4); landmarkKeys.push_back(4);
landmarkKeys.push_back(5); landmarkKeys.push_back(5);
landmarkKeys.push_back(6); landmarkKeys.push_back(6);
std::vector<int> dictionary; std::vector<int> dictionary;
dictionary.resize(7, -1); // from 0 to 6 dictionary.resize(7, -1); // from 0 to 6
dictionary[1] = 0; dictionary[1] = 0;
dictionary[2] = 1; dictionary[2] = 1;
GenericGraph3D reduced; GenericGraph3D reduced;
std::map<size_t, vector<size_t> > cameraToLandmarks; std::map<size_t, vector<size_t> > cameraToLandmarks;
reduceGenericGraph(graph, cameraKeys, landmarkKeys, dictionary, reduced); reduceGenericGraph(graph, cameraKeys, landmarkKeys, dictionary, reduced);
LONGS_EQUAL(1, reduced.size()); LONGS_EQUAL(1, reduced.size());
LONGS_EQUAL(1, reduced[0]->key1.index); LONGS_EQUAL(2, reduced[0]->key2.index); LONGS_EQUAL(1, reduced[0]->key1.index); LONGS_EQUAL(2, reduced[0]->key2.index);
} }
/* ************************************************************************* */ /* ************************************************************************* */
@ -200,53 +200,53 @@ TEST ( GenerciGraph, reduceGenericGraph )
*/ */
TEST ( GenericGraph, reduceGenericGraph2 ) TEST ( GenericGraph, reduceGenericGraph2 )
{ {
GenericGraph3D graph; GenericGraph3D graph;
graph.push_back(boost::make_shared<GenericFactor3D>(1, 3, 0, NODE_POSE_3D, NODE_LANDMARK_3D)); graph.push_back(boost::make_shared<GenericFactor3D>(1, 3, 0, NODE_POSE_3D, NODE_LANDMARK_3D));
graph.push_back(boost::make_shared<GenericFactor3D>(1, 4, 1, NODE_POSE_3D, NODE_LANDMARK_3D)); graph.push_back(boost::make_shared<GenericFactor3D>(1, 4, 1, NODE_POSE_3D, NODE_LANDMARK_3D));
graph.push_back(boost::make_shared<GenericFactor3D>(1, 5, 2, NODE_POSE_3D, NODE_LANDMARK_3D)); graph.push_back(boost::make_shared<GenericFactor3D>(1, 5, 2, NODE_POSE_3D, NODE_LANDMARK_3D));
graph.push_back(boost::make_shared<GenericFactor3D>(2, 5, 3, NODE_POSE_3D, NODE_LANDMARK_3D)); graph.push_back(boost::make_shared<GenericFactor3D>(2, 5, 3, NODE_POSE_3D, NODE_LANDMARK_3D));
graph.push_back(boost::make_shared<GenericFactor3D>(2, 6, 4, NODE_POSE_3D, NODE_LANDMARK_3D)); graph.push_back(boost::make_shared<GenericFactor3D>(2, 6, 4, NODE_POSE_3D, NODE_LANDMARK_3D));
graph.push_back(boost::make_shared<GenericFactor3D>(2, 7, 5, NODE_POSE_3D, NODE_POSE_3D)); graph.push_back(boost::make_shared<GenericFactor3D>(2, 7, 5, NODE_POSE_3D, NODE_POSE_3D));
std::vector<size_t> cameraKeys, landmarkKeys; std::vector<size_t> cameraKeys, landmarkKeys;
cameraKeys.push_back(1); cameraKeys.push_back(1);
cameraKeys.push_back(2); cameraKeys.push_back(2);
cameraKeys.push_back(7); cameraKeys.push_back(7);
landmarkKeys.push_back(3); landmarkKeys.push_back(3);
landmarkKeys.push_back(4); landmarkKeys.push_back(4);
landmarkKeys.push_back(5); landmarkKeys.push_back(5);
landmarkKeys.push_back(6); landmarkKeys.push_back(6);
std::vector<int> dictionary; std::vector<int> dictionary;
dictionary.resize(8, -1); // from 0 to 7 dictionary.resize(8, -1); // from 0 to 7
dictionary[1] = 0; dictionary[1] = 0;
dictionary[2] = 1; dictionary[2] = 1;
dictionary[7] = 6; dictionary[7] = 6;
GenericGraph3D reduced; GenericGraph3D reduced;
std::map<size_t, vector<size_t> > cameraToLandmarks; std::map<size_t, vector<size_t> > cameraToLandmarks;
reduceGenericGraph(graph, cameraKeys, landmarkKeys, dictionary, reduced); reduceGenericGraph(graph, cameraKeys, landmarkKeys, dictionary, reduced);
LONGS_EQUAL(2, reduced.size()); LONGS_EQUAL(2, reduced.size());
LONGS_EQUAL(1, reduced[0]->key1.index); LONGS_EQUAL(2, reduced[0]->key2.index); LONGS_EQUAL(1, reduced[0]->key1.index); LONGS_EQUAL(2, reduced[0]->key2.index);
LONGS_EQUAL(2, reduced[1]->key1.index); LONGS_EQUAL(7, reduced[1]->key2.index); LONGS_EQUAL(2, reduced[1]->key1.index); LONGS_EQUAL(7, reduced[1]->key2.index);
} }
/* ************************************************************************* */ /* ************************************************************************* */
TEST ( GenerciGraph, hasCommonCamera ) TEST ( GenerciGraph, hasCommonCamera )
{ {
std::set<size_t> cameras1; cameras1 += 1, 2, 3, 4, 5; std::set<size_t> cameras1; cameras1 += 1, 2, 3, 4, 5;
std::set<size_t> cameras2; cameras2 += 8, 7, 6, 5; std::set<size_t> cameras2; cameras2 += 8, 7, 6, 5;
bool actual = hasCommonCamera(cameras1, cameras2); bool actual = hasCommonCamera(cameras1, cameras2);
CHECK(actual); CHECK(actual);
} }
/* ************************************************************************* */ /* ************************************************************************* */
TEST ( GenerciGraph, hasCommonCamera2 ) TEST ( GenerciGraph, hasCommonCamera2 )
{ {
std::set<size_t> cameras1; cameras1 += 1, 3, 5, 7; std::set<size_t> cameras1; cameras1 += 1, 3, 5, 7;
std::set<size_t> cameras2; cameras2 += 2, 4, 6, 8, 10; std::set<size_t> cameras2; cameras2 += 2, 4, 6, 8, 10;
bool actual = hasCommonCamera(cameras1, cameras2); bool actual = hasCommonCamera(cameras1, cameras2);
CHECK(!actual); CHECK(!actual);
} }
/* ************************************************************************* */ /* ************************************************************************* */

View File

@ -32,22 +32,22 @@ using namespace gtsam::partition;
// l1 // l1
TEST ( NestedDissection, oneIsland ) TEST ( NestedDissection, oneIsland )
{ {
using namespace submapPlanarSLAM; using namespace submapPlanarSLAM;
typedef TSAM2D::SubNLG SubNLG; typedef TSAM2D::SubNLG SubNLG;
Graph fg; Graph fg;
fg.addOdometry(1, 2, Pose2(), odoNoise); fg.addOdometry(1, 2, Pose2(), odoNoise);
fg.addBearingRange(1, 1, Rot2(), 0., bearingRangeNoise); fg.addBearingRange(1, 1, Rot2(), 0., bearingRangeNoise);
fg.addBearingRange(2, 1, Rot2(), 0., bearingRangeNoise); fg.addBearingRange(2, 1, Rot2(), 0., bearingRangeNoise);
fg.addPoseConstraint(1, Pose2()); fg.addPoseConstraint(1, Pose2());
Ordering ordering; ordering += x1, x2, l1; Ordering ordering; ordering += x1, x2, l1;
int numNodeStopPartition = 1e3; int numNodeStopPartition = 1e3;
int minNodesPerMap = 1e3; int minNodesPerMap = 1e3;
NestedDissection<Graph, SubNLG, GenericGraph2D> nd(fg, ordering, numNodeStopPartition, minNodesPerMap); NestedDissection<Graph, SubNLG, GenericGraph2D> nd(fg, ordering, numNodeStopPartition, minNodesPerMap);
LONGS_EQUAL(4, nd.root()->size()); LONGS_EQUAL(4, nd.root()->size());
LONGS_EQUAL(3, nd.root()->frontal().size()); LONGS_EQUAL(3, nd.root()->frontal().size());
LONGS_EQUAL(0, nd.root()->children().size()); LONGS_EQUAL(0, nd.root()->children().size());
} }
/* ************************************************************************* */ /* ************************************************************************* */
@ -56,35 +56,35 @@ TEST ( NestedDissection, oneIsland )
// x2/ \x5 // x2/ \x5
TEST ( NestedDissection, TwoIslands ) TEST ( NestedDissection, TwoIslands )
{ {
using namespace submapPlanarSLAM; using namespace submapPlanarSLAM;
typedef TSAM2D::SubNLG SubNLG; typedef TSAM2D::SubNLG SubNLG;
Graph fg; Graph fg;
fg.addOdometry(1, 2, Pose2(), odoNoise); fg.addOdometry(1, 2, Pose2(), odoNoise);
fg.addOdometry(1, 3, Pose2(), odoNoise); fg.addOdometry(1, 3, Pose2(), odoNoise);
fg.addOdometry(2, 3, Pose2(), odoNoise); fg.addOdometry(2, 3, Pose2(), odoNoise);
fg.addOdometry(3, 4, Pose2(), odoNoise); fg.addOdometry(3, 4, Pose2(), odoNoise);
fg.addOdometry(4, 5, Pose2(), odoNoise); fg.addOdometry(4, 5, Pose2(), odoNoise);
fg.addOdometry(3, 5, Pose2(), odoNoise); fg.addOdometry(3, 5, Pose2(), odoNoise);
fg.addPoseConstraint(1, Pose2()); fg.addPoseConstraint(1, Pose2());
fg.addPoseConstraint(4, Pose2()); fg.addPoseConstraint(4, Pose2());
Ordering ordering; ordering += x1, x2, x3, x4, x5; Ordering ordering; ordering += x1, x2, x3, x4, x5;
int numNodeStopPartition = 2; int numNodeStopPartition = 2;
int minNodesPerMap = 1; int minNodesPerMap = 1;
NestedDissection<Graph, SubNLG, GenericGraph2D> nd(fg, ordering, numNodeStopPartition, minNodesPerMap); NestedDissection<Graph, SubNLG, GenericGraph2D> nd(fg, ordering, numNodeStopPartition, minNodesPerMap);
// root submap // root submap
LONGS_EQUAL(0, nd.root()->size()); LONGS_EQUAL(0, nd.root()->size());
LONGS_EQUAL(1, nd.root()->frontal().size()); LONGS_EQUAL(1, nd.root()->frontal().size());
LONGS_EQUAL(0, nd.root()->separator().size()); LONGS_EQUAL(0, nd.root()->separator().size());
LONGS_EQUAL(2, nd.root()->children().size()); // 2 leaf submaps LONGS_EQUAL(2, nd.root()->children().size()); // 2 leaf submaps
// the 1st submap // the 1st submap
LONGS_EQUAL(2, nd.root()->children()[0]->frontal().size()); LONGS_EQUAL(2, nd.root()->children()[0]->frontal().size());
LONGS_EQUAL(4, nd.root()->children()[0]->size()); LONGS_EQUAL(4, nd.root()->children()[0]->size());
// the 2nd submap // the 2nd submap
LONGS_EQUAL(2, nd.root()->children()[1]->frontal().size()); LONGS_EQUAL(2, nd.root()->children()[1]->frontal().size());
LONGS_EQUAL(4, nd.root()->children()[1]->size()); LONGS_EQUAL(4, nd.root()->children()[1]->size());
} }
/* ************************************************************************* */ /* ************************************************************************* */
@ -93,40 +93,40 @@ TEST ( NestedDissection, TwoIslands )
// x2/ \x5 // x2/ \x5
TEST ( NestedDissection, FourIslands ) TEST ( NestedDissection, FourIslands )
{ {
using namespace submapPlanarSLAM; using namespace submapPlanarSLAM;
typedef TSAM2D::SubNLG SubNLG; typedef TSAM2D::SubNLG SubNLG;
Graph fg; Graph fg;
fg.addOdometry(1, 3, Pose2(), odoNoise); fg.addOdometry(1, 3, Pose2(), odoNoise);
fg.addOdometry(2, 3, Pose2(), odoNoise); fg.addOdometry(2, 3, Pose2(), odoNoise);
fg.addOdometry(3, 4, Pose2(), odoNoise); fg.addOdometry(3, 4, Pose2(), odoNoise);
fg.addOdometry(3, 5, Pose2(), odoNoise); fg.addOdometry(3, 5, Pose2(), odoNoise);
fg.addPoseConstraint(1, Pose2()); fg.addPoseConstraint(1, Pose2());
fg.addPoseConstraint(4, Pose2()); fg.addPoseConstraint(4, Pose2());
Ordering ordering; ordering += x1, x2, x3, x4, x5; Ordering ordering; ordering += x1, x2, x3, x4, x5;
int numNodeStopPartition = 2; int numNodeStopPartition = 2;
int minNodesPerMap = 1; int minNodesPerMap = 1;
NestedDissection<Graph, SubNLG, GenericGraph2D> nd(fg, ordering, numNodeStopPartition, minNodesPerMap); NestedDissection<Graph, SubNLG, GenericGraph2D> nd(fg, ordering, numNodeStopPartition, minNodesPerMap);
LONGS_EQUAL(0, nd.root()->size()); LONGS_EQUAL(0, nd.root()->size());
LONGS_EQUAL(1, nd.root()->frontal().size()); LONGS_EQUAL(1, nd.root()->frontal().size());
LONGS_EQUAL(0, nd.root()->separator().size()); LONGS_EQUAL(0, nd.root()->separator().size());
LONGS_EQUAL(4, nd.root()->children().size()); // 4 leaf submaps LONGS_EQUAL(4, nd.root()->children().size()); // 4 leaf submaps
// the 1st submap // the 1st submap
LONGS_EQUAL(1, nd.root()->children()[0]->frontal().size()); LONGS_EQUAL(1, nd.root()->children()[0]->frontal().size());
LONGS_EQUAL(2, nd.root()->children()[0]->size()); LONGS_EQUAL(2, nd.root()->children()[0]->size());
// the 2nd submap // the 2nd submap
LONGS_EQUAL(1, nd.root()->children()[1]->frontal().size()); LONGS_EQUAL(1, nd.root()->children()[1]->frontal().size());
LONGS_EQUAL(2, nd.root()->children()[1]->size()); LONGS_EQUAL(2, nd.root()->children()[1]->size());
// the 3rd submap // the 3rd submap
LONGS_EQUAL(1, nd.root()->children()[2]->frontal().size()); LONGS_EQUAL(1, nd.root()->children()[2]->frontal().size());
LONGS_EQUAL(1, nd.root()->children()[2]->size()); LONGS_EQUAL(1, nd.root()->children()[2]->size());
// the 4th submap // the 4th submap
LONGS_EQUAL(1, nd.root()->children()[3]->frontal().size()); LONGS_EQUAL(1, nd.root()->children()[3]->frontal().size());
LONGS_EQUAL(1, nd.root()->children()[3]->size()); LONGS_EQUAL(1, nd.root()->children()[3]->size());
} }
/* ************************************************************************* */ /* ************************************************************************* */
@ -137,41 +137,41 @@ TEST ( NestedDissection, FourIslands )
// x5 // x5
TEST ( NestedDissection, weekLinks ) TEST ( NestedDissection, weekLinks )
{ {
using namespace submapPlanarSLAM; using namespace submapPlanarSLAM;
typedef TSAM2D::SubNLG SubNLG; typedef TSAM2D::SubNLG SubNLG;
Graph fg; Graph fg;
fg.addOdometry(1, 2, Pose2(), odoNoise); fg.addOdometry(1, 2, Pose2(), odoNoise);
fg.addOdometry(2, 3, Pose2(), odoNoise); fg.addOdometry(2, 3, Pose2(), odoNoise);
fg.addOdometry(2, 4, Pose2(), odoNoise); fg.addOdometry(2, 4, Pose2(), odoNoise);
fg.addOdometry(3, 4, Pose2(), odoNoise); fg.addOdometry(3, 4, Pose2(), odoNoise);
fg.addBearingRange(1, 6, Rot2(), 0., bearingRangeNoise); fg.addBearingRange(1, 6, Rot2(), 0., bearingRangeNoise);
fg.addBearingRange(2, 6, Rot2(), 0., bearingRangeNoise); fg.addBearingRange(2, 6, Rot2(), 0., bearingRangeNoise);
fg.addBearingRange(5, 6, Rot2(), 0., bearingRangeNoise); fg.addBearingRange(5, 6, Rot2(), 0., bearingRangeNoise);
fg.addPoseConstraint(1, Pose2()); fg.addPoseConstraint(1, Pose2());
fg.addPoseConstraint(4, Pose2()); fg.addPoseConstraint(4, Pose2());
fg.addPoseConstraint(5, Pose2()); fg.addPoseConstraint(5, Pose2());
Ordering ordering; ordering += x1, x2, x3, x4, x5, l6; Ordering ordering; ordering += x1, x2, x3, x4, x5, l6;
int numNodeStopPartition = 2; int numNodeStopPartition = 2;
int minNodesPerMap = 1; int minNodesPerMap = 1;
NestedDissection<Graph, SubNLG, GenericGraph2D> nd(fg, ordering, numNodeStopPartition, minNodesPerMap); NestedDissection<Graph, SubNLG, GenericGraph2D> nd(fg, ordering, numNodeStopPartition, minNodesPerMap);
LONGS_EQUAL(0, nd.root()->size()); // one weeklink LONGS_EQUAL(0, nd.root()->size()); // one weeklink
LONGS_EQUAL(1, nd.root()->frontal().size()); LONGS_EQUAL(1, nd.root()->frontal().size());
LONGS_EQUAL(0, nd.root()->separator().size()); LONGS_EQUAL(0, nd.root()->separator().size());
LONGS_EQUAL(3, nd.root()->children().size()); // 4 leaf submaps LONGS_EQUAL(3, nd.root()->children().size()); // 4 leaf submaps
LONGS_EQUAL(1, nd.root()->weeklinks().size()); LONGS_EQUAL(1, nd.root()->weeklinks().size());
// the 1st submap // the 1st submap
LONGS_EQUAL(2, nd.root()->children()[0]->frontal().size()); // x3 and x4 LONGS_EQUAL(2, nd.root()->children()[0]->frontal().size()); // x3 and x4
LONGS_EQUAL(4, nd.root()->children()[0]->size()); LONGS_EQUAL(4, nd.root()->children()[0]->size());
// the 2nd submap // the 2nd submap
LONGS_EQUAL(2, nd.root()->children()[1]->frontal().size()); // x1 and l6 LONGS_EQUAL(2, nd.root()->children()[1]->frontal().size()); // x1 and l6
LONGS_EQUAL(4, nd.root()->children()[1]->size()); LONGS_EQUAL(4, nd.root()->children()[1]->size());
// //
// the 3rd submap // the 3rd submap
LONGS_EQUAL(1, nd.root()->children()[2]->frontal().size()); // x5 LONGS_EQUAL(1, nd.root()->children()[2]->frontal().size()); // x5
LONGS_EQUAL(1, nd.root()->children()[2]->size()); LONGS_EQUAL(1, nd.root()->children()[2]->size());
} }
/* ************************************************************************* */ /* ************************************************************************* */
@ -184,86 +184,86 @@ TEST ( NestedDissection, weekLinks )
*/ */
TEST ( NestedDissection, manual_cuts ) TEST ( NestedDissection, manual_cuts )
{ {
using namespace submapPlanarSLAM; using namespace submapPlanarSLAM;
typedef partition::Cuts Cuts; typedef partition::Cuts Cuts;
typedef TSAM2D::SubNLG SubNLG; typedef TSAM2D::SubNLG SubNLG;
typedef partition::PartitionTable PartitionTable; typedef partition::PartitionTable PartitionTable;
Graph fg; Graph fg;
fg.addOdometry(x0, x1, Pose2(1.0, 0, 0), odoNoise); fg.addOdometry(x0, x1, Pose2(1.0, 0, 0), odoNoise);
fg.addOdometry(x1, x2, Pose2(1.0, 0, 0), odoNoise); fg.addOdometry(x1, x2, Pose2(1.0, 0, 0), odoNoise);
fg.addBearingRange(x0, l1, Rot2::fromAngle( M_PI_2), 1, bearingRangeNoise); fg.addBearingRange(x0, l1, Rot2::fromAngle( M_PI_2), 1, bearingRangeNoise);
fg.addBearingRange(x0, l4, Rot2::fromAngle(-M_PI_2), 1, bearingRangeNoise); fg.addBearingRange(x0, l4, Rot2::fromAngle(-M_PI_2), 1, bearingRangeNoise);
fg.addBearingRange(x0, l2, Rot2::fromAngle( M_PI_4), sqrt(2), bearingRangeNoise); fg.addBearingRange(x0, l2, Rot2::fromAngle( M_PI_4), sqrt(2), bearingRangeNoise);
fg.addBearingRange(x0, l5, Rot2::fromAngle(-M_PI_4), sqrt(2), bearingRangeNoise); fg.addBearingRange(x0, l5, Rot2::fromAngle(-M_PI_4), sqrt(2), bearingRangeNoise);
fg.addBearingRange(x1, l1, Rot2::fromAngle( M_PI_4 * 3), sqrt(2), bearingRangeNoise); fg.addBearingRange(x1, l1, Rot2::fromAngle( M_PI_4 * 3), sqrt(2), bearingRangeNoise);
fg.addBearingRange(x1, l2, Rot2::fromAngle( M_PI_2), 1, bearingRangeNoise); fg.addBearingRange(x1, l2, Rot2::fromAngle( M_PI_2), 1, bearingRangeNoise);
fg.addBearingRange(x1, l3, Rot2::fromAngle( M_PI_4), sqrt(2), bearingRangeNoise); fg.addBearingRange(x1, l3, Rot2::fromAngle( M_PI_4), sqrt(2), bearingRangeNoise);
fg.addBearingRange(x1, l4, Rot2::fromAngle(-M_PI_4 * 3), sqrt(2), bearingRangeNoise); fg.addBearingRange(x1, l4, Rot2::fromAngle(-M_PI_4 * 3), sqrt(2), bearingRangeNoise);
fg.addBearingRange(x1, l5, Rot2::fromAngle( M_PI_2), 1, bearingRangeNoise); fg.addBearingRange(x1, l5, Rot2::fromAngle( M_PI_2), 1, bearingRangeNoise);
fg.addBearingRange(x1, l6, Rot2::fromAngle(-M_PI_4), sqrt(2), bearingRangeNoise); fg.addBearingRange(x1, l6, Rot2::fromAngle(-M_PI_4), sqrt(2), bearingRangeNoise);
fg.addBearingRange(x2, l2, Rot2::fromAngle( M_PI_4 * 3), sqrt(2), bearingRangeNoise); fg.addBearingRange(x2, l2, Rot2::fromAngle( M_PI_4 * 3), sqrt(2), bearingRangeNoise);
fg.addBearingRange(x2, l5, Rot2::fromAngle(-M_PI_4 * 3), sqrt(2), bearingRangeNoise); fg.addBearingRange(x2, l5, Rot2::fromAngle(-M_PI_4 * 3), sqrt(2), bearingRangeNoise);
fg.addBearingRange(x2, l3, Rot2::fromAngle( M_PI_2), 1, bearingRangeNoise); fg.addBearingRange(x2, l3, Rot2::fromAngle( M_PI_2), 1, bearingRangeNoise);
fg.addBearingRange(x2, l6, Rot2::fromAngle(-M_PI_2), 1, bearingRangeNoise); fg.addBearingRange(x2, l6, Rot2::fromAngle(-M_PI_2), 1, bearingRangeNoise);
fg.addPrior(x0, Pose2(0.1, 0, 0), priorNoise); fg.addPrior(x0, Pose2(0.1, 0, 0), priorNoise);
// generate ordering // generate ordering
Ordering ordering; ordering += x0, x1, x2, l1, l2, l3, l4, l5, l6; Ordering ordering; ordering += x0, x1, x2, l1, l2, l3, l4, l5, l6;
// define cuts // define cuts
boost::shared_ptr<Cuts> cuts(new Cuts()); boost::shared_ptr<Cuts> cuts(new Cuts());
cuts->partitionTable = PartitionTable(9, -1); PartitionTable* p = &cuts->partitionTable; cuts->partitionTable = PartitionTable(9, -1); PartitionTable* p = &cuts->partitionTable;
//x0 x1 x2 l1 l2 l3 l4 l5 l6 //x0 x1 x2 l1 l2 l3 l4 l5 l6
(*p)[0]=1; (*p)[1]=0; (*p)[2]=2; (*p)[3]=1; (*p)[4]=0; (*p)[5]=2; (*p)[6]=1; (*p)[7]=0; (*p)[8]=2; (*p)[0]=1; (*p)[1]=0; (*p)[2]=2; (*p)[3]=1; (*p)[4]=0; (*p)[5]=2; (*p)[6]=1; (*p)[7]=0; (*p)[8]=2;
cuts->children.push_back(boost::shared_ptr<Cuts>(new Cuts())); cuts->children.push_back(boost::shared_ptr<Cuts>(new Cuts()));
cuts->children[0]->partitionTable = PartitionTable(9, -1); p = &cuts->children[0]->partitionTable; cuts->children[0]->partitionTable = PartitionTable(9, -1); p = &cuts->children[0]->partitionTable;
//x0 x1 x2 l1 l2 l3 l4 l5 l6 //x0 x1 x2 l1 l2 l3 l4 l5 l6
(*p)[0]=0; (*p)[1]=-1; (*p)[2]=-1; (*p)[3]=1; (*p)[4]=-1; (*p)[5]=-1; (*p)[6]=2; (*p)[7]=-1; (*p)[8]=-1; (*p)[0]=0; (*p)[1]=-1; (*p)[2]=-1; (*p)[3]=1; (*p)[4]=-1; (*p)[5]=-1; (*p)[6]=2; (*p)[7]=-1; (*p)[8]=-1;
cuts->children.push_back(boost::shared_ptr<Cuts>(new Cuts())); cuts->children.push_back(boost::shared_ptr<Cuts>(new Cuts()));
cuts->children[1]->partitionTable = PartitionTable(9, -1); p = &cuts->children[1]->partitionTable; cuts->children[1]->partitionTable = PartitionTable(9, -1); p = &cuts->children[1]->partitionTable;
//x0 x1 x2 l1 l2 l3 l4 l5 l6 //x0 x1 x2 l1 l2 l3 l4 l5 l6
(*p)[0]=-1; (*p)[1]=-1; (*p)[2]=0; (*p)[3]=-1; (*p)[4]=-1; (*p)[5]=1; (*p)[6]=-1; (*p)[7]=-1; (*p)[8]=2; (*p)[0]=-1; (*p)[1]=-1; (*p)[2]=0; (*p)[3]=-1; (*p)[4]=-1; (*p)[5]=1; (*p)[6]=-1; (*p)[7]=-1; (*p)[8]=2;
// nested dissection // nested dissection
NestedDissection<Graph, SubNLG, GenericGraph2D> nd(fg, ordering, cuts); NestedDissection<Graph, SubNLG, GenericGraph2D> nd(fg, ordering, cuts);
LONGS_EQUAL(2, nd.root()->size()); LONGS_EQUAL(2, nd.root()->size());
LONGS_EQUAL(3, nd.root()->frontal().size()); LONGS_EQUAL(3, nd.root()->frontal().size());
LONGS_EQUAL(0, nd.root()->separator().size()); LONGS_EQUAL(0, nd.root()->separator().size());
LONGS_EQUAL(2, nd.root()->children().size()); // 2 leaf submaps LONGS_EQUAL(2, nd.root()->children().size()); // 2 leaf submaps
LONGS_EQUAL(0, nd.root()->weeklinks().size()); LONGS_EQUAL(0, nd.root()->weeklinks().size());
// the 1st submap // the 1st submap
LONGS_EQUAL(1, nd.root()->children()[0]->frontal().size()); // x0 LONGS_EQUAL(1, nd.root()->children()[0]->frontal().size()); // x0
LONGS_EQUAL(4, nd.root()->children()[0]->size()); LONGS_EQUAL(4, nd.root()->children()[0]->size());
LONGS_EQUAL(2, nd.root()->children()[0]->children().size()); LONGS_EQUAL(2, nd.root()->children()[0]->children().size());
// the 1-1st submap // the 1-1st submap
LONGS_EQUAL(1, nd.root()->children()[0]->children()[0]->frontal().size()); // l1 LONGS_EQUAL(1, nd.root()->children()[0]->children()[0]->frontal().size()); // l1
LONGS_EQUAL(2, nd.root()->children()[0]->children()[0]->size()); LONGS_EQUAL(2, nd.root()->children()[0]->children()[0]->size());
// the 1-2nd submap // the 1-2nd submap
LONGS_EQUAL(1, nd.root()->children()[0]->children()[1]->frontal().size()); // l4 LONGS_EQUAL(1, nd.root()->children()[0]->children()[1]->frontal().size()); // l4
LONGS_EQUAL(2, nd.root()->children()[0]->children()[1]->size()); LONGS_EQUAL(2, nd.root()->children()[0]->children()[1]->size());
// the 2nd submap // the 2nd submap
LONGS_EQUAL(1, nd.root()->children()[1]->frontal().size()); // x2 LONGS_EQUAL(1, nd.root()->children()[1]->frontal().size()); // x2
LONGS_EQUAL(3, nd.root()->children()[1]->size()); LONGS_EQUAL(3, nd.root()->children()[1]->size());
LONGS_EQUAL(2, nd.root()->children()[1]->children().size()); LONGS_EQUAL(2, nd.root()->children()[1]->children().size());
// the 2-1st submap // the 2-1st submap
LONGS_EQUAL(1, nd.root()->children()[1]->children()[0]->frontal().size()); // l3 LONGS_EQUAL(1, nd.root()->children()[1]->children()[0]->frontal().size()); // l3
LONGS_EQUAL(2, nd.root()->children()[1]->children()[0]->size()); LONGS_EQUAL(2, nd.root()->children()[1]->children()[0]->size());
// the 2-2nd submap // the 2-2nd submap
LONGS_EQUAL(1, nd.root()->children()[1]->children()[1]->frontal().size()); // l6 LONGS_EQUAL(1, nd.root()->children()[1]->children()[1]->frontal().size()); // l6
LONGS_EQUAL(2, nd.root()->children()[1]->children()[1]->size()); LONGS_EQUAL(2, nd.root()->children()[1]->children()[1]->size());
} }
@ -272,65 +272,65 @@ TEST ( NestedDissection, manual_cuts )
// / | / \ | \ // / | / \ | \
// x0 x1 x2 x3 // x0 x1 x2 x3
TEST( NestedDissection, Graph3D) { TEST( NestedDissection, Graph3D) {
using namespace gtsam::submapVisualSLAM; using namespace gtsam::submapVisualSLAM;
typedef TSAM3D::SubNLG SubNLG; typedef TSAM3D::SubNLG SubNLG;
typedef partition::PartitionTable PartitionTable; typedef partition::PartitionTable PartitionTable;
vector<GeneralCamera> cameras; vector<GeneralCamera> cameras;
cameras.push_back(GeneralCamera(Pose3(Rot3(), Point3(-2., 0., 0.)))); cameras.push_back(GeneralCamera(Pose3(Rot3(), Point3(-2., 0., 0.))));
cameras.push_back(GeneralCamera(Pose3(Rot3(), Point3(-1., 0., 0.)))); cameras.push_back(GeneralCamera(Pose3(Rot3(), Point3(-1., 0., 0.))));
cameras.push_back(GeneralCamera(Pose3(Rot3(), Point3( 1., 0., 0.)))); cameras.push_back(GeneralCamera(Pose3(Rot3(), Point3( 1., 0., 0.))));
cameras.push_back(GeneralCamera(Pose3(Rot3(), Point3( 2., 0., 0.)))); cameras.push_back(GeneralCamera(Pose3(Rot3(), Point3( 2., 0., 0.))));
vector<Point3> points; vector<Point3> points;
for (int cube_index = 0; cube_index <= 3; cube_index++) { for (int cube_index = 0; cube_index <= 3; cube_index++) {
Point3 center((cube_index-1) * 3, 0.5, 10.); Point3 center((cube_index-1) * 3, 0.5, 10.);
points.push_back(center + Point3(-0.5, -0.5, -0.5)); points.push_back(center + Point3(-0.5, -0.5, -0.5));
points.push_back(center + Point3(-0.5, 0.5, -0.5)); points.push_back(center + Point3(-0.5, 0.5, -0.5));
points.push_back(center + Point3( 0.5, 0.5, -0.5)); points.push_back(center + Point3( 0.5, 0.5, -0.5));
points.push_back(center + Point3( 0.5, -0.5, -0.5)); points.push_back(center + Point3( 0.5, -0.5, -0.5));
points.push_back(center + Point3(-0.5, -0.5, 0.5)); points.push_back(center + Point3(-0.5, -0.5, 0.5));
points.push_back(center + Point3(-0.5, 0.5, 0.5)); points.push_back(center + Point3(-0.5, 0.5, 0.5));
points.push_back(center + Point3( 0.5, 0.5, 0.5)); points.push_back(center + Point3( 0.5, 0.5, 0.5));
points.push_back(center + Point3( 0.5, 0.5, 0.5)); points.push_back(center + Point3( 0.5, 0.5, 0.5));
} }
Graph graph; Graph graph;
SharedDiagonal measurementNoise(gtsam::Vector_(2, 1., 1.)); SharedDiagonal measurementNoise(gtsam::Vector_(2, 1., 1.));
SharedDiagonal measurementZeroNoise(gtsam::Vector_(2, 0., 0.)); SharedDiagonal measurementZeroNoise(gtsam::Vector_(2, 0., 0.));
for (int j=1; j<=8; j++) for (int j=1; j<=8; j++)
graph.addMeasurement(0, j, cameras[0].project(points[j-1]).expmap(measurementZeroNoise->sample()), measurementNoise); graph.addMeasurement(0, j, cameras[0].project(points[j-1]).expmap(measurementZeroNoise->sample()), measurementNoise);
for (int j=1; j<=16; j++) for (int j=1; j<=16; j++)
graph.addMeasurement(1, j, cameras[1].project(points[j-1]).expmap(measurementZeroNoise->sample()), measurementNoise); graph.addMeasurement(1, j, cameras[1].project(points[j-1]).expmap(measurementZeroNoise->sample()), measurementNoise);
for (int j=9; j<=24; j++) for (int j=9; j<=24; j++)
graph.addMeasurement(2, j, cameras[2].project(points[j-1]).expmap(measurementZeroNoise->sample()), measurementNoise); graph.addMeasurement(2, j, cameras[2].project(points[j-1]).expmap(measurementZeroNoise->sample()), measurementNoise);
for (int j=17; j<=24; j++) for (int j=17; j<=24; j++)
graph.addMeasurement(3, j, cameras[3].project(points[j-1]).expmap(measurementZeroNoise->sample()), measurementNoise); graph.addMeasurement(3, j, cameras[3].project(points[j-1]).expmap(measurementZeroNoise->sample()), measurementNoise);
// make an easy ordering // make an easy ordering
Ordering ordering; ordering += x0, x1, x2, x3; Ordering ordering; ordering += x0, x1, x2, x3;
for (int j=1; j<=24; j++) for (int j=1; j<=24; j++)
ordering += Symbol('l', j); ordering += Symbol('l', j);
// nested dissection // nested dissection
const int numNodeStopPartition = 10; const int numNodeStopPartition = 10;
const int minNodesPerMap = 5; const int minNodesPerMap = 5;
NestedDissection<Graph, SubNLG, GenericGraph3D> nd(graph, ordering, numNodeStopPartition, minNodesPerMap); NestedDissection<Graph, SubNLG, GenericGraph3D> nd(graph, ordering, numNodeStopPartition, minNodesPerMap);
LONGS_EQUAL(0, nd.root()->size()); LONGS_EQUAL(0, nd.root()->size());
LONGS_EQUAL(8, nd.root()->frontal().size()); // l9-l16 LONGS_EQUAL(8, nd.root()->frontal().size()); // l9-l16
LONGS_EQUAL(0, nd.root()->separator().size()); LONGS_EQUAL(0, nd.root()->separator().size());
LONGS_EQUAL(2, nd.root()->children().size()); // 2 leaf submaps LONGS_EQUAL(2, nd.root()->children().size()); // 2 leaf submaps
LONGS_EQUAL(0, nd.root()->weeklinks().size()); LONGS_EQUAL(0, nd.root()->weeklinks().size());
// the 1st submap // the 1st submap
LONGS_EQUAL(10, nd.root()->children()[0]->frontal().size()); // x0, x1, l1-l8 LONGS_EQUAL(10, nd.root()->children()[0]->frontal().size()); // x0, x1, l1-l8
LONGS_EQUAL(24, nd.root()->children()[0]->size()); // 8 + 16 LONGS_EQUAL(24, nd.root()->children()[0]->size()); // 8 + 16
LONGS_EQUAL(0, nd.root()->children()[0]->children().size()); LONGS_EQUAL(0, nd.root()->children()[0]->children().size());
// the 2nd submap // the 2nd submap
LONGS_EQUAL(10, nd.root()->children()[1]->frontal().size()); // x2, x3, l1-l8 LONGS_EQUAL(10, nd.root()->children()[1]->frontal().size()); // x2, x3, l1-l8
LONGS_EQUAL(24, nd.root()->children()[1]->size()); // 16 + 8 LONGS_EQUAL(24, nd.root()->children()[1]->size()); // 16 + 8
LONGS_EQUAL(0, nd.root()->children()[1]->children().size()); LONGS_EQUAL(0, nd.root()->children()[1]->children().size());
} }

View File

@ -295,87 +295,87 @@ namespace gtsam {
/* ************************************************************************* */ /* ************************************************************************* */
SharedGaussian get_model_inlier() const { SharedGaussian get_model_inlier() const {
return model_inlier_; return model_inlier_;
} }
/* ************************************************************************* */ /* ************************************************************************* */
SharedGaussian get_model_outlier() const { SharedGaussian get_model_outlier() const {
return model_outlier_; return model_outlier_;
} }
/* ************************************************************************* */ /* ************************************************************************* */
Matrix get_model_inlier_cov() const { Matrix get_model_inlier_cov() const {
return (model_inlier_->R().transpose()*model_inlier_->R()).inverse(); return (model_inlier_->R().transpose()*model_inlier_->R()).inverse();
} }
/* ************************************************************************* */ /* ************************************************************************* */
Matrix get_model_outlier_cov() const { Matrix get_model_outlier_cov() const {
return (model_outlier_->R().transpose()*model_outlier_->R()).inverse(); return (model_outlier_->R().transpose()*model_outlier_->R()).inverse();
} }
/* ************************************************************************* */ /* ************************************************************************* */
void updateNoiseModels(const gtsam::Values& values, const gtsam::NonlinearFactorGraph& graph){ void updateNoiseModels(const gtsam::Values& values, const gtsam::NonlinearFactorGraph& graph){
/* Update model_inlier_ and model_outlier_ to account for uncertainty in robot trajectories /* Update model_inlier_ and model_outlier_ to account for uncertainty in robot trajectories
* (note these are given in the E step, where indicator probabilities are calculated). * (note these are given in the E step, where indicator probabilities are calculated).
* *
* Principle: R += [H1 H2] * joint_cov12 * [H1 H2]', where H1, H2 are Jacobians of the * Principle: R += [H1 H2] * joint_cov12 * [H1 H2]', where H1, H2 are Jacobians of the
* unwhitened error w.r.t. states, and R is the measurement covariance (inlier or outlier modes). * unwhitened error w.r.t. states, and R is the measurement covariance (inlier or outlier modes).
* *
* TODO: improve efficiency (info form) * TODO: improve efficiency (info form)
*/ */
// get joint covariance of the involved states // get joint covariance of the involved states
std::vector<gtsam::Key> Keys; std::vector<gtsam::Key> Keys;
Keys.push_back(key1_); Keys.push_back(key1_);
Keys.push_back(key2_); Keys.push_back(key2_);
Marginals marginals( graph, values, Marginals::QR ); Marginals marginals( graph, values, Marginals::QR );
JointMarginal joint_marginal12 = marginals.jointMarginalCovariance(Keys); JointMarginal joint_marginal12 = marginals.jointMarginalCovariance(Keys);
Matrix cov1 = joint_marginal12(key1_, key1_); Matrix cov1 = joint_marginal12(key1_, key1_);
Matrix cov2 = joint_marginal12(key2_, key2_); Matrix cov2 = joint_marginal12(key2_, key2_);
Matrix cov12 = joint_marginal12(key1_, key2_); Matrix cov12 = joint_marginal12(key1_, key2_);
updateNoiseModels_givenCovs(values, cov1, cov2, cov12); updateNoiseModels_givenCovs(values, cov1, cov2, cov12);
} }
/* ************************************************************************* */ /* ************************************************************************* */
void updateNoiseModels_givenCovs(const gtsam::Values& values, const Matrix& cov1, const Matrix& cov2, const Matrix& cov12){ void updateNoiseModels_givenCovs(const gtsam::Values& values, const Matrix& cov1, const Matrix& cov2, const Matrix& cov12){
/* Update model_inlier_ and model_outlier_ to account for uncertainty in robot trajectories /* Update model_inlier_ and model_outlier_ to account for uncertainty in robot trajectories
* (note these are given in the E step, where indicator probabilities are calculated). * (note these are given in the E step, where indicator probabilities are calculated).
* *
* Principle: R += [H1 H2] * joint_cov12 * [H1 H2]', where H1, H2 are Jacobians of the * Principle: R += [H1 H2] * joint_cov12 * [H1 H2]', where H1, H2 are Jacobians of the
* unwhitened error w.r.t. states, and R is the measurement covariance (inlier or outlier modes). * unwhitened error w.r.t. states, and R is the measurement covariance (inlier or outlier modes).
* *
* TODO: improve efficiency (info form) * TODO: improve efficiency (info form)
*/ */
const T& p1 = values.at<T>(key1_); const T& p1 = values.at<T>(key1_);
const T& p2 = values.at<T>(key2_); const T& p2 = values.at<T>(key2_);
Matrix H1, H2; Matrix H1, H2;
T hx = p1.between(p2, H1, H2); // h(x) T hx = p1.between(p2, H1, H2); // h(x)
Matrix H; Matrix H;
H.resize(H1.rows(), H1.rows()+H2.rows()); H.resize(H1.rows(), H1.rows()+H2.rows());
H << H1, H2; // H = [H1 H2] H << H1, H2; // H = [H1 H2]
Matrix joint_cov; Matrix joint_cov;
joint_cov.resize(cov1.rows()+cov2.rows(), cov1.cols()+cov2.cols()); joint_cov.resize(cov1.rows()+cov2.rows(), cov1.cols()+cov2.cols());
joint_cov << cov1, cov12, joint_cov << cov1, cov12,
cov12.transpose(), cov2; cov12.transpose(), cov2;
Matrix cov_state = H*joint_cov*H.transpose(); Matrix cov_state = H*joint_cov*H.transpose();
// model_inlier_->print("before:"); // model_inlier_->print("before:");
// update inlier and outlier noise models // update inlier and outlier noise models
Matrix covRinlier = (model_inlier_->R().transpose()*model_inlier_->R()).inverse(); Matrix covRinlier = (model_inlier_->R().transpose()*model_inlier_->R()).inverse();
model_inlier_ = gtsam::noiseModel::Gaussian::Covariance(covRinlier + cov_state); model_inlier_ = gtsam::noiseModel::Gaussian::Covariance(covRinlier + cov_state);
Matrix covRoutlier = (model_outlier_->R().transpose()*model_outlier_->R()).inverse(); Matrix covRoutlier = (model_outlier_->R().transpose()*model_outlier_->R()).inverse();
model_outlier_ = gtsam::noiseModel::Gaussian::Covariance(covRoutlier + cov_state); model_outlier_ = gtsam::noiseModel::Gaussian::Covariance(covRoutlier + cov_state);
// model_inlier_->print("after:"); // model_inlier_->print("after:");
// std::cout<<"covRinlier + cov_state: "<<covRinlier + cov_state<<std::endl; // std::cout<<"covRinlier + cov_state: "<<covRinlier + cov_state<<std::endl;
} }
/* ************************************************************************* */ /* ************************************************************************* */

View File

@ -28,9 +28,9 @@ namespace gtsam {
/* /*
* - The 1st order GaussMarkov factor relates two keys of the same type. This relation is given via * - The 1st order GaussMarkov factor relates two keys of the same type. This relation is given via
* key_2 = exp(-1/tau*delta_t) * key1 + w_d * key_2 = exp(-1/tau*delta_t) * key1 + w_d
* where tau is the time constant and delta_t is the time difference between the two keys. * where tau is the time constant and delta_t is the time difference between the two keys.
* w_d is the equivalent discrete noise, whose covariance is calculated from the continuous noise model and delta_t. * w_d is the equivalent discrete noise, whose covariance is calculated from the continuous noise model and delta_t.
* - w_d is approximated as a Gaussian noise. * - w_d is approximated as a Gaussian noise.
* - In the multi-dimensional case, tau is a vector, and the above equation is applied on each element * - In the multi-dimensional case, tau is a vector, and the above equation is applied on each element
* in the state (represented by keys), using the appropriate time constant in the vector tau. * in the state (represented by keys), using the appropriate time constant in the vector tau.
@ -80,7 +80,7 @@ public:
/** equals */ /** equals */
virtual bool equals(const NonlinearFactor& expected, double tol=1e-9) const { virtual bool equals(const NonlinearFactor& expected, double tol=1e-9) const {
const This *e = dynamic_cast<const This*> (&expected); const This *e = dynamic_cast<const This*> (&expected);
return e != NULL && Base::equals(*e, tol); return e != NULL && Base::equals(*e, tol);
} }

View File

@ -256,43 +256,43 @@ TEST( BetweenFactorEM, CaseStudy)
///* ************************************************************************** */ ///* ************************************************************************** */
TEST (BetweenFactorEM, updateNoiseModel ) { TEST (BetweenFactorEM, updateNoiseModel ) {
gtsam::Key key1(1); gtsam::Key key1(1);
gtsam::Key key2(2); gtsam::Key key2(2);
gtsam::Pose2 p1(10.0, 15.0, 0.1); gtsam::Pose2 p1(10.0, 15.0, 0.1);
gtsam::Pose2 p2(15.0, 15.0, 0.3); gtsam::Pose2 p2(15.0, 15.0, 0.3);
gtsam::Pose2 noise(0.5, 0.4, 0.01); gtsam::Pose2 noise(0.5, 0.4, 0.01);
gtsam::Pose2 rel_pose_ideal = p1.between(p2); gtsam::Pose2 rel_pose_ideal = p1.between(p2);
gtsam::Pose2 rel_pose_msr = rel_pose_ideal.compose(noise); gtsam::Pose2 rel_pose_msr = rel_pose_ideal.compose(noise);
SharedGaussian model_inlier(noiseModel::Diagonal::Sigmas( (gtsam::Vector(3) << 1.5, 2.5, 4.05))); SharedGaussian model_inlier(noiseModel::Diagonal::Sigmas( (gtsam::Vector(3) << 1.5, 2.5, 4.05)));
SharedGaussian model_outlier(noiseModel::Diagonal::Sigmas( (gtsam::Vector(3) << 50.0, 50.0, 10.0))); SharedGaussian model_outlier(noiseModel::Diagonal::Sigmas( (gtsam::Vector(3) << 50.0, 50.0, 10.0)));
gtsam::Values values; gtsam::Values values;
values.insert(key1, p1); values.insert(key1, p1);
values.insert(key2, p2); values.insert(key2, p2);
double prior_outlier = 0.0; double prior_outlier = 0.0;
double prior_inlier = 1.0; double prior_inlier = 1.0;
BetweenFactorEM<gtsam::Pose2> f(key1, key2, rel_pose_msr, model_inlier, model_outlier, BetweenFactorEM<gtsam::Pose2> f(key1, key2, rel_pose_msr, model_inlier, model_outlier,
prior_inlier, prior_outlier); prior_inlier, prior_outlier);
SharedGaussian model = SharedGaussian(noiseModel::Isotropic::Sigma(3, 1e2)); SharedGaussian model = SharedGaussian(noiseModel::Isotropic::Sigma(3, 1e2));
NonlinearFactorGraph graph; NonlinearFactorGraph graph;
graph.push_back(gtsam::PriorFactor<Pose2>(key1, p1, model)); graph.push_back(gtsam::PriorFactor<Pose2>(key1, p1, model));
graph.push_back(gtsam::PriorFactor<Pose2>(key2, p2, model)); graph.push_back(gtsam::PriorFactor<Pose2>(key2, p2, model));
f.updateNoiseModels(values, graph); f.updateNoiseModels(values, graph);
SharedGaussian model_inlier_new = f.get_model_inlier(); SharedGaussian model_inlier_new = f.get_model_inlier();
SharedGaussian model_outlier_new = f.get_model_outlier(); SharedGaussian model_outlier_new = f.get_model_outlier();
model_inlier->print("model_inlier:"); model_inlier->print("model_inlier:");
model_outlier->print("model_outlier:"); model_outlier->print("model_outlier:");
model_inlier_new->print("model_inlier_new:"); model_inlier_new->print("model_inlier_new:");
model_outlier_new->print("model_outlier_new:"); model_outlier_new->print("model_outlier_new:");
} }