Merge pull request #918 from borglab/add-Similarity2-classes

release/4.3a0
Varun Agrawal 2022-04-30 19:21:43 -04:00 committed by GitHub
commit 69310840af
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
18 changed files with 854 additions and 113 deletions

View File

@ -113,6 +113,18 @@ list<Point2> circleCircleIntersection(Point2 c1, double r1, Point2 c2,
return circleCircleIntersection(c1, c2, fh); return circleCircleIntersection(c1, c2, fh);
} }
Point2Pair means(const std::vector<Point2Pair> &abPointPairs) {
const size_t n = abPointPairs.size();
if (n == 0) throw std::invalid_argument("Point2::mean input Point2Pair vector is empty");
Point2 aSum(0, 0), bSum(0, 0);
for (const Point2Pair &abPair : abPointPairs) {
aSum += abPair.first;
bSum += abPair.second;
}
const double f = 1.0 / n;
return {aSum * f, bSum * f};
}
/* ************************************************************************* */ /* ************************************************************************* */
ostream &operator<<(ostream &os, const gtsam::Point2Pair &p) { ostream &operator<<(ostream &os, const gtsam::Point2Pair &p) {
os << p.first << " <-> " << p.second; os << p.first << " <-> " << p.second;

View File

@ -72,6 +72,9 @@ GTSAM_EXPORT boost::optional<Point2> circleCircleIntersection(double R_d, double
*/ */
GTSAM_EXPORT std::list<Point2> circleCircleIntersection(Point2 c1, Point2 c2, boost::optional<Point2> fh); GTSAM_EXPORT std::list<Point2> circleCircleIntersection(Point2 c1, Point2 c2, boost::optional<Point2> fh);
/// Calculate the two means of a set of Point2 pairs
GTSAM_EXPORT Point2Pair means(const std::vector<Point2Pair> &abPointPairs);
/** /**
* @brief Intersect 2 circles * @brief Intersect 2 circles
* @param c1 center of first circle * @param c1 center of first circle

View File

@ -353,6 +353,10 @@ GTSAM_EXPORT boost::optional<Pose2>
GTSAM_DEPRECATED align(const Point2Pairs& pairs); GTSAM_DEPRECATED align(const Point2Pairs& pairs);
#endif #endif
// Convenience typedef
using Pose2Pair = std::pair<Pose2, Pose2>;
using Pose2Pairs = std::vector<Pose2Pair>;
template <> template <>
struct traits<Pose2> : public internal::LieGroup<Pose2> {}; struct traits<Pose2> : public internal::LieGroup<Pose2> {};

View File

@ -129,6 +129,19 @@ Rot2 Rot2::relativeBearing(const Point2& d, OptionalJacobian<1, 2> H) {
} }
} }
/* ************************************************************************* */
Rot2 Rot2::ClosestTo(const Matrix2& M) {
Eigen::JacobiSVD<Matrix2> svd(M, Eigen::ComputeFullU | Eigen::ComputeFullV);
const Matrix2& U = svd.matrixU();
const Matrix2& V = svd.matrixV();
const double det = (U * V.transpose()).determinant();
Matrix2 M_prime = (U * Vector2(1, det).asDiagonal() * V.transpose());
double c = M_prime(0, 0);
double s = M_prime(1, 0);
return Rot2::fromCosSin(c, s);
}
/* ************************************************************************* */ /* ************************************************************************* */
} // gtsam } // gtsam

View File

@ -14,6 +14,7 @@
* @brief 2D rotation * @brief 2D rotation
* @date Dec 9, 2009 * @date Dec 9, 2009
* @author Frank Dellaert * @author Frank Dellaert
* @author John Lambert
*/ */
#pragma once #pragma once
@ -209,6 +210,9 @@ namespace gtsam {
/** return 2*2 transpose (inverse) rotation matrix */ /** return 2*2 transpose (inverse) rotation matrix */
Matrix2 transpose() const; Matrix2 transpose() const;
/** Find closest valid rotation matrix, given a 2x2 matrix */
static Rot2 ClosestTo(const Matrix2& M);
private: private:
/** Serialization function */ /** Serialization function */
friend class boost::serialization::access; friend class boost::serialization::access;

View File

@ -0,0 +1,242 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file Similarity2.cpp
* @brief Implementation of Similarity2 transform
* @author John Lambert, Varun Agrawal
*/
#include <gtsam/base/Manifold.h>
#include <gtsam/geometry/Pose2.h>
#include <gtsam/geometry/Rot3.h>
#include <gtsam/geometry/Similarity2.h>
#include <gtsam/slam/KarcherMeanFactor-inl.h>
namespace gtsam {
using std::vector;
namespace internal {
/// Subtract centroids from point pairs.
static Point2Pairs SubtractCentroids(const Point2Pairs& abPointPairs,
const Point2Pair& centroids) {
Point2Pairs d_abPointPairs;
for (const Point2Pair& abPair : abPointPairs) {
Point2 da = abPair.first - centroids.first;
Point2 db = abPair.second - centroids.second;
d_abPointPairs.emplace_back(da, db);
}
return d_abPointPairs;
}
/// Form inner products x and y and calculate scale.
static double CalculateScale(const Point2Pairs& d_abPointPairs,
const Rot2& aRb) {
double x = 0, y = 0;
Point2 da, db;
for (const Point2Pair& d_abPair : d_abPointPairs) {
std::tie(da, db) = d_abPair;
const Vector2 da_prime = aRb * db;
y += da.transpose() * da_prime;
x += da_prime.transpose() * da_prime;
}
const double s = y / x;
return s;
}
/// Form outer product H.
static Matrix2 CalculateH(const Point2Pairs& d_abPointPairs) {
Matrix2 H = Z_2x2;
for (const Point2Pair& d_abPair : d_abPointPairs) {
H += d_abPair.first * d_abPair.second.transpose();
}
return H;
}
/**
* @brief This method estimates the similarity transform from differences point
* pairs, given a known or estimated rotation and point centroids.
*
* @param d_abPointPairs
* @param aRb
* @param centroids
* @return Similarity2
*/
static Similarity2 Align(const Point2Pairs& d_abPointPairs, const Rot2& aRb,
const Point2Pair& centroids) {
const double s = CalculateScale(d_abPointPairs, aRb);
// dividing aTb by s is required because the registration cost function
// minimizes ||a - sRb - t||, whereas Sim(2) computes s(Rb + t)
const Point2 aTb = (centroids.first - s * (aRb * centroids.second)) / s;
return Similarity2(aRb, aTb, s);
}
/**
* @brief This method estimates the similarity transform from point pairs,
* given a known or estimated rotation.
* Refer to:
* http://www5.informatik.uni-erlangen.de/Forschung/Publikationen/2005/Zinsser05-PSR.pdf
* Chapter 3
*
* @param abPointPairs
* @param aRb
* @return Similarity2
*/
static Similarity2 AlignGivenR(const Point2Pairs& abPointPairs,
const Rot2& aRb) {
auto centroids = means(abPointPairs);
auto d_abPointPairs = internal::SubtractCentroids(abPointPairs, centroids);
return internal::Align(d_abPointPairs, aRb, centroids);
}
} // namespace internal
Similarity2::Similarity2() : t_(0, 0), s_(1) {}
Similarity2::Similarity2(double s) : t_(0, 0), s_(s) {}
Similarity2::Similarity2(const Rot2& R, const Point2& t, double s)
: R_(R), t_(t), s_(s) {}
Similarity2::Similarity2(const Matrix2& R, const Vector2& t, double s)
: R_(Rot2::ClosestTo(R)), t_(t), s_(s) {}
Similarity2::Similarity2(const Matrix3& T)
: R_(Rot2::ClosestTo(T.topLeftCorner<2, 2>())),
t_(T.topRightCorner<2, 1>()),
s_(1.0 / T(2, 2)) {}
bool Similarity2::equals(const Similarity2& other, double tol) const {
return R_.equals(other.R_, tol) &&
traits<Point2>::Equals(t_, other.t_, tol) && s_ < (other.s_ + tol) &&
s_ > (other.s_ - tol);
}
bool Similarity2::operator==(const Similarity2& other) const {
return R_.matrix() == other.R_.matrix() && t_ == other.t_ && s_ == other.s_;
}
void Similarity2::print(const std::string& s) const {
std::cout << std::endl;
std::cout << s;
rotation().print("\nR:\n");
std::cout << "t: " << translation().transpose() << " s: " << scale()
<< std::endl;
}
Similarity2 Similarity2::identity() { return Similarity2(); }
Similarity2 Similarity2::operator*(const Similarity2& S) const {
return Similarity2(R_ * S.R_, ((1.0 / S.s_) * t_) + R_ * S.t_, s_ * S.s_);
}
Similarity2 Similarity2::inverse() const {
const Rot2 Rt = R_.inverse();
const Point2 sRt = Rt * (-s_ * t_);
return Similarity2(Rt, sRt, 1.0 / s_);
}
Point2 Similarity2::transformFrom(const Point2& p) const {
const Point2 q = R_ * p + t_;
return s_ * q;
}
Pose2 Similarity2::transformFrom(const Pose2& T) const {
Rot2 R = R_.compose(T.rotation());
Point2 t = Point2(s_ * (R_ * T.translation() + t_));
return Pose2(R, t);
}
Point2 Similarity2::operator*(const Point2& p) const {
return transformFrom(p);
}
Similarity2 Similarity2::Align(const Point2Pairs& abPointPairs) {
// Refer to Chapter 3 of
// http://www5.informatik.uni-erlangen.de/Forschung/Publikationen/2005/Zinsser05-PSR.pdf
if (abPointPairs.size() < 2)
throw std::runtime_error("input should have at least 2 pairs of points");
auto centroids = means(abPointPairs);
auto d_abPointPairs = internal::SubtractCentroids(abPointPairs, centroids);
Matrix2 H = internal::CalculateH(d_abPointPairs);
// ClosestTo finds rotation matrix closest to H in Frobenius sense
Rot2 aRb = Rot2::ClosestTo(H);
return internal::Align(d_abPointPairs, aRb, centroids);
}
Similarity2 Similarity2::Align(const Pose2Pairs& abPosePairs) {
const size_t n = abPosePairs.size();
if (n < 2)
throw std::runtime_error("input should have at least 2 pairs of poses");
// calculate rotation
vector<Rot2> rotations;
Point2Pairs abPointPairs;
rotations.reserve(n);
abPointPairs.reserve(n);
// Below denotes the pose of the i'th object/camera/etc
// in frame "a" or frame "b".
Pose2 aTi, bTi;
for (const Pose2Pair& abPair : abPosePairs) {
std::tie(aTi, bTi) = abPair;
const Rot2 aRb = aTi.rotation().compose(bTi.rotation().inverse());
rotations.emplace_back(aRb);
abPointPairs.emplace_back(aTi.translation(), bTi.translation());
}
const Rot2 aRb_estimate = FindKarcherMean<Rot2>(rotations);
return internal::AlignGivenR(abPointPairs, aRb_estimate);
}
Vector4 Similarity2::Logmap(const Similarity2& S, //
OptionalJacobian<4, 4> Hm) {
const Vector2 u = S.t_;
const Vector1 w = Rot2::Logmap(S.R_);
const double s = log(S.s_);
Vector4 result;
result << u, w, s;
if (Hm) {
throw std::runtime_error("Similarity2::Logmap: derivative not implemented");
}
return result;
}
Similarity2 Similarity2::Expmap(const Vector4& v, //
OptionalJacobian<4, 4> Hm) {
const Vector2 t = v.head<2>();
const Rot2 R = Rot2::Expmap(v.segment<1>(2));
const double s = v[3];
if (Hm) {
throw std::runtime_error("Similarity2::Expmap: derivative not implemented");
}
return Similarity2(R, t, s);
}
Matrix4 Similarity2::AdjointMap() const {
throw std::runtime_error("Similarity2::AdjointMap not implemented");
}
std::ostream& operator<<(std::ostream& os, const Similarity2& p) {
os << "[" << p.rotation().theta() << " " << p.translation().transpose() << " "
<< p.scale() << "]\';";
return os;
}
Matrix3 Similarity2::matrix() const {
Matrix3 T;
T.topRows<2>() << R_.matrix(), t_;
T.bottomRows<1>() << 0, 0, 1.0 / s_;
return T;
}
} // namespace gtsam

View File

@ -0,0 +1,200 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file Similarity2.h
* @brief Implementation of Similarity2 transform
* @author John Lambert, Varun Agrawal
*/
#pragma once
#include <gtsam/base/Lie.h>
#include <gtsam/base/Manifold.h>
#include <gtsam/dllexport.h>
#include <gtsam/geometry/Point2.h>
#include <gtsam/geometry/Pose2.h>
#include <gtsam/geometry/Rot2.h>
namespace gtsam {
// Forward declarations
class Pose2;
/**
* 2D similarity transform
*/
class GTSAM_EXPORT Similarity2 : public LieGroup<Similarity2, 4> {
/// @name Pose Concept
/// @{
typedef Rot2 Rotation;
typedef Point2 Translation;
/// @}
private:
Rot2 R_;
Point2 t_;
double s_;
public:
/// @name Constructors
/// @{
/// Default constructor
Similarity2();
/// Construct pure scaling
Similarity2(double s);
/// Construct from GTSAM types
Similarity2(const Rot2& R, const Point2& t, double s);
/// Construct from Eigen types
Similarity2(const Matrix2& R, const Vector2& t, double s);
/// Construct from matrix [R t; 0 s^-1]
Similarity2(const Matrix3& T);
/// @}
/// @name Testable
/// @{
/// Compare with tolerance
bool equals(const Similarity2& sim, double tol) const;
/// Exact equality
bool operator==(const Similarity2& other) const;
/// Print with optional string
void print(const std::string& s) const;
friend std::ostream& operator<<(std::ostream& os, const Similarity2& p);
/// @}
/// @name Group
/// @{
/// Return an identity transform
static Similarity2 identity();
/// Composition
Similarity2 operator*(const Similarity2& S) const;
/// Return the inverse
Similarity2 inverse() const;
/// @}
/// @name Group action on Point2
/// @{
/// Action on a point p is s*(R*p+t)
Point2 transformFrom(const Point2& p) const;
/**
* Action on a pose T.
* |Rs ts| |R t| |Rs*R Rs*t+ts|
* |0 1/s| * |0 1| = | 0 1/s |, the result is still a Sim2 object.
* To retrieve a Pose2, we normalized the scale value into 1.
* |Rs*R Rs*t+ts| |Rs*R s(Rs*t+ts)|
* | 0 1/s | = | 0 1 |
*
* This group action satisfies the compatibility condition.
* For more details, refer to: https://en.wikipedia.org/wiki/Group_action
*/
Pose2 transformFrom(const Pose2& T) const;
/* syntactic sugar for transformFrom */
Point2 operator*(const Point2& p) const;
/**
* Create Similarity2 by aligning at least two point pairs
*/
static Similarity2 Align(const Point2Pairs& abPointPairs);
/**
* Create the Similarity2 object that aligns at least two pose pairs.
* Each pair is of the form (aTi, bTi).
* Given a list of pairs in frame a, and a list of pairs in frame b,
Align()
* will compute the best-fit Similarity2 aSb transformation to align them.
* First, the rotation aRb will be computed as the average (Karcher mean)
of
* many estimates aRb (from each pair). Afterwards, the scale factor will
be computed
* using the algorithm described here:
* http://www5.informatik.uni-erlangen.de/Forschung/Publikationen/2005/Zinsser05-PSR.pdf
*/
static Similarity2 Align(const std::vector<Pose2Pair>& abPosePairs);
/// @}
/// @name Lie Group
/// @{
/**
* Log map at the identity
* \f$ [t_x, t_y, \delta, \lambda] \f$
*/
static Vector4 Logmap(const Similarity2& S, //
OptionalJacobian<4, 4> Hm = boost::none);
/// Exponential map at the identity
static Similarity2 Expmap(const Vector4& v, //
OptionalJacobian<4, 4> Hm = boost::none);
/// Chart at the origin
struct ChartAtOrigin {
static Similarity2 Retract(const Vector4& v,
ChartJacobian H = boost::none) {
return Similarity2::Expmap(v, H);
}
static Vector4 Local(const Similarity2& other,
ChartJacobian H = boost::none) {
return Similarity2::Logmap(other, H);
}
};
/// Project from one tangent space to another
Matrix4 AdjointMap() const;
using LieGroup<Similarity2, 4>::inverse;
/// @}
/// @name Standard interface
/// @{
/// Calculate 4*4 matrix group equivalent
Matrix3 matrix() const;
/// Return a GTSAM rotation
Rot2 rotation() const { return R_; }
/// Return a GTSAM translation
Point2 translation() const { return t_; }
/// Return the scale
double scale() const { return s_; }
/// Dimensionality of tangent space = 4 DOF - used to autodetect sizes
inline static size_t Dim() { return 4; }
/// Dimensionality of tangent space = 4 DOF
inline size_t dim() const { return 4; }
/// @}
};
template <>
struct traits<Similarity2> : public internal::LieGroup<Similarity2> {};
template <>
struct traits<const Similarity2> : public internal::LieGroup<Similarity2> {};
} // namespace gtsam

View File

@ -26,7 +26,7 @@ namespace gtsam {
using std::vector; using std::vector;
namespace { namespace internal {
/// Subtract centroids from point pairs. /// Subtract centroids from point pairs.
static Point3Pairs subtractCentroids(const Point3Pairs &abPointPairs, static Point3Pairs subtractCentroids(const Point3Pairs &abPointPairs,
const Point3Pair &centroids) { const Point3Pair &centroids) {
@ -81,10 +81,10 @@ static Similarity3 align(const Point3Pairs &d_abPointPairs, const Rot3 &aRb,
static Similarity3 alignGivenR(const Point3Pairs &abPointPairs, static Similarity3 alignGivenR(const Point3Pairs &abPointPairs,
const Rot3 &aRb) { const Rot3 &aRb) {
auto centroids = means(abPointPairs); auto centroids = means(abPointPairs);
auto d_abPointPairs = subtractCentroids(abPointPairs, centroids); auto d_abPointPairs = internal::subtractCentroids(abPointPairs, centroids);
return align(d_abPointPairs, aRb, centroids); return align(d_abPointPairs, aRb, centroids);
} }
} // namespace } // namespace internal
Similarity3::Similarity3() : Similarity3::Similarity3() :
t_(0,0,0), s_(1) { t_(0,0,0), s_(1) {
@ -165,11 +165,11 @@ Similarity3 Similarity3::Align(const Point3Pairs &abPointPairs) {
if (abPointPairs.size() < 3) if (abPointPairs.size() < 3)
throw std::runtime_error("input should have at least 3 pairs of points"); throw std::runtime_error("input should have at least 3 pairs of points");
auto centroids = means(abPointPairs); auto centroids = means(abPointPairs);
auto d_abPointPairs = subtractCentroids(abPointPairs, centroids); auto d_abPointPairs = internal::subtractCentroids(abPointPairs, centroids);
Matrix3 H = calculateH(d_abPointPairs); Matrix3 H = internal::calculateH(d_abPointPairs);
// ClosestTo finds rotation matrix closest to H in Frobenius sense // ClosestTo finds rotation matrix closest to H in Frobenius sense
Rot3 aRb = Rot3::ClosestTo(H); Rot3 aRb = Rot3::ClosestTo(H);
return align(d_abPointPairs, aRb, centroids); return internal::align(d_abPointPairs, aRb, centroids);
} }
Similarity3 Similarity3::Align(const vector<Pose3Pair> &abPosePairs) { Similarity3 Similarity3::Align(const vector<Pose3Pair> &abPosePairs) {
@ -192,7 +192,7 @@ Similarity3 Similarity3::Align(const vector<Pose3Pair> &abPosePairs) {
} }
const Rot3 aRb_estimate = FindKarcherMean<Rot3>(rotations); const Rot3 aRb_estimate = FindKarcherMean<Rot3>(rotations);
return alignGivenR(abPointPairs, aRb_estimate); return internal::alignGivenR(abPointPairs, aRb_estimate);
} }
Matrix4 Similarity3::wedge(const Vector7 &xi) { Matrix4 Similarity3::wedge(const Vector7 &xi) {
@ -283,15 +283,11 @@ std::ostream &operator<<(std::ostream &os, const Similarity3& p) {
return os; return os;
} }
const Matrix4 Similarity3::matrix() const { Matrix4 Similarity3::matrix() const {
Matrix4 T; Matrix4 T;
T.topRows<3>() << R_.matrix(), t_; T.topRows<3>() << R_.matrix(), t_;
T.bottomRows<1>() << 0, 0, 0, 1.0 / s_; T.bottomRows<1>() << 0, 0, 0, 1.0 / s_;
return T; return T;
} }
Similarity3::operator Pose3() const {
return Pose3(R_, s_ * t_);
}
} // namespace gtsam } // namespace gtsam

View File

@ -18,13 +18,12 @@
#pragma once #pragma once
#include <gtsam/geometry/Rot3.h>
#include <gtsam/geometry/Point3.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/base/Lie.h> #include <gtsam/base/Lie.h>
#include <gtsam/base/Manifold.h> #include <gtsam/base/Manifold.h>
#include <gtsam/dllexport.h> #include <gtsam/dllexport.h>
#include <gtsam/geometry/Point3.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/geometry/Rot3.h>
namespace gtsam { namespace gtsam {
@ -34,8 +33,7 @@ class Pose3;
/** /**
* 3D similarity transform * 3D similarity transform
*/ */
class Similarity3: public LieGroup<Similarity3, 7> { class GTSAM_EXPORT Similarity3 : public LieGroup<Similarity3, 7> {
/// @name Pose Concept /// @name Pose Concept
/// @{ /// @{
typedef Rot3 Rotation; typedef Rot3 Rotation;
@ -48,59 +46,58 @@ private:
double s_; double s_;
public: public:
/// @name Constructors /// @name Constructors
/// @{ /// @{
/// Default constructor /// Default constructor
GTSAM_EXPORT Similarity3(); Similarity3();
/// Construct pure scaling /// Construct pure scaling
GTSAM_EXPORT Similarity3(double s); Similarity3(double s);
/// Construct from GTSAM types /// Construct from GTSAM types
GTSAM_EXPORT Similarity3(const Rot3& R, const Point3& t, double s); Similarity3(const Rot3& R, const Point3& t, double s);
/// Construct from Eigen types /// Construct from Eigen types
GTSAM_EXPORT Similarity3(const Matrix3& R, const Vector3& t, double s); Similarity3(const Matrix3& R, const Vector3& t, double s);
/// Construct from matrix [R t; 0 s^-1] /// Construct from matrix [R t; 0 s^-1]
GTSAM_EXPORT Similarity3(const Matrix4& T); Similarity3(const Matrix4& T);
/// @} /// @}
/// @name Testable /// @name Testable
/// @{ /// @{
/// Compare with tolerance /// Compare with tolerance
GTSAM_EXPORT bool equals(const Similarity3& sim, double tol) const; bool equals(const Similarity3& sim, double tol) const;
/// Exact equality /// Exact equality
GTSAM_EXPORT bool operator==(const Similarity3& other) const; bool operator==(const Similarity3& other) const;
/// Print with optional string /// Print with optional string
GTSAM_EXPORT void print(const std::string& s) const; void print(const std::string& s) const;
GTSAM_EXPORT friend std::ostream &operator<<(std::ostream &os, const Similarity3& p); friend std::ostream& operator<<(std::ostream& os, const Similarity3& p);
/// @} /// @}
/// @name Group /// @name Group
/// @{ /// @{
/// Return an identity transform /// Return an identity transform
GTSAM_EXPORT static Similarity3 identity(); static Similarity3 identity();
/// Composition /// Composition
GTSAM_EXPORT Similarity3 operator*(const Similarity3& S) const; Similarity3 operator*(const Similarity3& S) const;
/// Return the inverse /// Return the inverse
GTSAM_EXPORT Similarity3 inverse() const; Similarity3 inverse() const;
/// @} /// @}
/// @name Group action on Point3 /// @name Group action on Point3
/// @{ /// @{
/// Action on a point p is s*(R*p+t) /// Action on a point p is s*(R*p+t)
GTSAM_EXPORT Point3 transformFrom(const Point3& p, // Point3 transformFrom(const Point3& p, //
OptionalJacobian<3, 7> H1 = boost::none, // OptionalJacobian<3, 7> H1 = boost::none, //
OptionalJacobian<3, 3> H2 = boost::none) const; OptionalJacobian<3, 3> H2 = boost::none) const;
@ -115,15 +112,15 @@ public:
* This group action satisfies the compatibility condition. * This group action satisfies the compatibility condition.
* For more details, refer to: https://en.wikipedia.org/wiki/Group_action * For more details, refer to: https://en.wikipedia.org/wiki/Group_action
*/ */
GTSAM_EXPORT Pose3 transformFrom(const Pose3& T) const; Pose3 transformFrom(const Pose3& T) const;
/** syntactic sugar for transformFrom */ /** syntactic sugar for transformFrom */
GTSAM_EXPORT Point3 operator*(const Point3& p) const; Point3 operator*(const Point3& p) const;
/** /**
* Create Similarity3 by aligning at least three point pairs * Create Similarity3 by aligning at least three point pairs
*/ */
GTSAM_EXPORT static Similarity3 Align(const std::vector<Point3Pair>& abPointPairs); static Similarity3 Align(const std::vector<Point3Pair>& abPointPairs);
/** /**
* Create the Similarity3 object that aligns at least two pose pairs. * Create the Similarity3 object that aligns at least two pose pairs.
@ -131,11 +128,11 @@ public:
* Given a list of pairs in frame a, and a list of pairs in frame b, Align() * Given a list of pairs in frame a, and a list of pairs in frame b, Align()
* will compute the best-fit Similarity3 aSb transformation to align them. * will compute the best-fit Similarity3 aSb transformation to align them.
* First, the rotation aRb will be computed as the average (Karcher mean) of * First, the rotation aRb will be computed as the average (Karcher mean) of
* many estimates aRb (from each pair). Afterwards, the scale factor will be computed * many estimates aRb (from each pair). Afterwards, the scale factor will be
* using the algorithm described here: * computed using the algorithm described here:
* http://www5.informatik.uni-erlangen.de/Forschung/Publikationen/2005/Zinsser05-PSR.pdf * http://www5.informatik.uni-erlangen.de/Forschung/Publikationen/2005/Zinsser05-PSR.pdf
*/ */
GTSAM_EXPORT static Similarity3 Align(const std::vector<Pose3Pair>& abPosePairs); static Similarity3 Align(const std::vector<Pose3Pair>& abPosePairs);
/// @} /// @}
/// @name Lie Group /// @name Lie Group
@ -144,20 +141,22 @@ public:
/** Log map at the identity /** Log map at the identity
* \f$ [R_x,R_y,R_z, t_x, t_y, t_z, \lambda] \f$ * \f$ [R_x,R_y,R_z, t_x, t_y, t_z, \lambda] \f$
*/ */
GTSAM_EXPORT static Vector7 Logmap(const Similarity3& s, // static Vector7 Logmap(const Similarity3& s, //
OptionalJacobian<7, 7> Hm = boost::none); OptionalJacobian<7, 7> Hm = boost::none);
/** Exponential map at the identity /** Exponential map at the identity
*/ */
GTSAM_EXPORT static Similarity3 Expmap(const Vector7& v, // static Similarity3 Expmap(const Vector7& v, //
OptionalJacobian<7, 7> Hm = boost::none); OptionalJacobian<7, 7> Hm = boost::none);
/// Chart at the origin /// Chart at the origin
struct ChartAtOrigin { struct ChartAtOrigin {
static Similarity3 Retract(const Vector7& v, ChartJacobian H = boost::none) { static Similarity3 Retract(const Vector7& v,
ChartJacobian H = boost::none) {
return Similarity3::Expmap(v, H); return Similarity3::Expmap(v, H);
} }
static Vector7 Local(const Similarity3& other, ChartJacobian H = boost::none) { static Vector7 Local(const Similarity3& other,
ChartJacobian H = boost::none) {
return Similarity3::Logmap(other, H); return Similarity3::Logmap(other, H);
} }
}; };
@ -170,46 +169,32 @@ public:
* @return 4*4 element of Lie algebra that can be exponentiated * @return 4*4 element of Lie algebra that can be exponentiated
* TODO(frank): rename to Hat, make part of traits * TODO(frank): rename to Hat, make part of traits
*/ */
GTSAM_EXPORT static Matrix4 wedge(const Vector7& xi); static Matrix4 wedge(const Vector7& xi);
/// Project from one tangent space to another /// Project from one tangent space to another
GTSAM_EXPORT Matrix7 AdjointMap() const; Matrix7 AdjointMap() const;
/// @} /// @}
/// @name Standard interface /// @name Standard interface
/// @{ /// @{
/// Calculate 4*4 matrix group equivalent /// Calculate 4*4 matrix group equivalent
GTSAM_EXPORT const Matrix4 matrix() const; Matrix4 matrix() const;
/// Return a GTSAM rotation /// Return a GTSAM rotation
const Rot3& rotation() const { Rot3 rotation() const { return R_; }
return R_;
}
/// Return a GTSAM translation /// Return a GTSAM translation
const Point3& translation() const { Point3 translation() const { return t_; }
return t_;
}
/// Return the scale /// Return the scale
double scale() const { double scale() const { return s_; }
return s_;
}
/// Convert to a rigid body pose (R, s*t)
/// TODO(frank): why is this here? Red flag! Definitely don't have it as a cast.
GTSAM_EXPORT operator Pose3() const;
/// Dimensionality of tangent space = 7 DOF - used to autodetect sizes /// Dimensionality of tangent space = 7 DOF - used to autodetect sizes
inline static size_t Dim() { inline static size_t Dim() { return 7; }
return 7;
}
/// Dimensionality of tangent space = 7 DOF /// Dimensionality of tangent space = 7 DOF
inline size_t dim() const { inline size_t dim() const { return 7; }
return 7;
}
/// @} /// @}
/// @name Helper functions /// @name Helper functions

View File

@ -915,6 +915,29 @@ class PinholeCamera {
void serialize() const; void serialize() const;
}; };
#include <gtsam/geometry/Similarity2.h>
class Similarity2 {
// Standard Constructors
Similarity2();
Similarity2(double s);
Similarity2(const gtsam::Rot2& R, const gtsam::Point2& t, double s);
Similarity2(const Matrix& R, const Vector& t, double s);
Similarity2(const Matrix& T);
gtsam::Point2 transformFrom(const gtsam::Point2& p) const;
gtsam::Pose2 transformFrom(const gtsam::Pose2& T);
static gtsam::Similarity2 Align(const gtsam::Point2Pairs& abPointPairs);
static gtsam::Similarity2 Align(const gtsam::Pose2Pairs& abPosePairs);
// Standard Interface
bool equals(const gtsam::Similarity2& sim, double tol) const;
Matrix matrix() const;
gtsam::Rot2& rotation();
gtsam::Point2& translation();
double scale() const;
};
#include <gtsam/geometry/Similarity3.h> #include <gtsam/geometry/Similarity3.h>
class Similarity3 { class Similarity3 {
// Standard Constructors // Standard Constructors
@ -931,9 +954,10 @@ class Similarity3 {
static gtsam::Similarity3 Align(const gtsam::Pose3Pairs& abPosePairs); static gtsam::Similarity3 Align(const gtsam::Pose3Pairs& abPosePairs);
// Standard Interface // Standard Interface
const Matrix matrix() const; bool equals(const gtsam::Similarity3& sim, double tol) const;
const gtsam::Rot3& rotation(); Matrix matrix() const;
const gtsam::Point3& translation(); gtsam::Rot3& rotation();
gtsam::Point3& translation();
double scale() const; double scale() const;
}; };

View File

@ -0,0 +1,66 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testSimilarity2.cpp
* @brief Unit tests for Similarity2 class
* @author Varun Agrawal
*/
#include <CppUnitLite/TestHarness.h>
#include <gtsam/base/Testable.h>
#include <gtsam/base/numericalDerivative.h>
#include <gtsam/base/testLie.h>
#include <gtsam/geometry/Similarity2.h>
#include <functional>
using namespace std::placeholders;
using namespace gtsam;
using namespace std;
GTSAM_CONCEPT_TESTABLE_INST(Similarity2)
static const Point2 P(0.2, 0.7);
static const Rot2 R = Rot2::fromAngle(0.3);
static const double s = 4;
const double degree = M_PI / 180;
//******************************************************************************
TEST(Similarity2, Concepts) {
BOOST_CONCEPT_ASSERT((IsGroup<Similarity2>));
BOOST_CONCEPT_ASSERT((IsManifold<Similarity2>));
BOOST_CONCEPT_ASSERT((IsLieGroup<Similarity2>));
}
//******************************************************************************
TEST(Similarity2, Constructors) {
Similarity2 sim2_Construct1;
Similarity2 sim2_Construct2(s);
Similarity2 sim2_Construct3(R, P, s);
Similarity2 sim2_Construct4(R.matrix(), P, s);
}
//******************************************************************************
TEST(Similarity2, Getters) {
Similarity2 sim2_default;
EXPECT(assert_equal(Rot2(), sim2_default.rotation()));
EXPECT(assert_equal(Point2(0, 0), sim2_default.translation()));
EXPECT_DOUBLES_EQUAL(1.0, sim2_default.scale(), 1e-9);
}
//******************************************************************************
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
//******************************************************************************

View File

@ -458,18 +458,18 @@ TEST(Similarity3, Optimization2) {
Values result; Values result;
result = LevenbergMarquardtOptimizer(graph, initial).optimize(); result = LevenbergMarquardtOptimizer(graph, initial).optimize();
//result.print("Optimized Estimate\n"); //result.print("Optimized Estimate\n");
Pose3 p1, p2, p3, p4, p5; Similarity3 p1, p2, p3, p4, p5;
p1 = Pose3(result.at<Similarity3>(X(1))); p1 = result.at<Similarity3>(X(1));
p2 = Pose3(result.at<Similarity3>(X(2))); p2 = result.at<Similarity3>(X(2));
p3 = Pose3(result.at<Similarity3>(X(3))); p3 = result.at<Similarity3>(X(3));
p4 = Pose3(result.at<Similarity3>(X(4))); p4 = result.at<Similarity3>(X(4));
p5 = Pose3(result.at<Similarity3>(X(5))); p5 = result.at<Similarity3>(X(5));
//p1.print("Pose1"); //p1.print("Similarity1");
//p2.print("Pose2"); //p2.print("Similarity2");
//p3.print("Pose3"); //p3.print("Similarity3");
//p4.print("Pose4"); //p4.print("Similarity4");
//p5.print("Pose5"); //p5.print("Similarity5");
Similarity3 expected(0.7); Similarity3 expected(0.7);
EXPECT(assert_equal(expected, result.at<Similarity3>(X(5)), 0.4)); EXPECT(assert_equal(expected, result.at<Similarity3>(X(5)), 0.4));

View File

@ -27,7 +27,6 @@
#include <GeographicLib/Config.h> #include <GeographicLib/Config.h>
#include <GeographicLib/LocalCartesian.hpp> #include <GeographicLib/LocalCartesian.hpp>
using namespace std::placeholders;
using namespace std; using namespace std;
using namespace gtsam; using namespace gtsam;
using namespace GeographicLib; using namespace GeographicLib;

View File

@ -26,7 +26,6 @@
#include <GeographicLib/LocalCartesian.hpp> #include <GeographicLib/LocalCartesian.hpp>
using namespace std::placeholders;
using namespace std; using namespace std;
using namespace gtsam; using namespace gtsam;
using namespace GeographicLib; using namespace GeographicLib;
@ -95,7 +94,7 @@ TEST( MagFactor, Factors ) {
(std::bind(&MagFactor2::evaluateError, &f2, scaled, std::placeholders::_1, none, none), bias),// (std::bind(&MagFactor2::evaluateError, &f2, scaled, std::placeholders::_1, none, none), bias),//
H2, 1e-7)); H2, 1e-7));
// MagFactor2 // MagFactor3
MagFactor3 f3(1, 2, 3, measured, nRb, model); MagFactor3 f3(1, 2, 3, measured, nRb, model);
EXPECT(assert_equal(Z_3x1,f3.evaluateError(s,dir,bias,H1,H2,H3),1e-5)); EXPECT(assert_equal(Z_3x1,f3.evaluateError(s,dir,bias,H1,H2,H3),1e-5));
EXPECT(assert_equal((Matrix)numericalDerivative11<Vector,double> // EXPECT(assert_equal((Matrix)numericalDerivative11<Vector,double> //

View File

@ -40,8 +40,7 @@ T FindKarcherMeanImpl(const vector<T, ALLOC>& rotations) {
return result.at<T>(kKey); return result.at<T>(kKey);
} }
template <class T, template <class T>
typename = typename std::enable_if< std::is_same<gtsam::Rot3, T>::value >::type >
T FindKarcherMean(const std::vector<T>& rotations) { T FindKarcherMean(const std::vector<T>& rotations) {
return FindKarcherMeanImpl(rotations); return FindKarcherMeanImpl(rotations);
} }

View File

@ -23,8 +23,8 @@ PYBIND11_MAKE_OPAQUE(
std::vector<gtsam::Point2, Eigen::aligned_allocator<gtsam::Point2>>); std::vector<gtsam::Point2, Eigen::aligned_allocator<gtsam::Point2>>);
PYBIND11_MAKE_OPAQUE(gtsam::Point2Pairs); PYBIND11_MAKE_OPAQUE(gtsam::Point2Pairs);
PYBIND11_MAKE_OPAQUE(gtsam::Point3Pairs); PYBIND11_MAKE_OPAQUE(gtsam::Point3Pairs);
PYBIND11_MAKE_OPAQUE(gtsam::Pose2Pairs);
PYBIND11_MAKE_OPAQUE(gtsam::Pose3Pairs); PYBIND11_MAKE_OPAQUE(gtsam::Pose3Pairs);
PYBIND11_MAKE_OPAQUE(std::vector<gtsam::Pose3>); PYBIND11_MAKE_OPAQUE(std::vector<gtsam::Pose3>);
PYBIND11_MAKE_OPAQUE( PYBIND11_MAKE_OPAQUE(gtsam::CameraSet<gtsam::PinholeCamera<gtsam::Cal3Bundler>>);
gtsam::CameraSet<gtsam::PinholeCamera<gtsam::Cal3Bundler>>);
PYBIND11_MAKE_OPAQUE(gtsam::CameraSet<gtsam::PinholeCamera<gtsam::Cal3_S2>>); PYBIND11_MAKE_OPAQUE(gtsam::CameraSet<gtsam::PinholeCamera<gtsam::Cal3_S2>>);

View File

@ -16,6 +16,7 @@ py::bind_vector<
m_, "Point2Vector"); m_, "Point2Vector");
py::bind_vector<std::vector<gtsam::Point2Pair>>(m_, "Point2Pairs"); py::bind_vector<std::vector<gtsam::Point2Pair>>(m_, "Point2Pairs");
py::bind_vector<std::vector<gtsam::Point3Pair>>(m_, "Point3Pairs"); py::bind_vector<std::vector<gtsam::Point3Pair>>(m_, "Point3Pairs");
py::bind_vector<std::vector<gtsam::Pose2Pair>>(m_, "Pose2Pairs");
py::bind_vector<std::vector<gtsam::Pose3Pair>>(m_, "Pose3Pairs"); py::bind_vector<std::vector<gtsam::Pose3Pair>>(m_, "Pose3Pairs");
py::bind_vector<std::vector<gtsam::Pose3>>(m_, "Pose3Vector"); py::bind_vector<std::vector<gtsam::Pose3>>(m_, "Pose3Vector");
py::bind_vector<gtsam::CameraSet<gtsam::PinholeCamera<gtsam::Cal3_S2>>>( py::bind_vector<gtsam::CameraSet<gtsam::PinholeCamera<gtsam::Cal3_S2>>>(

View File

@ -0,0 +1,194 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
Sim3 unit tests.
Author: John Lambert
"""
# pylint: disable=no-name-in-module
import unittest
import numpy as np
from gtsam import Pose2, Pose2Pairs, Rot2, Similarity2
from gtsam.utils.test_case import GtsamTestCase
class TestSim2(GtsamTestCase):
"""Test selected Sim2 methods."""
def test_align_poses_along_straight_line(self) -> None:
"""Test Align Pose2Pairs method.
Scenario:
3 object poses
same scale (no gauge ambiguity)
world frame has poses rotated about 180 degrees.
world and egovehicle frame translated by 15 meters w.r.t. each other
"""
R180 = Rot2.fromDegrees(180)
# Create source poses (three objects o1, o2, o3 living in the egovehicle "e" frame)
# Suppose they are 3d cuboids detected by an onboard sensor in the egovehicle frame
eTo0 = Pose2(Rot2(), np.array([5, 0]))
eTo1 = Pose2(Rot2(), np.array([10, 0]))
eTo2 = Pose2(Rot2(), np.array([15, 0]))
eToi_list = [eTo0, eTo1, eTo2]
# Create destination poses
# (same three objects, but instead living in the world "w" frame)
wTo0 = Pose2(R180, np.array([-10, 0]))
wTo1 = Pose2(R180, np.array([-5, 0]))
wTo2 = Pose2(R180, np.array([0, 0]))
wToi_list = [wTo0, wTo1, wTo2]
we_pairs = Pose2Pairs(list(zip(wToi_list, eToi_list)))
# Recover the transformation wSe (i.e. world_S_egovehicle)
wSe = Similarity2.Align(we_pairs)
for wToi, eToi in zip(wToi_list, eToi_list):
self.gtsamAssertEquals(wToi, wSe.transformFrom(eToi))
def test_align_poses_along_straight_line_gauge(self):
"""Test if Align Pose3Pairs method can account for gauge ambiguity.
Scenario:
3 object poses
with gauge ambiguity (2x scale)
world frame has poses rotated by 90 degrees.
world and egovehicle frame translated by 11 meters w.r.t. each other
"""
R90 = Rot2.fromDegrees(90)
# Create source poses (three objects o1, o2, o3 living in the egovehicle "e" frame)
# Suppose they are 3d cuboids detected by an onboard sensor in the egovehicle frame
eTo0 = Pose2(Rot2(), np.array([1, 0]))
eTo1 = Pose2(Rot2(), np.array([2, 0]))
eTo2 = Pose2(Rot2(), np.array([4, 0]))
eToi_list = [eTo0, eTo1, eTo2]
# Create destination poses
# (same three objects, but instead living in the world/city "w" frame)
wTo0 = Pose2(R90, np.array([0, 12]))
wTo1 = Pose2(R90, np.array([0, 14]))
wTo2 = Pose2(R90, np.array([0, 18]))
wToi_list = [wTo0, wTo1, wTo2]
we_pairs = Pose2Pairs(list(zip(wToi_list, eToi_list)))
# Recover the transformation wSe (i.e. world_S_egovehicle)
wSe = Similarity2.Align(we_pairs)
for wToi, eToi in zip(wToi_list, eToi_list):
self.gtsamAssertEquals(wToi, wSe.transformFrom(eToi))
def test_align_poses_scaled_squares(self):
"""Test if Align Pose2Pairs method can account for gauge ambiguity.
Make sure a big and small square can be aligned.
The u's represent a big square (10x10), and v's represents a small square (4x4).
Scenario:
4 object poses
with gauge ambiguity (2.5x scale)
"""
# 0, 90, 180, and 270 degrees yaw
R0 = Rot2.fromDegrees(0)
R90 = Rot2.fromDegrees(90)
R180 = Rot2.fromDegrees(180)
R270 = Rot2.fromDegrees(270)
aTi0 = Pose2(R0, np.array([2, 3]))
aTi1 = Pose2(R90, np.array([12, 3]))
aTi2 = Pose2(R180, np.array([12, 13]))
aTi3 = Pose2(R270, np.array([2, 13]))
aTi_list = [aTi0, aTi1, aTi2, aTi3]
bTi0 = Pose2(R0, np.array([4, 3]))
bTi1 = Pose2(R90, np.array([8, 3]))
bTi2 = Pose2(R180, np.array([8, 7]))
bTi3 = Pose2(R270, np.array([4, 7]))
bTi_list = [bTi0, bTi1, bTi2, bTi3]
ab_pairs = Pose2Pairs(list(zip(aTi_list, bTi_list)))
# Recover the transformation wSe (i.e. world_S_egovehicle)
aSb = Similarity2.Align(ab_pairs)
for aTi, bTi in zip(aTi_list, bTi_list):
self.gtsamAssertEquals(aTi, aSb.transformFrom(bTi))
def test_constructor(self) -> None:
"""Sim(2) to perform p_b = bSa * p_a"""
bRa = Rot2()
bta = np.array([1, 2])
bsa = 3.0
bSa = Similarity2(R=bRa, t=bta, s=bsa)
self.assertIsInstance(bSa, Similarity2)
np.testing.assert_allclose(bSa.rotation().matrix(), bRa.matrix())
np.testing.assert_allclose(bSa.translation(), bta)
np.testing.assert_allclose(bSa.scale(), bsa)
def test_is_eq(self) -> None:
"""Ensure object equality works properly (are equal)."""
bSa = Similarity2(R=Rot2(), t=np.array([1, 2]), s=3.0)
bSa_ = Similarity2(R=Rot2(), t=np.array([1.0, 2.0]), s=3)
self.gtsamAssertEquals(bSa, bSa_)
def test_not_eq_translation(self) -> None:
"""Ensure object equality works properly (not equal translation)."""
bSa = Similarity2(R=Rot2(), t=np.array([2, 1]), s=3.0)
bSa_ = Similarity2(R=Rot2(), t=np.array([1.0, 2.0]), s=3)
self.assertNotEqual(bSa, bSa_)
def test_not_eq_rotation(self) -> None:
"""Ensure object equality works properly (not equal rotation)."""
bSa = Similarity2(R=Rot2(), t=np.array([2, 1]), s=3.0)
bSa_ = Similarity2(R=Rot2.fromDegrees(180), t=np.array([2.0, 1.0]), s=3)
self.assertNotEqual(bSa, bSa_)
def test_not_eq_scale(self) -> None:
"""Ensure object equality works properly (not equal scale)."""
bSa = Similarity2(R=Rot2(), t=np.array([2, 1]), s=3.0)
bSa_ = Similarity2(R=Rot2(), t=np.array([2.0, 1.0]), s=1.0)
self.assertNotEqual(bSa, bSa_)
def test_rotation(self) -> None:
"""Ensure rotation component is returned properly."""
R = Rot2.fromDegrees(90)
t = np.array([1, 2])
bSa = Similarity2(R=R, t=t, s=3.0)
# evaluates to [[0, -1], [1, 0]]
expected_R = Rot2.fromDegrees(90)
np.testing.assert_allclose(expected_R.matrix(), bSa.rotation().matrix())
def test_translation(self) -> None:
"""Ensure translation component is returned properly."""
R = Rot2.fromDegrees(90)
t = np.array([1, 2])
bSa = Similarity2(R=R, t=t, s=3.0)
expected_t = np.array([1, 2])
np.testing.assert_allclose(expected_t, bSa.translation())
def test_scale(self) -> None:
"""Ensure the scale factor is returned properly."""
bRa = Rot2()
bta = np.array([1, 2])
bsa = 3.0
bSa = Similarity2(R=bRa, t=bta, s=bsa)
self.assertEqual(bSa.scale(), 3.0)
if __name__ == "__main__":
unittest.main()