added default bool option to svd to sort the singular values and V. the default is true so pass false to avoid sorting
parent
f9c2000847
commit
693e13ef88
|
@ -866,7 +866,7 @@ Matrix cholesky_inverse(const Matrix &A)
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
|
|
||||||
// version with in place modification of A
|
// version with in place modification of A
|
||||||
void svd(Matrix& A, Vector& s, Matrix& V) {
|
void svd(Matrix& A, Vector& s, Matrix& V, bool sort) {
|
||||||
|
|
||||||
const size_t m=A.size1(), n=A.size2();
|
const size_t m=A.size1(), n=A.size2();
|
||||||
|
|
||||||
|
@ -878,7 +878,7 @@ void svd(Matrix& A, Vector& s, Matrix& V) {
|
||||||
|
|
||||||
// perform SVD
|
// perform SVD
|
||||||
// need to pass pointer - 1 in NRC routines so u[1][1] is first element !
|
// need to pass pointer - 1 in NRC routines so u[1][1] is first element !
|
||||||
svdcmp(u-1,m,n,q-1,v-1);
|
svdcmp(u-1,m,n,q-1,v-1, sort);
|
||||||
|
|
||||||
// copy singular values back
|
// copy singular values back
|
||||||
s.resize(n);
|
s.resize(n);
|
||||||
|
@ -891,9 +891,9 @@ void svd(Matrix& A, Vector& s, Matrix& V) {
|
||||||
}
|
}
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
void svd(const Matrix& A, Matrix& U, Vector& s, Matrix& V) {
|
void svd(const Matrix& A, Matrix& U, Vector& s, Matrix& V, bool sort) {
|
||||||
U = A; // copy
|
U = A; // copy
|
||||||
svd(U,s,V); // call in-place version
|
svd(U,s,V,sort); // call in-place version
|
||||||
}
|
}
|
||||||
|
|
||||||
#if 0
|
#if 0
|
||||||
|
@ -941,7 +941,7 @@ Matrix square_root_positive(const Matrix& A) {
|
||||||
// Perform SVD, TODO: symmetric SVD?
|
// Perform SVD, TODO: symmetric SVD?
|
||||||
Matrix U,V;
|
Matrix U,V;
|
||||||
Vector S;
|
Vector S;
|
||||||
svd(A,U,S,V);
|
svd(A,U,S,V,false);
|
||||||
|
|
||||||
// invert and sqrt diagonal of S
|
// invert and sqrt diagonal of S
|
||||||
// We also arbitrarily choose sign to make result have positive signs
|
// We also arbitrarily choose sign to make result have positive signs
|
||||||
|
|
|
@ -308,11 +308,12 @@ inline Matrix skewSymmetric(const Vector& w) { return skewSymmetric(w(0),w(1),w(
|
||||||
* @param U output argument: m*n matrix
|
* @param U output argument: m*n matrix
|
||||||
* @param S output argument: n-dim vector of singular values, *not* sorted !!!
|
* @param S output argument: n-dim vector of singular values, *not* sorted !!!
|
||||||
* @param V output argument: n*n matrix
|
* @param V output argument: n*n matrix
|
||||||
|
* @param sort boolean flag to sort singular values and V
|
||||||
*/
|
*/
|
||||||
void svd(const Matrix& A, Matrix& U, Vector& S, Matrix& V);
|
void svd(const Matrix& A, Matrix& U, Vector& S, Matrix& V, bool sort=true);
|
||||||
|
|
||||||
// in-place version
|
// in-place version
|
||||||
void svd(Matrix& A, Vector& S, Matrix& V);
|
void svd(Matrix& A, Vector& S, Matrix& V, bool sort=true);
|
||||||
|
|
||||||
/** Use SVD to calculate inverse square root of a matrix */
|
/** Use SVD to calculate inverse square root of a matrix */
|
||||||
Matrix inverse_square_root(const Matrix& A);
|
Matrix inverse_square_root(const Matrix& A);
|
||||||
|
|
476
cpp/svdcmp.cpp
476
cpp/svdcmp.cpp
|
@ -8,247 +8,299 @@
|
||||||
#include <math.h> /* for 'fabs' */
|
#include <math.h> /* for 'fabs' */
|
||||||
#include <iostream>
|
#include <iostream>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
|
#include "Matrix.h"
|
||||||
|
|
||||||
using namespace std;
|
using namespace std;
|
||||||
|
|
||||||
|
|
||||||
#define SIGN(a,b) ((b) >= 0.0 ? fabs(a) : -fabs(a))
|
#define SIGN(a,b) ((b) >= 0.0 ? fabs(a) : -fabs(a))
|
||||||
static double sqrarg;
|
static double sqrarg;
|
||||||
#define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 : sqrarg*sqrarg)
|
#define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 : sqrarg*sqrarg)
|
||||||
static double maxarg1,maxarg2;
|
static double maxarg1, maxarg2;
|
||||||
#define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1) > (maxarg2) ?\
|
#define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1) > (maxarg2) ?\
|
||||||
(maxarg1) : (maxarg2))
|
(maxarg1) : (maxarg2))
|
||||||
static int iminarg1,iminarg2;
|
static int iminarg1, iminarg2;
|
||||||
#define IMIN(a,b) (iminarg1=(a),iminarg2=(b),(iminarg1) < (iminarg2) ?\
|
#define IMIN(a,b) (iminarg1=(a),iminarg2=(b),(iminarg1) < (iminarg2) ?\
|
||||||
(iminarg1) : (iminarg2))
|
(iminarg1) : (iminarg2))
|
||||||
|
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
/*
|
/*
|
||||||
double pythag(double a, double b)
|
double pythag(double a, double b)
|
||||||
{
|
{
|
||||||
double absa = 0.0, absb = 0.0;
|
double absa = 0.0, absb = 0.0;
|
||||||
absa=fabs(a);
|
absa=fabs(a);
|
||||||
absb=fabs(b);
|
absb=fabs(b);
|
||||||
if (absa > absb) return absa*sqrt(1.0+SQR(absb/absa));
|
if (absa > absb) return absa*sqrt(1.0+SQR(absb/absa));
|
||||||
else return (absb == 0.0 ? 0.0 : absb*sqrt(1.0+SQR(absa/absb)));
|
else return (absb == 0.0 ? 0.0 : absb*sqrt(1.0+SQR(absa/absb)));
|
||||||
}
|
}
|
||||||
*/
|
*/
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
double pythag(double a, double b)
|
double pythag(double a, double b) {
|
||||||
{
|
double absa = 0.0, absb = 0.0;
|
||||||
double absa = 0.0, absb = 0.0;
|
absa = fabs(a);
|
||||||
absa=fabs(a);
|
absb = fabs(b);
|
||||||
absb=fabs(b);
|
if (absa > absb)
|
||||||
if (absa > absb) return absa*sqrt(1.0+SQR(absb/absa));
|
return absa * sqrt(1.0 + SQR(absb/absa));
|
||||||
else {
|
else {
|
||||||
if(absb == 0.0)
|
if (absb == 0.0)
|
||||||
return 0.0;
|
return 0.0;
|
||||||
else
|
else
|
||||||
return (absb * sqrt(1.0 + SQR(absa/absb)));
|
return (absb * sqrt(1.0 + SQR(absa/absb)));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
void svdcmp(double **a, int m, int n, double w[], double **v)
|
void svdcmp(double **a, int m, int n, double w[], double **v, bool sort) {
|
||||||
{
|
int flag, i, its, j, jj, k, l, nm;
|
||||||
int flag,i,its,j,jj,k,l,nm;
|
double anorm, c, f, g, h, s, scale, x, y, z;
|
||||||
double anorm,c,f,g,h,s,scale,x,y,z;
|
|
||||||
|
|
||||||
//vector sizes:
|
//vector sizes:
|
||||||
// w[n] - q-1 passed in
|
// w[n] - q-1 passed in
|
||||||
// a[m] - u-1 passed in
|
// a[m] - u-1 passed in
|
||||||
// v[n] - v-1 passed in
|
// v[n] - v-1 passed in
|
||||||
|
|
||||||
//Current progress on verifying array bounds:
|
//Current progress on verifying array bounds:
|
||||||
// rv1 references have been fixed
|
// rv1 references have been fixed
|
||||||
|
|
||||||
double *rv1 = new double[n];
|
double *rv1 = new double[n];
|
||||||
|
|
||||||
g= 0.0;
|
g = 0.0;
|
||||||
scale= 0.0;
|
scale = 0.0;
|
||||||
anorm= 0.0;
|
anorm = 0.0;
|
||||||
for (i=1;i<=n;i++) {
|
for (i = 1; i <= n; i++) {
|
||||||
l=i+1;
|
l = i + 1;
|
||||||
rv1[i-1]=scale*g;
|
rv1[i - 1] = scale * g;
|
||||||
g=s=scale=0.0;
|
g = s = scale = 0.0;
|
||||||
if (i <= m) {
|
if (i <= m) {
|
||||||
for (k=i;k<=m;k++) scale += fabs(a[k][i]);
|
for (k = i; k <= m; k++)
|
||||||
if (scale) {
|
scale += fabs(a[k][i]);
|
||||||
for (k=i;k<=m;k++) {
|
if (scale) {
|
||||||
a[k][i] /= scale;
|
for (k = i; k <= m; k++) {
|
||||||
s += a[k][i]*a[k][i];
|
a[k][i] /= scale;
|
||||||
}
|
s += a[k][i] * a[k][i];
|
||||||
f=a[i][i];
|
}
|
||||||
g = -SIGN(sqrt(s),f);
|
f = a[i][i];
|
||||||
h=f*g-s;
|
g = -SIGN(sqrt(s),f);
|
||||||
a[i][i]=f-g;
|
h = f * g - s;
|
||||||
for (j=l;j<=n;j++) {
|
a[i][i] = f - g;
|
||||||
for (s=0.0,k=i;k<=m;k++) s += a[k][i]*a[k][j];
|
for (j = l; j <= n; j++) {
|
||||||
f=s/h;
|
for (s = 0.0, k = i; k <= m; k++)
|
||||||
for (k=i;k<=m;k++) a[k][j] += f*a[k][i];
|
s += a[k][i] * a[k][j];
|
||||||
}
|
f = s / h;
|
||||||
for (k=i;k<=m;k++) a[k][i] *= scale;
|
for (k = i; k <= m; k++)
|
||||||
}
|
a[k][j] += f * a[k][i];
|
||||||
}
|
}
|
||||||
w[i]=scale *g;
|
for (k = i; k <= m; k++)
|
||||||
g=s=scale=0.0;
|
a[k][i] *= scale;
|
||||||
if (i <= m && i != n) {
|
}
|
||||||
for (k=l;k<=n;k++) scale += fabs(a[i][k]);
|
}
|
||||||
if (scale) {
|
w[i] = scale * g;
|
||||||
for (k=l;k<=n;k++) {
|
g = s = scale = 0.0;
|
||||||
a[i][k] /= scale;
|
if (i <= m && i != n) {
|
||||||
s += a[i][k]*a[i][k];
|
for (k = l; k <= n; k++)
|
||||||
}
|
scale += fabs(a[i][k]);
|
||||||
f=a[i][l];
|
if (scale) {
|
||||||
g = -SIGN(sqrt(s),f);
|
for (k = l; k <= n; k++) {
|
||||||
h=f*g-s;
|
a[i][k] /= scale;
|
||||||
a[i][l]=f-g;
|
s += a[i][k] * a[i][k];
|
||||||
for (k=l;k<=n;k++)
|
}
|
||||||
{
|
f = a[i][l];
|
||||||
rv1[k-1]=a[i][k]/h;
|
g = -SIGN(sqrt(s),f);
|
||||||
}
|
h = f * g - s;
|
||||||
|
a[i][l] = f - g;
|
||||||
|
for (k = l; k <= n; k++) {
|
||||||
|
rv1[k - 1] = a[i][k] / h;
|
||||||
|
}
|
||||||
|
|
||||||
for (j=l;j<=m;j++) {
|
for (j = l; j <= m; j++) {
|
||||||
for (s=0.0,k=l;k<=n;k++)
|
for (s = 0.0, k = l; k <= n; k++)
|
||||||
s += a[j][k]*a[i][k];
|
s += a[j][k] * a[i][k];
|
||||||
for (k=l;k<=n;k++)
|
for (k = l; k <= n; k++) {
|
||||||
{
|
a[j][k] += s * rv1[k - 1];
|
||||||
a[j][k] += s*rv1[k-1];
|
}
|
||||||
}
|
}
|
||||||
}
|
for (k = l; k <= n; k++)
|
||||||
for (k=l;k<=n;k++) a[i][k] *= scale;
|
a[i][k] *= scale;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
anorm=FMAX(anorm,(fabs(w[i])+fabs(rv1[i-1])));
|
anorm = FMAX(anorm,(fabs(w[i])+fabs(rv1[i-1])));
|
||||||
|
|
||||||
}
|
|
||||||
for (i=n;i>=1;i--) {
|
|
||||||
if (i < n) {
|
|
||||||
if (g) {
|
|
||||||
for (j=l;j<=n;j++)
|
|
||||||
v[j][i]=(a[i][j]/a[i][l])/g;
|
|
||||||
for (j=l;j<=n;j++) {
|
|
||||||
for (s=0.0,k=l;k<=n;k++) s += a[i][k]*v[k][j];
|
|
||||||
for (k=l;k<=n;k++) v[k][j] += s*v[k][i];
|
|
||||||
}
|
}
|
||||||
}
|
for (i = n; i >= 1; i--) {
|
||||||
for (j=l;j<=n;j++) v[i][j]=v[j][i]=0.0;
|
if (i < n) {
|
||||||
}
|
if (g) {
|
||||||
v[i][i]=1.0;
|
for (j = l; j <= n; j++)
|
||||||
g=rv1[i-1];
|
v[j][i] = (a[i][j] / a[i][l]) / g;
|
||||||
l=i;
|
for (j = l; j <= n; j++) {
|
||||||
}
|
for (s = 0.0, k = l; k <= n; k++)
|
||||||
for (i=IMIN(m,n);i>=1;i--) {
|
s += a[i][k] * v[k][j];
|
||||||
l=i+1;
|
for (k = l; k <= n; k++)
|
||||||
g=w[i];
|
v[k][j] += s * v[k][i];
|
||||||
for (j=l;j<=n;j++) a[i][j]=0.0;
|
}
|
||||||
if (g) {
|
}
|
||||||
g=1.0/g;
|
for (j = l; j <= n; j++)
|
||||||
for (j=l;j<=n;j++) {
|
v[i][j] = v[j][i] = 0.0;
|
||||||
for (s=0.0,k=l;k<=m;k++) s += a[k][i]*a[k][j];
|
}
|
||||||
f=(s/a[i][i])*g;
|
v[i][i] = 1.0;
|
||||||
for (k=i;k<=m;k++) a[k][j] += f*a[k][i];
|
g = rv1[i - 1];
|
||||||
}
|
l = i;
|
||||||
for (j=i;j<=m;j++) a[j][i] *= g;
|
|
||||||
} else for (j=i;j<=m;j++) a[j][i]=0.0;
|
|
||||||
++a[i][i];
|
|
||||||
}
|
|
||||||
for (k=n;k>=1;k--) {
|
|
||||||
for (its=1;its<=30;its++) {
|
|
||||||
flag=1;
|
|
||||||
for (l=k;l>=1;l--) {
|
|
||||||
nm=l-1;
|
|
||||||
if ((double)(fabs(rv1[l-1])+anorm) == anorm) {
|
|
||||||
flag=0;
|
|
||||||
break;
|
|
||||||
}
|
}
|
||||||
if ((double)(fabs(w[nm])+anorm) == anorm) break;
|
for (i = IMIN(m,n); i >= 1; i--) {
|
||||||
}
|
l = i + 1;
|
||||||
if (flag) {
|
g = w[i];
|
||||||
c=0.0;
|
for (j = l; j <= n; j++)
|
||||||
s=1.0;
|
a[i][j] = 0.0;
|
||||||
for (i=l;i<=k;i++) {
|
if (g) {
|
||||||
f=s*rv1[i-1];
|
g = 1.0 / g;
|
||||||
rv1[i-1]=c*rv1[i-1];
|
for (j = l; j <= n; j++) {
|
||||||
if ((double)(fabs(f)+anorm) == anorm) break;
|
for (s = 0.0, k = l; k <= m; k++)
|
||||||
g=w[i];
|
s += a[k][i] * a[k][j];
|
||||||
h=pythag(f,g);
|
f = (s / a[i][i]) * g;
|
||||||
w[i]=h;
|
for (k = i; k <= m; k++)
|
||||||
h=1.0/h;
|
a[k][j] += f * a[k][i];
|
||||||
c=g*h;
|
}
|
||||||
s = -f*h;
|
for (j = i; j <= m; j++)
|
||||||
for (j=1;j<=m;j++) {
|
a[j][i] *= g;
|
||||||
y=a[j][nm];
|
} else
|
||||||
z=a[j][i];
|
for (j = i; j <= m; j++)
|
||||||
a[j][nm]=y*c+z*s;
|
a[j][i] = 0.0;
|
||||||
a[j][i]=z*c-y*s;
|
++a[i][i];
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
for (k = n; k >= 1; k--) {
|
||||||
z=w[k];
|
for (its = 1; its <= 30; its++) {
|
||||||
if (l == k) {
|
flag = 1;
|
||||||
if (z < 0.0) {
|
for (l = k; l >= 1; l--) {
|
||||||
w[k] = -z;
|
nm = l - 1;
|
||||||
for (j=1;j<=n;j++) v[j][k] = -v[j][k];
|
if ((double) (fabs(rv1[l - 1]) + anorm) == anorm) {
|
||||||
|
flag = 0;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
if ((double) (fabs(w[nm]) + anorm) == anorm)
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
if (flag) {
|
||||||
|
c = 0.0;
|
||||||
|
s = 1.0;
|
||||||
|
for (i = l; i <= k; i++) {
|
||||||
|
f = s * rv1[i - 1];
|
||||||
|
rv1[i - 1] = c * rv1[i - 1];
|
||||||
|
if ((double) (fabs(f) + anorm) == anorm)
|
||||||
|
break;
|
||||||
|
g = w[i];
|
||||||
|
h = pythag(f, g);
|
||||||
|
w[i] = h;
|
||||||
|
h = 1.0 / h;
|
||||||
|
c = g * h;
|
||||||
|
s = -f * h;
|
||||||
|
for (j = 1; j <= m; j++) {
|
||||||
|
y = a[j][nm];
|
||||||
|
z = a[j][i];
|
||||||
|
a[j][nm] = y * c + z * s;
|
||||||
|
a[j][i] = z * c - y * s;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
z = w[k];
|
||||||
|
if (l == k) {
|
||||||
|
if (z < 0.0) {
|
||||||
|
w[k] = -z;
|
||||||
|
for (j = 1; j <= n; j++)
|
||||||
|
v[j][k] = -v[j][k];
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
if (its == 30)
|
||||||
|
throw(std::domain_error(
|
||||||
|
"no convergence in 30 svdcmp iterations"));
|
||||||
|
x = w[l];
|
||||||
|
nm = k - 1;
|
||||||
|
y = w[nm];
|
||||||
|
g = rv1[nm - 1];
|
||||||
|
h = rv1[k - 1];
|
||||||
|
f = ((y - z) * (y + z) + (g - h) * (g + h)) / (2.0 * h * y);
|
||||||
|
g = pythag(f, 1.0);
|
||||||
|
f = ((x - z) * (x + z) + h * ((y / (f + SIGN(g,f))) - h)) / x;
|
||||||
|
c = s = 1.0;
|
||||||
|
for (j = l; j <= nm; j++) {
|
||||||
|
i = j + 1;
|
||||||
|
g = rv1[i - 1];
|
||||||
|
y = w[i];
|
||||||
|
h = s * g;
|
||||||
|
g = c * g;
|
||||||
|
z = pythag(f, h);
|
||||||
|
rv1[j - 1] = z;
|
||||||
|
c = f / z;
|
||||||
|
s = h / z;
|
||||||
|
f = x * c + g * s;
|
||||||
|
g = g * c - x * s;
|
||||||
|
h = y * s;
|
||||||
|
y *= c;
|
||||||
|
for (jj = 1; jj <= n; jj++) {
|
||||||
|
x = v[jj][j];
|
||||||
|
z = v[jj][i];
|
||||||
|
v[jj][j] = x * c + z * s;
|
||||||
|
v[jj][i] = z * c - x * s;
|
||||||
|
}
|
||||||
|
z = pythag(f, h);
|
||||||
|
w[j] = z;
|
||||||
|
if (z) {
|
||||||
|
z = 1.0 / z;
|
||||||
|
c = f * z;
|
||||||
|
s = h * z;
|
||||||
|
}
|
||||||
|
f = c * g + s * y;
|
||||||
|
x = c * y - s * g;
|
||||||
|
for (jj = 1; jj <= m; jj++) {
|
||||||
|
y = a[jj][j];
|
||||||
|
z = a[jj][i];
|
||||||
|
a[jj][j] = y * c + z * s;
|
||||||
|
a[jj][i] = z * c - y * s;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
rv1[l - 1] = 0.0;
|
||||||
|
rv1[k - 1] = f;
|
||||||
|
w[k] = x;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
break;
|
|
||||||
}
|
|
||||||
if (its == 30) throw(std::domain_error("no convergence in 30 svdcmp iterations"));
|
|
||||||
x=w[l];
|
|
||||||
nm=k-1;
|
|
||||||
y=w[nm];
|
|
||||||
g=rv1[nm-1] ;
|
|
||||||
h=rv1[k-1];
|
|
||||||
f=((y-z)*(y+z)+(g-h)*(g+h))/(2.0*h*y);
|
|
||||||
g=pythag(f,1.0);
|
|
||||||
f=((x-z)*(x+z)+h*((y/(f+SIGN(g,f)))-h))/x;
|
|
||||||
c=s=1.0;
|
|
||||||
for (j=l;j<=nm;j++) {
|
|
||||||
i=j+1;
|
|
||||||
g=rv1[i-1];
|
|
||||||
y=w[i];
|
|
||||||
h=s*g;
|
|
||||||
g=c*g;
|
|
||||||
z=pythag(f,h);
|
|
||||||
rv1[j-1]=z;
|
|
||||||
c=f/z;
|
|
||||||
s=h/z;
|
|
||||||
f=x*c+g*s;
|
|
||||||
g = g*c-x*s;
|
|
||||||
h=y*s;
|
|
||||||
y *= c;
|
|
||||||
for (jj=1;jj<=n;jj++) {
|
|
||||||
x=v[jj][j];
|
|
||||||
z=v[jj][i];
|
|
||||||
v[jj][j]=x*c+z*s;
|
|
||||||
v[jj][i]=z*c-x*s;
|
|
||||||
}
|
|
||||||
z=pythag(f,h);
|
|
||||||
w[j]=z;
|
|
||||||
if (z) {
|
|
||||||
z=1.0/z;
|
|
||||||
c=f*z;
|
|
||||||
s=h*z;
|
|
||||||
}
|
|
||||||
f=c*g+s*y;
|
|
||||||
x=c*y-s*g;
|
|
||||||
for (jj=1;jj<=m;jj++) {
|
|
||||||
y=a[jj][j];
|
|
||||||
z=a[jj][i];
|
|
||||||
a[jj][j]=y*c+z*s;
|
|
||||||
a[jj][i]=z*c-y*s;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
rv1[l-1]=0.0;
|
|
||||||
rv1[k-1]=f;
|
|
||||||
w[k]=x;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
delete[] rv1;
|
if (sort) {
|
||||||
|
int *indices1 = new int[n];
|
||||||
|
int *indices2 = new int[n];
|
||||||
|
for (int i1 = 1; i1 <= n; i1++) {
|
||||||
|
indices1[i1] = i1;
|
||||||
|
indices2[i1] = i1;
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int i1 = 1; i1 <= n; i1++) {
|
||||||
|
for (int i2 = i1; i2 <= n; i2++) {
|
||||||
|
if (w[i1] < w[i2]) {
|
||||||
|
double temp = w[i1];
|
||||||
|
w[i1] = w[i2];
|
||||||
|
w[i2] = temp;
|
||||||
|
int ind = indices2[i1];
|
||||||
|
indices2[i1] = indices2[i2];
|
||||||
|
indices2[i2] = ind;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int i1 = 1; i1 <= n; i1++) {
|
||||||
|
if (indices1[i1] != indices2[i1]) {
|
||||||
|
int src = indices1[i1], dst = indices2[i1];
|
||||||
|
for (int j = 1; j <= n; j++) {
|
||||||
|
double temp = v[j][src];
|
||||||
|
v[j][src] = v[j][dst];
|
||||||
|
v[j][dst] = temp;
|
||||||
|
}
|
||||||
|
indices1[dst] = src;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
delete[] indices1;
|
||||||
|
delete[] indices2;
|
||||||
|
}
|
||||||
|
|
||||||
|
delete[] rv1;
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
|
|
|
@ -10,5 +10,5 @@
|
||||||
#pragma once
|
#pragma once
|
||||||
|
|
||||||
/** SVD decomposition */
|
/** SVD decomposition */
|
||||||
void svdcmp(double **a, int m, int n, double w[], double **v);
|
void svdcmp(double **a, int m, int n, double w[], double **v, bool sort = true);
|
||||||
|
|
||||||
|
|
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue